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Simulation of undiagnosed patients with
novel genetic conditions

Emily Alsentzer1,2,6, Samuel G. Finlayson1,2,3,4,6, Michelle M. Li1,5, Undiagnosed
Diseases Network*, Shilpa N. Kobren 1 & Isaac S. Kohane 1

Rare Mendelian disorders pose a major diagnostic challenge and collectively
affect 300–400 million patients worldwide. Many automated tools aim to
uncover causal genes in patients with suspected genetic disorders, but eva-
luation of these tools is limited due to the lack of comprehensive benchmark
datasets that include previously unpublished conditions. Here, we present a
computational pipeline that simulates realistic clinical datasets to address this
deficit. Our framework jointly simulates complex phenotypes and challenging
candidate genes and produces patients with novel genetic conditions. We
demonstrate the similarity of our simulated patients to real patients from the
Undiagnosed Diseases Network and evaluate common gene prioritization
methods on the simulated cohort. These prioritization methods recover
known gene-disease associations but perform poorly on diagnosing patients
with novel genetic disorders. Our publicly-available dataset and codebase can
be utilized bymedical genetics researchers to evaluate, compare, and improve
tools that aid in the diagnostic process.

Rare congenital disorders are estimated to affect nearly 1 in 17 people
worldwide1, yet the genetic underpinnings of these conditions—
knowledge of which could improve support and treatment for scores
of patients—remain elusive for 70% of individuals seeking a diagnosis
and for half of suspected Mendelian disorders in general2,3. This diag-
nostic deficit results in a substantial cumulative lossof quality-adjusted
life years and a disproportionate burden on healthcare systems
overall4–6. Organizations such as the Undiagnosed Disease Network
(UDN) in the United States have been established to facilitate the
diagnosis of such patients, which has resulted in both successful
diagnoses formany patients as well as the discovery of new diseases7,8.

The diagnostic workup of patients with suspected Mendelian
disorders increasingly includes genomic sequencing. Whole genome
or exome sequencing typically identifies thousands of genetic variants,
which must be analyzed to identify the subset of causal variant(s)
yielding the patient’s syndrome (Fig. 1a). This process is challenging

and error prone; for example, patients may have variants that do not
ultimately cause their presenting syndrome, yet fall into genes that are
plausibly associated with one or more of their phenotypes. Further
challenges arise in situations where patients present with a novel set of
symptoms that do not match any known disorder, or when their
disease-causing variants occur in genes not previously associated with
any disease (Fig. 1b). In the first phase of the UDN, for instance, 23% of
eventual patient diagnoses were due to novel syndromes4.

To accelerate the diagnostic process, a plethora of computational
tools are used by clinical teams to automatically analyze patients’
genetic and phenotypic data to prioritize causal variants9–12. Unfortu-
nately, a comprehensive evaluation of these tools’ performance is
hindered by the lack of a public benchmark database of difficult-to-
diagnose patients of sufficient size to cover the full breadthofgenomic
diseases. While efforts such as the Deciphering Developmental Dis-
orders project provide useful benchmarks for specific populations of
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rare disease patients, they are limited in diagnostic scope and require
an extensive DUA for full access13,14. In lieu of real patient data, simu-
lated patient data offers several clear advantages: the simulation
approach can be scaled to an arbitrary number of patients and dis-
orders, data are inherently publicly shareable, and the transparency of
the simulation process can be leveraged to expose specific failure
modes of different methods. However, simulated patient data is only
useful insofar as it reflects the ongoing challenges of real-world diag-
nosis. This requires a faithful simulation of the complex relationship
between candidate genes harboring compelling genetic variants and
the patient’s phenotypes as well as the notion of disease novelty, as
described above. Existing approaches for simulating Mendelian dis-
ease patients unrealistically model the patient’s genotype and phe-
notype disjointly by inserting disease-causing alleles into otherwise
healthy exomes and separately simulating patient phenotypes as a set
of precise, imprecise, and noisy phenotypes15–17. Indeed, patients
representing true diagnostic dilemmas may randomly harbor irrele-
vant pathogenic variants with low penetrance or may have atypical
disease presentations or symptoms stemming from variants in genes
previously unassociated with disease, respectively confusing variant-
and phenotype-based prioritization methods. As such, jointly model-
ing phenotypes alongside genotypes is essential for generating simu-
lated patients that standard clinical workups would struggle to
diagnose. In addition, with few exceptions, most studies analyzing
tools for Mendelian disease diagnosis do not assess the ability of tools
to identify novel syndromes or variants, or do so by masking specific
disease–gene associations but not the gene–phenotype and
phenotype–disease interactions that may have been annotated as a
result of the initial disease–gene discovery16,18,19. Given the importance
and prevalence of automated prioritization tools in the diagnostic
process, enabling meaningful comparisons and improvement of these
tools via benchmarks that capture the notion of novelty and realistic
phenotypes will be essential.

Here, wepresent a computational pipeline to simulate difficult-to-
diagnose patients that can be used to evaluate gene prioritization
tools. Each simulated patient is represented by standardized pheno-
type terms and sets of candidate genes that are presumed to be
impacted by one ormore compelling variants. Tomodel novel genetic
conditions in our simulatedpatients, wefirst curate a knowledgegraph
(KG) of known gene-disease and gene-phenotype annotations that is
time-stamped to 2015. This enables us to define post-2015 medical
genetics discoveries as novel with respect to our KG. We additionally
provide a taxonomy of categories of “distractor” genes that do not
cause the patient’s presenting syndrome yet would be considered
plausible candidates during the clinical process. We then introduce a
simulation framework that jointly samples genes and phenotypes
according to these categories to simulate nontrivial and realistic
patients and show that our simulated patients closely resemble real-
world patients profiled in the UDN. Finally, we reimplement existing
gene prioritization algorithms and assess their performance in iden-
tifying etiological genes—referred to as “causal genes” henceforth—in
our simulated patient set, revealing specific settings in which estab-
lished tools excel or fall short. Overall, the approach to patient simu-
lation we present here is, to the best of our knowledge, the first to
incorporate nontrivial candidate distractor genes and phenotype
annotations to reflect real-world diagnostic challenges as well as the
notion of novel genetic disorders. We provide our framework and
simulated patients as a public resource to advance the development of
new and improved tools for medical genetics.

Results
We design and implement a pipeline for simulating patients with
difficult-to-diagnose Mendelian disorders (Fig. 2a). Each simulated
patient is represented by an age range, a set of positive symptoms
(phenotypes) that they exhibit, a set of negative phenotypes that they
do not exhibit, and a set of candidate genes impacted by variants that

Fig. 1 | Identification and categorization of causal disease genes. a Genomic
variation uncovered in an affected patient through DNA sequencing is investigated
using variant-level and gene-level evidence in order to identify the gene variant that
is most likely responsible for causing the patient’s symptoms. Here, we depict a
subset of relevant information that a care team may use to make this assessment.
b The causal gene responsible for a patient’s disorder can be categorized based on

the extent of medical knowledge that exists about the gene and its associated
disorder. Intuitively, diagnosing patients where less is known about their causal
gene and disease (bottom category) is a more challenging task than diagnosing
patients where more is known about causal gene and disease (top category). The
protein structure pictured is PDB: ID3B. Icons are from Microsoft PowerPoint.
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may be causing their disease. There are three components of our
simulation framework. First, each patient is initialized with a genetic
disorder profiled in the comprehensive and well-maintained rare
genetic disease database Orphanet20. Second, the imprecision in real-
world diagnostic evaluations is modeled via phenotype dropout to
mimic patients’ partially observed symptoms, phenotype obfuscation,
which replaces specific symptoms with more general phenotype
terms, and phenotype noise, which adds unrelated symptoms and
comorbidities proportionally to their prevalence in age-matched
patients from a medical insurance claims database. Finally, we
develop a framework to generate strong, yet ultimately noncausal,
candidate genes inspired by the typical rare diseasediagnostic process
(Fig. 2b). These challenging distractor genes and some associated
phenotype terms are added according to each of six distractor gene
modules (see Methods for further details). This entire process takes
0.08 s on average to simulate a single patient.

Simulated patients mimic real-world patients
We leverageour computational pipeline to simulate 20 realistic patients
for each of 2134 unique Mendelian disorders, representing a total of
42,680patients and 2401 unique causal genes. Each simulatedpatient is
characterized by 18.39 positive phenotypes (s = 7.7), 13.5 negative phe-
notypes (s =8.5), and 14 candidate genes (s = 3.5) on average. To assess
whether our simulated patients are systematically distinguishable from
real-world patients with nontrivial diagnoses, we assemble a cohort of
121 real-world patients from the Undiagnosed Diseases Network (UDN)
who were diagnosed with a disease in Orphanet annotated with genes
and phenotypes and then select 2420 simulated patients withmatching

diseases. UDN patients are similar to other rare disease patients with
respect to the severity of their diseases, but their ultimate diagnoses
tend to be more elusive due to the involvement of novel disease genes
and atypical disease presentations. The UDN cohort also differs from
other rare disease cohorts in that patients have relatively thorough
standardized phenotyping and exhibit symptoms with varying ages of
onset across broad disease categories4. There are 92 unique diseases
represented in the real and disease-matched simulated patient cohorts.
Real and simulated patients have similar numbers of candidate genes
(13.13 vs 13.94 on average; Fig. 3a) and positive phenotype terms (24.08
vs 21.57 on average; Fig. 3b). Real-world patients are alsomore similar to
their simulated counterparts than toother real-worldpatients.Whenwe
apply dimensionality reduction on the positive phenotype terms of
patients, real-world patients cluster with and are visually indistinguish-
able from simulated patients within each disease category (Fig. 3c),
suggesting that there are no large-effect, consistent differences in
phenotype term usage between real and simulated patients. To more
precisely measure this, we performed feature analysis on a random
forest classifier implemented to distinguish real from simulated
patients. Indeed, we found that the classifier’s accuracy of 94.9% was
dominated by specific phenotype terms that appear with prevalence of
close to 0% in one of the groups and low-prevalence (typically <5%) in
the other group to collectively provide great discriminatory power
(Supplementary Fig. 1). These subtle patterns that are unsurprisingly
detected and exploited by an ML algorithm suggest the existence of
idiosyncrancies within UDN annotations rather than clinically mean-
ingful differences. Moreover, for each real-world patient, the ten
phenotypically-closest simulated patients with the same disease are

Fig. 2 | Simulation process generates patients with multiple phenotype terms
and candidate genes. a Patients arefirst assigned a true disease and initializedwith
a geneknown to cause that disease (blue circle) aswell aswith positive andnegative
phenotypes associated with that disease (gray diamonds). Phenotype terms are
then randomly removed through phenotype dropout, randomly altered to be less
specific according to their position in an ontology relating phenotype terms, and
augmented with terms randomly selected by prevalence in a medical claims data-
base. Finally, strong distractor candidate genes and relevant additional phenotypes
are generated based on six distractor gene modules. b The six distractor gene

modules are inspired by genes that are frequently considered in current clinical
genomic workflows and are designed to generate highly plausible, yet ultimately
non-causal, genes for each patient. Four of the distractor genemodules are defined
by the overlap—or lack thereof—between the phenotypes associated with the dis-
tractor gene and the phenotypes associated with the patient’s causal gene. The
remaining two modules are defined by their similar tissue expression as the true
disease gene or solely by their frequent erroneous prioritization in computational
pipelines.
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Fig. 3 | Simulated patients mimic real-world patients. Diagnosed, real-world
patients from the Undiagnosed Diseases Network (orange) and a disease-matched
cohort of simulated patients (teal) have similar numbers of a candidate genes per
patient (average μ of 13.13 vs. 13.94) and b positive phenotype terms per patient
(average of 24.08 vs. 21.57). c Real patients (orange) and simulated patients (teal)
are indistinguishable based on their annotated positive phenotype terms within
each Orphanet disease category, as visualized using non-linear dimension reduc-
tion via a Uniform Manifold Approximation and Projection (UMAP) plot. The hor-
izontal and vertical axes are uniform across all plots. The number of real patients
within each disease category, n, is listed in the corner of each plot; there are
20 simulated patients for each real patient. d For each real-world patient, all

simulated patients in the disease-matched cohort are ranked randomly (black) and
by the Jaccard similarity of their phenotype terms to the query real-world patient
(purple). The Empirical Cumulative Distribution Function (ECDF) plot shows that
the basic Jaccard similarity metric is able to retrieve simulated patients with the
same disease as the query real patient more accurately than if the simulated
patients were retrieved randomly. e The distributions of shortest path distances
between all non-causal candidate and true causal genes in a gene–gene interaction
network are indistinguishable between real-world and simulated patients. n is the
number of patients in each patient category. Source data are provided as a Source
Data file.
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closer than the ten phenotypically-closest real-world patients with dif-
ferent diseases (average Jaccard similarity of 0.952 vs 0.930; P = 7.4e-81,
Wilcoxon one-sided test). We also employ a nearest neighbor analysis
using Jaccard as our similaritymetric to evaluate whether the simulated
patients’ phenotype terms are sufficiently reflective of and specific to
their assigned diseases.We find that simulated patients with similar sets
of phenotype terms to real patients are more likely to have the same
disease as those real patients than randomly selected simulatedpatients
(Fig. 3d). Finally, genes that are proximal in an interaction networkmay
be especially difficult to disambiguate due to their related biological
functions and similar phenotypes when perturbed. We found that the
shortest path distances between distractor candidate and true causal
genes per patient in a protein-protein and transcription factor interac-
tion network were similarly distributed between real and simulated
patients (Fig. 3e, KS-Test P =0.239).

Pipeline simulates patients with novel and diverse genetic
conditions
A primary challenge in diagnosing real-world patients, and one that
should be reflected in relevant simulated patients, is when their causal
gene-disease relationships have never previously been documented
(Fig. 1b). However, simulating patients with “novel” genetic conditions
is conceptually nontrivial, as simulated disease associations must be
drawn from some existing knowledge graph. We learn more about
atypical disease presentations over time, and the discovery of new
gene–disease associations may accompany new gene–phenotype and
disease–phenotype associations as well. To overcome this issue, we
consider the gene-phenotype-disease associations annotated in a
knowledge graph timestamped to 2015 to be “existing knowledge” and
anydiscoveriesmadepost-2015 tobe “novel” (seeMethods for details).
This enables us to categorize simulated patients according to the
novelty of their gene-disease relationships with respect to this time-
stamped knowledge graph (Table 1). Although only 2% and 1% of the
total simulated patients respectively correspond to previously known
and previously unknown diseases caused by genes never before
associated with any disease, the total number of simulated patients in
these two categories are 14x and 190x higher, respectively, than in our
real-world dataset. Moreover, whereas only 231 unique disease genes
have been identified as causal in our phenotypically-diverse, real-world
UDNdataset, our simulatedpatients’ 2100+uniquediseases are caused
by 2401 unique disease genes. Overall, these results demonstrate that
our pipeline can simulate substantially higher numbers of patients—
that are diverse with respect to disease and the degree of novelty of
their causal gene-disease relationships—than compared to a national
dataset of real-world patient data.

Performance of gene prioritization algorithms on real and
simulated patients
The size and diversity of our real and simulated patient datasets enable
us to evaluate how well existing algorithms are able to prioritize causal
genes in patients with different degrees of preexisting knowledge of
their gene-disease relationships. We run the gene prioritization algo-
rithms from six commonly-used programs on patients in each of the

causal gene-disease association categories outlined in Fig. 1b, ensuring
that each algorithmonly had access to knowledge timestamped to 2015
or earlier. Each algorithm inputs the patient’s phenotype terms and the
patient’s individualized set of candidate genes or variants and produces
a ranking of the candidate genes according to how likely they are to
cause the patient’s phenotypes. While some of the algorithms can be
used for both variant and gene prioritization, here we strictly evaluate
the phenotype-based gene prioritization capabilities of each algorithm.
The first class of algorithms computes the semantic similarity of a
patient’s phenotype terms from theHuman PhenotypeOntology (HPO)
directly to phenotype terms associated with each candidate gene.
Phrank–Gene considers the prevalence of gene associations across
these phenotypes and all phenotype ancestors in the ontology, and
ERIC–Gene (introduced and implemented in Xrare) additionally con-
siders the most informative common ancestor of two phenotype terms
whencomputing similarity10,16. The secondclass of algorithmsconsiders
disease–phenotype associations. Phrank–Disease and ERIC–Disease
each evaluate all diseases associated with a candidate gene and com-
pare the patients’ phenotypes and those diseases’ phenotypes, assign-
ing the candidate gene the highest similarity score across all of its
associated diseases. Phenomizer uses semantic similarity of phenotype
terms and prevalence of phenotype associations across all known dis-
eases to match patient symptoms directly to diseases, rather than to
genes12. LIRICAL estimates the extent to which patients’ phenotypes are
consistent across all known diseases using a likelihood ratio
framework21. For both Phenomizer and LIRICAL, we assign candidate
genes the highest score across their associated diseases. The final class
of algorithms utilizes additional types of interactions beyond human-
derivedgene–phenotype, gene–disease, anddisease–phenotype edges.
Phenolyzer uses semantic similarity to match patient symptoms to
diseases and scores genesdirectly associatedwith thediseases aswell as
additional genes connected via a gene–gene network11. HiPhive
(implemented in Exomiser) leverages ontologies from humans, zebra-
fish, and mice to determine phenotype similarities. In the absence of
phenotypic data for a candidate, HiPhive employs a random walk
approach on a protein–protein interaction network to establish con-
nections between the candidate and other genes exhibiting similar
phenotypes22. We do not include the two other phenotype similarity
algorithms included in Exomiser because they leverage the same
phenotype-gene semantic similarity algorithm found in Phenomizer
(PhenIX) or use a subset of model organism interactomes already
included in HiPhive (Phive). Finally, ERIC-Predicted from Xrare com-
putes “predicted” phenotype similarity scores between each patient
and each candidate gene using XGBoost by considering the phenotypic
profiles of related genes with similar sequences, protein domains,
pathway membership, or tissue expression16.

Real-world and simulated patients are equally difficult to
diagnose
We first assess whether gene prioritization performance was similar
between the simulated patient cohort and the real-world patient
cohort. Across both patient sets, correctly ranking the causal gene
becomesmore difficult as the amount of information about the causal

Table 1 | Counts of simulated and real-world Undiagnosed Diseases Network (UDN) patients in each causal gene-disease
category

Causal Gene Category # Simulated Patients # Real-world UDN Patients

Known disease caused by an associated causal gene 36,226 (85%) 149 (58%)

Known disease caused by a disease-causing gene previously unassociated with their disease 4339 (10%) 15 (6%)

Known disease caused by a gene never before associated with any disease 835 (2%) 5 (2%)

Novel disease caused by a disease-causing gene 947 (2%) 60 (23%)

Novel disease caused by a gene never before associated with any disease 333 (1%) 29 (11%)

UDN patients with multiple causal genes may appear in several categories. The values in parentheses refer to the percentage of total simulated or UDN patients.
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gene-disease relationship in the knowledge graph decreases (Fig. 4;
boxen plots are shown in Supplementary Fig. 2). We find that the
performance between simulated and real-world patients was similar
for all algorithms across all but the easiest gene-disease association
categories. Overall, these results indicate that the simulated patient
cohort can serve as a reasonable proxy for real-world patients, par-
ticularly when evaluating a method’s ability to perform well despite
reduced existing knowledge about the causal gene and disease.

Novel syndromes and disease genes represent greatest
challenge
All gene prioritization tools perform well when the patient’s causal
gene-disease relationship is in the knowledge graph (Fig. 4a). Specifi-
cally, all methods rank the causal gene first in at least 25% of simulated
and real-world patients, representing a 4-fold increase in the propor-
tion of patients with the causal gene ranked first relative to the next
novelty category. However, nearly all methods perform incrementally
worse as less information about the simulated patient’s causal gene-
disease relationship is present in the knowledge graph. In patients with

a known disease caused by a gene previously unassociated with that
disease (Fig. 4b), the average rank of the causal gene is 4.27 at best.
When the patient has a novel disease, even when the causal gene has
someother existing disease associations (Fig. 4c), performance further
declines; the average rank of the causal gene drops by 1–2 positions for
all methods on simulated and real data. An exception is that
ERIC–Predicted (I3) improves slightly on simulated patients when the
disease is unknown, which is unsurprising given that this method does
not use known gene–disease annotations. The most difficult scenarios
occur when the patient’s causal gene has never been associated with
any disease. When the patient’s disease is known (Fig. 4d), the average
rank of the causal gene is 5.72 for the highest performingmethod, and
when both the disease and causal gene are unknown (Fig. 4e), the
average rank is 5.99 at best and the proportion of patients with their
causal gene ranked in the top 3 drops for all methods.

The algorithms that exclusively use phenotype–phenotype,
disease–gene and phenotype–disease annotations from humans (i.e.,
method type D in Fig. 4) excel in settings where the patient’s causal
gene and disease are in the KG (Fig. 4a, b).When the causal gene is not

Fig. 4 | Ability of computational approaches to rank causal genes differs across
disease-gene categories. We group simulated patients and real-world UDN
patients into five categories based on their type of causal gene-disease association
(patient counts in Table 1). These categories, described in detail in Fig. 1b, are
illustrated in the blue header bars above each plot and ordered decreasingly from
left to right by the amount of existing knowledge of the association in the under-
lying knowledge graph. Each panel a–e shows performance on patients in a single
category. We run nine gene ranking algorithms implemented in six prioritization
tools on the phenotype terms and candidate gene list for each simulated and real-
world patient within each causal gene-disease category. These algorithms are
separated into those that directly consider patient—gene phenotypic similarity (G1:
Phrank–Gene, G2: ERIC–Gene), those that compute patient—disease phenotypic

similarity (D1: Phrank–Disease, D2: ERIC–Disease, D3: Phenomizer, D4: LIRICAL), and
those that consider additional interaction edges, such as gene–gene edges, inter-
actions in other species, or predicted edges (I1: Phenolyzer, I2: HiPhive, I3: ERIC-
Predicted). We show here the ability of these methods to correctly rank each
patient’s causal genewithin the top k rankedgenes for varying valuesofk. For visual
clarity, the color and width of each stacked bar section corresponds to causal gene
rank grouping. The average rank of the causal gene is italicized above each bar.
Dashed lines denote the average percent of patients where the causal gene
appeared in the top 10 across ten random rankings of the candidate genes. Boxen
plots displaying the distributions of causal gene ranks can be found in Supple-
mentary Fig. 2. Source data are provided as a Source Data file.
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associated with any disease in the KG (Fig. 4d, e), methods that com-
pare patients’ phenotypes directly to genes’ phenotypes (i.e., method
type G) outperform those approaches that compare patients’ pheno-
types to known diseases (i.e., method type D). Finally, leveraging
additional interaction edge types provides a consistent performance
boost only in cases where the causal gene and/or disease is novel (i.e.,
method type I, Fig. 4c–e). Indeed, when both the causal gene and
disease are unknown (Fig. 4e), Phenolyzer (I1) for instance, which
leverages gene–gene associations, ranks the causal gene 9.08 for
simulated patients on average whereas all G and D method types rank
the causal gene significantly lower, at 10.92, 10.80, 12.10, 11.99, 12.10
and 11.11 respectively on average (all P < 2.89*10−17). Nevertheless, the
shortest path distances between incorrectly highly-ranked and true
causal genes in a gene–gene network are similarly distributed even
across D- and G-type methods, as biologically correlated genes often
lead to similar phenotypes when perturbed (Supplementary Fig. 3).
HiPhive (I2), which additionally considers non-human interaction
edges, and ERIC–Predicted (I3), which predicts interaction edges using
other omics data, outperform all approaches in identifying completely
novel gene–disease associations (Fig. 4e). These results are in line with
previous suggestions to search for known disease-causing variants and
phenotypically-concordant disease genes first before utilizing the
additional interaction types that help gene prioritization algorithms
generalize to settings where the causal gene has not been previously
associated with a disease22. Notably, when algorithms are evaluated on
all patients together rather than separately by novelty category, the
general performance decline for all methods across categories as well
as relative differences in performance within each novelty category,
are obfuscated (Supplementary Fig. 4).

Simulation pipeline components are key to simulating realistic,
challenging patients
To determine the importance of each component in our simulation
pipeline (Fig. 2), we run our pipeline using only subsets of these
components and then evaluate howwell Phrank–Disease, the fastest of
the gene prioritization algorithms we evaluated, is able to rank causal
genes in the resultant simulated patients (Fig. 5; boxen plots in Sup-
plementary Fig. 5). In all ablations, we set the probability of sampling
each candidate gene module to be uniform. As expected, we find that
the gene prioritization task is easiest when all of the phenotype-
altering components and distractor gene modules (as illustrated in
Fig. 2) are excluded from our simulation pipeline, that is, when can-
didate genes are selected randomly and phenotype terms do not
undergo obfuscation, dropout, or augmentation with phenotypic
noise (Fig. 5a). In this setting, the diagnostic gene appears at rank 1.855
on average. The task becomes significantly more difficult when only
phenotype-altering components are added (average causal gene rank
drops to 1.955; P < 0.001) and evenmore difficult when only distractor
genemodules are added (average causal gene rankof 2.570;P <0.001).
The task is most difficult when the complete pipeline is used (average
causal gene rank of 2.936; P < 0.001), suggesting that both the phe-
notype- and gene-based components of our simulation pipeline con-
tribute to the generation of realistic patients representing challenging
diagnostic dilemmas.

We next measure how each phenotype-altering component—
phenotype obfuscation, dropout, noise, and phenotypes added by
the distractor gene modules—impacts the difficulty of the gene
prioritization task (Fig. 5b). To this end, we include a “gene-only”
version of all distractor gene modules in the simulation pipeline, and
we vary whether the distractor gene modules add associated pheno-
types and whether phenotype terms undergo obfuscation, dropout,
or noise augmentation. When we restrict to using only one
phenotype-altering component at a time, we find that the component
that increases the difficulty of the gene prioritization task the most is
phenotype noise (average causal gene rank 2.583), followed by

phenotypes added by distractor gene modules, phenotype dropout,
and phenotype obfuscation (average causal gene ranks 2.570, 2.435,
and 2.316, respectively). Including either the distractor gene-
associated phenotypes or phenotype noise alone increases the diffi-
culty of the gene prioritization task more than including both phe-
notype dropout and obfuscation together (average causal gene rank
2.448). However, we confirm that including these latter two
phenotype-altering components in addition to either one or both of
the distractor gene phenotypes and phenotype noise does, in fact,
increase the difficulty of the task more than if they were excluded. In
general, adding additional phenotype-altering components makes
the gene prioritization task progressively more difficult, and as
expected, the most difficult combination is when all phenotype
components are included. As before, we find that when the two
strongest phenotype-altering components (noisy and distractor
gene-associated phenotypes) are applied together, the gene prior-
itization task is more difficult than when certain sets of three
phenotype-altering components are used (average causal gene rank
of 2.773 versus average causal gene ranks of 2.767 and 2.702).

Finally, we perform an ablation of each of the six distractor gene
modules by removing a single module at a time (Fig. 5c). When each
distractor gene module is removed, the number of genes that would
have been sampled from thatmodule are instead sampled randomly to
ensure that the total number of candidate genes for each patient is
constant. Removing the module that generates phenotypically-similar
disease genes or the module that generates phenotypically-distinct
disease genesmake the gene prioritization task substantially easier for
Phrank–Disease relative to the individual exclusion of other distractor
gene modules (average causal gene rank of 2.564 and 2.666, respec-
tively). This is intuitive because Phrank’s gene prioritization approach
is based on disease-phenotype and disease-gene associations. We
suspect that the othermodules in our pipelinemay generate distractor
genes that aremore challenging for gene prioritization algorithms that
explicitly leverage cohort-based mutational recurrence, gene expres-
sion, and other additional data. Nevertheless, we confirm that removal
of every gene module except for the insufficiently explanatory gene
module makes the gene prioritization task easier. There are fewer
insufficiently explanatory candidate genes in the ablation patient
cohort (Supplementary Fig. 6), which may explain why their removal
does not change gene prioritization performance. Furthermore,
removal of all distractor gene modules together makes the task much
easier compared to the removal of any individual module, demon-
strating that no one module is solely responsible for generating the
distractor genes that increase the difficulty of causal gene prioritiza-
tion in simulated rare disease patients.

Discussion
In this work, we developed a flexible framework for simulating
difficult-to-diagnose patients with elusive or atypical genetic dis-
orders like those profiled in the Undiagnosed Diseases Network
(UDN). Key features of our framework include: (i) jointly modeling
patients’ genotype and phenotype, (ii) capturing imprecision in real-
world clinical workups by obfuscating, excluding, and adding
prevalence-based noise from age-matched population cohorts to
patients’ recorded symptoms, and (iii) simulating patients with novel
causal gene-disease associations relative to an established knowledge
graph, to emulate the challenging task of diagnosing a previously
unpublished disorder. Our framework can generate a phenotypically
diverse cohort that is representative of all rare diseases characterized
in Orphanet, and these simulated patients can be freely shared with-
out privacy concerns. Our simulation framework is generalizable and
customizable, and can be tuned to mimic other rare disease patient
cohorts as desired.

Our simulated patients are represented as sets of phenotypes and
candidate genes, rather than candidate variants. Variant-level
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properties, such as variant inheritance patterns, functional impacts,
and cohort-based frequencies, are considered only indirectly, as we
assume that a patient’s candidate genes have been clinically shortlisted
because compelling variants have implicated or lie within them9,23.
Some variants, such as regulatory variants or larger indels,may impact
multiple genes simultaneously. In addition, real-world patients may
have two or more genes contributing to their presenting disorder(s).
Although our current framework generates patients with monogenic
conditions, it could be extended to simulate patients with more than
one causal gene; this will becomemore feasible at scale as the number
of rare, multigenic diseases curated in Orphanet increases. The real-
world UDN patients modeled by our simulation framework tend to
have more phenotype terms relative to other rare disease patients. As

large language models advance, automated extraction of accurate
phenotype terms from clinical records should enable many more
patients to have similarly comprehensive annotations for use in auto-
mated prioritization tools24,25. However, for themajority of rare disease
patients worldwide who lack informative clinical records with relevant
phenotypic details, the scarcity of even their extracted HPO terms
relative to our simulated patients will remain26. As the biomedical data
leveraged by prioritization methods diversifies, our framework could
be extended to reflect these additions, for instance, by incorporating
distractor genes that are highly constrained across human populations
and/or phenotypic noise inspired by errors in machine learning-based
parsing of clinical notes. As available data from rare disease patients
continues to expand, future iterations of this work may also benefit

Fig. 5 | Pipeline components increase the difficulty of causal gene identification
in simulated patients. We run a gene prioritization algorithm on patients simu-
lated by our pipeline when varying subsets of pipeline components are included.
We report the fraction of simulated patients where the causal gene was prioritized
within the top k ranked genes for varying k (horizontal axis for all plots) when
different components of the simulation pipeline are included (vertical axis for all
plots). The average rank of the causal gene is listed in italics at the base of each bar.
The color and width of each stacked bar section corresponds to causal gene rank
grouping. We show gene prioritization performance on simulated patients pro-
ducedwhen the following components are included in the simulationpipeline: ano

phenotype- nor gene-based components (i.e., candidate genes sampled randomly
and phenotype terms unaltered from initialization), all standalone phenotype-
altering components alone, all distractor gene modules alone, or all pipeline
components together;b a “gene-only” version of distractor genemodules and each
possible combination of subsets of phenotype-altering components; c all three
standalonephenotype-altering components and all butonedistractor genemodule
at a time. Note that in b, horizontal purple lines in the vertical axis labels are for
visual clarity, whereas in c, horizontal black lines in the vertical axis signify set
difference. Source data are provided as a Source Data file.
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from generative machine learningmethods such as diffusionmethods
or generative adversarial networks. By building upon the published
literature, our work is also subject to biases inherent in the field of
clinical genetics research writ large, including the historical over-
representation of individuals of European descent and the diseases
that affect them. Indeed, we expect that the dataset and methods we
present in this paper could be used to further interrogate these biases,
for example, by examining the differential performance of gene-
prioritization tools on diseases that more often affect under-
represented populations.

Finding and annotating “novel” gene-disease associations—
defined in our framework as those published post-2015—required
significantmanual reviewof public databases and literature. Databases
that curate these associations (e.g., Orphanet, HPO) are often missing
publication or discovery dates and are not updated in real time, and so
an indeterminate lag exists between causal gene-disease associations
being present in the literature and being reflected in these knowledge
bases. To fairly evaluate geneprioritizationmethods across thedisease
novelty categories we describe in Fig. 1b, we ensured that all tested
methods solely leveraged data from 2015; only methods that used or
couldbe reimplemented to exclusivelyuse this formof input datawere
included. When possible, we leveraged identical data from our time-
stamped knowledge graph in order to assess the impact of the algo-
rithm or included data types independently from any specific data
source. Due to their reliance on statically curated data, these methods
may havemisprioritized real-world patients’ gene-disease associations
that were “known” by 2015 but had yet to be incorporated into the
knowledge graph, reflecting an expected and ongoing hindrance for
diagnosing present-day patients (Fig. 4a). We suspect that diagnostic
tools that frequently mine the literature for new gene-phenotype-
disease associations would excel at diagnosing patients with known
causal genes and known diseases relative to tools that rely on struc-
tured rare disease databases27,28.

We found that the algorithms that were most effective at finding
novel disease-causing genes performed relatively poorly at diagnosing
patients with known causal genes and diseases, underscoring the
importance of evaluating performance separately across distinct
novelty categories. Given these findings, clinicians may opt to use
certain computational tools earlier in the diagnostic process andmove
to research-oriented tools only in cases where a novel disease-causing
gene is suspected22.

We expect that the simulated patients produced via our frame-
work can be leveraged for a wide range of applications29. As we
demonstrate here, the simulated patients can enable a uniform eva-
luation of existing gene prioritization tools on a representative patient
cohort. Developers can also internally validate and improve their tools
by separately evaluating them on simulated patients across novelty
categories and distractor gene categories. Another application area for
our pipeline will be the generation of training data for machine
learning algorithms. As the promise of machine learning solutions in
the clinic grows, access to large-scale datasets of relevant clinical data
will be essential30. We suspect that simulated patients such as those
yielded by our method may provide invaluable training data for
machine learning models for rare disease diagnosis, which would
expose algorithms to data from diverse genetic disorders while
reflecting realistic clinical processes.

Methods
Simulated patient initialization
We simulate patients for each of the 2134 diseases in Orphanet20

(orphadata.org, accessed October 29, 2019) that do not correspond to
a group of clinically heterogeneous disorders (i.e., Orphanet’s “Cate-
gory” classification31), have at least one associated phenotype, and
have at least one causal gene. For Orphanet diseases that weremissing
either a causal gene or phenotypes (but not both) and were listed as

being a “clinical subtype”, “etiological subtype”, or “histopathological
subtype” of another Orphanet disease that did have a causal gene and/
or phenotypes (e.g., “Cystinuria type A”), we imported the causal gene
and/or phenotypes from the parent disease (e.g., ‘Cystinuria’) as
appropriate. For each patient, the gene set is initializedwith the known
causal disease gene (mapped to its Ensembl identifier); the age is
randomly sampled from the age ranges associated with the disease
(e.g., “infant”); and positive and negative phenotype terms from the
Human Phenotype Ontology32 (HPO, version 2019) are added with
probabilities P(term∣disease) and 1-P(term∣disease) respectively, where
P(term∣disease) is provided in Orphanet and corresponds to the
observed prevalence of a specific phenotype term presenting in
patients with the disease. Sex and gender were not modeled in the
simulation process.

Modeling diagnostic process imprecision
To mimic real-world patients’ partially observed phenotypes, we per-
form phenotype dropout where each positive and negative phenotype
term is removed from the simulated patient with probabilities
P(positive dropout) and P(negative dropout), respectively, set to 0.7
and 0.2 in our implementation. We also perform phenotype obfusca-
tion to replace specific phenotype terms (e.g., “arachnodactyly”) with
their less precise parent terms (e.g., “long fingers”) in the HPO ontol-
ogy. Positive and negative phenotypes annotated to each patient are
obfuscated with probabilities P(positive obfuscation) and P(negative
obfuscation), each set to 0.15 in our implementation. Finally, to model
unrelated symptoms and comorbidities that would be present in real-
world patients, we introduce phenotype noise by sampling new HPO
phenotype terms that were mapped from ICD-10 billing codes from a
large medical insurance claims database using the Unified Medical
Language System (UMLS) crosswalk33. Positive phenotype terms are
sampled with probabilities proportional to their prevalence in corre-
sponding age-stratified populations (i.e., infants are defined as 0–1
years, children are 2–11 years, adolescents are 12–18 years, adults are
19–64 years, and seniors are 65+ years), and negative phenotype terms
are sampled from the same corresponding age-stratified populations
at random.

Distractor gene modules
In order to mimic the typical diagnostic process where numerous
potentially disease-causal genes must be manually reviewed by a
clinical team,we generate a set of 1 +NG highly plausible, yet ultimately
non-causal, genes for each patient, where NG is drawn from a Poisson
distribution parameterized by λ. In our implementation, the tunable
parameter λ is set to the mean number of candidate genes considered
in real-world patients with undiagnosed genetic conditions (see
Methods “Preprocessing Real Patient Data” below). TheseNG genes are
generated from the following six distractor gene modules with prob-
abilities 0.33, 0.42, 0.05, 0.09, 0.08, and 0.03, respectively, which we
set in our implementation based on the approximate frequency of
each distractor gene type in real-world patients with undiagnosed
diseases; these parameters can be customized by the user. Each dis-
tractor gene module contributes one gene to the simulated patient’s
candidate gene list, and three distractor genemodules simultaneously
add phenotype terms related to the added gene.

Phenotypically-similar disease genes. First, we identify genes caus-
ing distractor Mendelian diseases in Orphanet that have overlapping
phenotype terms with the patient’s true disease (Fig. 2b, dark green).
We categorize the phenotype terms associated with the distractor
disease as “obligate”, “strong”, “weak”, or “excluded” if their pre-
valence in patients with that disease is 100%, 80–99%, 1–29% or 0%,
respectively. For instance, Alstrom syndrome (ORPHA:64) can serve as
a distractor disease forWolfram syndrome (ORPHA:3463) because five
of their phenotype terms overlap. Alstrom syndrome has five “strong”
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phenotypes (e.g., cone/cone-rod dystrophy, progressive sensorineural
hearing impairment) and 33 “weak” phenotypes (e.g., polycystic
ovaries, hepatomegaly). We require that all distractor diseases have at
least one obligate phenotype term and/or at least one excluded phe-
notype term, or that all phenotype terms that overlap with the true
disease of interest and are added to the patient are “weak” (e.g., three
of the five overlapping phenotypes between Alstrom and Wolfram
syndromes are “weak”). We add the causal gene for the distractor
disease to the simulated patient’s set of candidate genes and add
phenotype terms that overlap between the distractor and true disease
to the simulated patient’s positive phenotype set. To ensure that these
genes are challenging distractors but definitively non-causal, we add
some excluded phenotypes to the simulated patient’s set of positive
phenotypes and some obligate phenotypes to the simulated patient’s
set of negative phenotypes. For distractor diseases with no associated
obligate or excluded phenotypes and only weak overlapping pheno-
types with the true disease, we instead add some strong, non-
overlapping phenotypes to the simulated patient’s negative pheno-
types. At each of these steps, 1 +NP phenotype terms are added to the
simulated patient’s positive or negative phenotype sets, where NP is
drawn from a Poisson distribution parameterized by λ. In our imple-
mentation, we set λ such that simulated patients and real-world
patients with undiagnosed diseases have approximately the same
number of annotated phenotype terms on average (see Fig. 3 and
Methods “Preprocessing Real Patient Data” below).

Phenotypically-distinct disease genes. Since any variants in known
disease genes tend to be investigated during the diagnostic process,
we also add genes causing Mendelian diseases that do not have any
phenotypic overlap with the patient’s true disease (Fig. 2b, yellow)34.

Insufficiently explanatory genes. Genes that are not yet known to be
disease-causing but are associated with a subset of the patient’s
disease-relevant phenotypes are also strong candidates for further
diagnostic investigation. To generate such insufficiently explanatory
genes, we first curate a set of non-disease genes as the set of all genes
from DisGeNET35 (accessed April 16, 2019, https://www.disgenet.org/
downloads/all_gene_disease_associations.tsv) and excluding any genes
causally associatedwith a disease inOrphanet or inHPOAnnotation36,37

(accessed February 12, 2019, http://compbio.charite.de/jenkins/job/
hpo.annotations.monthly/ALL_SOURCES_ALL_FREQUENCIES_diseases_
to_genes_to_phenotypes.txt). We add non-disease genes that are asso-
ciated with a strict subset of low prevalence phenotypes from the
simulated patient’s true disease (Fig. 2b, light orange). We then add
1 +NP of the gene’s phenotype terms to the simulated patient’s positive
phenotype set if none are already present, with NP defined as above.

Genes associated with incidental phenotypes. Naturally occurring
phenotypic variance present across healthy individuals can be incor-
rectly considered to be relevant to a patient’s disease during diag-
nostic evaluations. To include genes causing these nonsyndromic
phenotypes, we add non-disease genes associated only with pheno-
types that do not overlap with the simulated patient’s true disease
(Fig. 2b, purple). We add some of the gene’s phenotypes to the simu-
lated patient’s positive phenotype set as before.

Similarly expressed genes. We also add genes with similar tissue
expression as thepatient’s causal disease gene (Fig. 2b, dark orange), as
a candidate gene’s expression in relevant tissues is considered as
supporting experimental evidence for a gene-disease association in
clinical evaluations38. For each gene, we compute its average tissue
expression in transcripts per million in each of 54 tissue types profiled
in GTEx39 (accessed October 29, 2019, https://gtexportal.org/home/
datasets/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_
tpm.tsv). For each tissue type, we linearly 0,1-normalize the per-gene

expression values such that the genewith the lowest expression in that
tissue type is assigned a value of 0 and the gene with the highest
expression in that tissue type is assigned a value of 1. We compare each
gene’s normalized tissue expression vector to the simulated patient’s
causal gene’s tissue expression vector using cosine similarity.We select
one of the top 100most similar genes with probability proportional to
its tissue expression similarity, excluding known disease genes with
phenotypic overlap with the simulated patient’s true disease.

Common false positive genes. Finally, we add genes from the Fre-
quentLy mutAted GeneS (FLAGS) database40 with probabilities pro-
portional to the number of rare functional variants affecting these
genes in general populations, as computational pipelines tend to fre-
quently prioritize these genes due to their length and variational
excess.

Preprocessing real patient data
We selected all patients from the Undiagnosed Diseases Network
(UDN) with a molecular diagnosis as of March 19, 2020. Each patient is
annotated with a set of positive and negative HPO phenotype terms
and a set of strong candidate genes that were considered by clinical
teams who handled each case. For each of the 362 diagnosed patients
who receivedgenomic sequencing through theUDN,we augment their
candidate gene lists with disease-associated and other clinically-
relevant genes listed on their clinical sequencing reports34. Where
possible, patients’ gene lists were further augmented with genes
prioritized by the Brigham Genomic Medicine pipeline41. We map all
genes to Ensembl identifiers, discard prenatal phenotype terms related
to the mother’s pregnancy, and exclude patients with fewer than five
candidate genes. The final cohort includes 248 patients.

The Undiagnosed Diseases Network study is approved by the
National Institutes of Health institutional review board (IRB), which
serves as the central IRB for the study (Protocol 15HG0130). All patients
accepted to the UDN provide written informed consent to participate
in the study and to share their data across the UDN as part of a
network-wide informed consent process.

Comparing simulated patients to real patients
Of the 248 diagnosed UDN patients that we consider, only 121 patients
were diagnosed with a disease in Orphanet that we were able tomodel
(see “Simulated Patient Initialization” above). We construct a disease-
matched cohort of 2420 simulated patients by selecting, for each of
these 121 UDN patients, 20 simulated patients with the same disease.
We first visualize positive phenotype term similarities between real
and simulated patients using non-linear dimension reduction via a
Uniform Manifold Approximation and Projection (UMAP) plot using
Python 3.6.742. We also compare each real patient to all simulated
patients in the disease-matched cohort by computing pairwise Jaccard
similarities ranging from 0 to 1 inclusively between the positive phe-
notype terms annotated to each real patient and the positive pheno-
type terms annotated to each simulated patient. For each real patient,
we then rank all simulated patients from highest to lowest Jaccard
similarity and analyze those simulated patients’ corresponding dis-
eases to assess whether simulated patients are as phenotypically spe-
cific to each disease as real patients are. We then evaluate the average
Jaccard similarity between the query real-world patient and the top 10
retrieved simulated patients with the same disease compared to the
average Jaccard similarity between the query and the top 10 real-world
patients with a different disease using a one-sided Wilcoxon signed-
rank test implemented in the SciPy Stats library (version 1.5.4). We
perform the Shapiro-Wilk test from the SciPy Stats library to test for
normality. Finally, we computed the shortest path distance between
each causal and all non-causal genes per patient in a protein-protein
and transcription factor interaction network derived respectively
from the Human Protein Reference Database and the Human
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Transcriptional Regulation Interactions Database11 to show that the
distributions of path lengths are not statistically different between real
and simulated patients.

Evaluating gene prioritization tools on novel diseases
To model novel genetic conditions in our simulated patients, we
leverage a knowledge-graph (KG) of gene-gene, gene-disease, gene-
phenotype, and phenotype-disease annotations fromPhenolyzer11 that
is time-stamped to February 2015 (obtained from github.com/WGLab/
phenolyzer/tree/ecec7410729276859b9023a00f20e75c2ce58862)
and the HPO-A ontology37 time stamped to January 2015 (obtained
from github.com/drseb/HPO-archive/tree/master/hpo.annotations.
monthly/2015-01-28_14-15-03/archive/annotation and github.com/
drseb/HPO-archive/tree/master/2014-2015/2015_week_4/annotations/
artefacts). Phenotype–phenotype annotations are from the 2019 HPO
ontology (accessed via Obonet 0.3.0). All gene names are mapped to
Ensembl IDs, and older phenotype terms are updated to the 2019 HPO
ontology. We alsomanually time-stamp each disease and disease-gene
association in Orphanet according to the date of the Pubmed article
that reported the discovery; discoveries after February 2015 are con-
sidered novel with respect to our KG. Note that the KG time-stamped
to February 2015 may not reflect all new information contained in the
most recent publications from PubMed, as would be expected for any
curated database. We categorize each novel discovery as in Fig. 1b. We
apply the same process to manually annotate the novelty of disease-
gene associations in the real-world UDN cohort. All preprocessing
code for the time-stamped knowledge graph construction can be
found at https://github.com/EmilyAlsentzer/rare-disease-simulation.

Several prioritization algorithms require variant-call format (VCF)
files as input. To evaluate these algorithms,we construct synthetic VCF
files by sampling a similarly pathogenic SNV for each candidate gene.
To this end, we obtained genome-wide precomputed CADD scores,
Ensembl VEP consequences and gnomAD minor allele frequencies
from the CADD website (https://krishna.gs.washington.edu/
download/CADD/v1.6/GRCh38/whole_genome_SNVs_inclAnno.tsv.
gz)43 and gene locations from Ensembl Biomart for all genes present in
our time-stamped KG and/or listed as a causal or distractor gene in our
sets of real and simulated patients. For each gene, we first tried to
select the rarest missense SNV with the highest CADD score, then (in
the absence of missense variants) the rarest “splice_acceptor” or
“splice_donor” variant with the highest CADD score, and finally (in the
absence of splice site variants as well), the rarest SNV with the highest
CADD score regardless of consequence to represent the gene.

We reimplement phenotype similarity-based gene prioritization
algorithms from sixwell-knownprioritization tools, restricting them to
utilize data from 2015 or earlier. We use publicly-available code from
https://bitbucket.org/bejerano/phrank and https://github.com/
WGLab/phenolyzerto run Phrank10 and Phenolyzer11, respectively,
using our 2015 time-stamped KG. We run the phenotype-only version
of LIRICAL with the “orphanet” data flag using code from https://
github.com/TheJacksonLaboratory/LIRICAL and filter the provided
input data file to include only those interactions present in our 2015
KG. LIRICAL considers positive and negative (i.e., that the patient did
not exhibit) HPO terms; we supplied all of these terms for all simulated
and real patients when running LIRICAL. We reimplement
Phenomizer12 as described in their paper, as open-source code is not
available, using our time-stamped KG from2015. Although the original
implementation of Phenomizer randomly samples phenotype terms
100,000 times to generate P values for each patient-disease similarity
score, we use 10,000 random samplings instead, as this was sub-
stantially faster, and varying the number of samplings did not impact
overall gene rankings. We define a patient-gene match score for Phe-
nomizer as the highest patient-disease match score across all diseases
associated with that gene. Next, we run Exomiser v6.0.0 (released
February 13, 2015) using their timestamped input data available from

https://github.com/exomiser/Exomiser/tree/6.0.0. We ran Exomiser
with the option for their most versatile phenotypic similarity algo-
rithm, HiPhive, which considers mouse, zebrafish and human pheno-
typic data in addition to gene–gene interactions. The other two
phenotype-ranking algorithms available within Exomiser use the
already-included Phenomizer algorithm (PhenIX) or use only mouse
phenotypic data (Phive)22. We also reimplement two versions of the
ERIC phenotype similarity score used in Xrare using our time-stamped
2015 KG: ERIC–Gene, which directly utilizes gene–phenotype interac-
tions, and ERIC–Disease, which utilizes gene–disease and
disease–phenotype interactions. Finally, we also run Xrare’s predictive
machine learning phenotype matching algorithm (Pred_Phen), called
ERIC–Predictive here, available in their Docker, which utilizes disease-
gene information known prior to 2011. We modify the provided R
script to directly output the computed phenotype match score. We
provide the settings files with the parameters used to run each of these
algorithms when relevant in our GitHub repository.

We report how well each of these tools—both versions of Phrank,
both versions of ERIC and Pred_Phen from Xrare, Phenolyzer, Pheno-
mizer, LIRICAL, and HiPhive from Exomiser—ranked the causal gene
for each simulated patient for each different category of novel dis-
orders as outlined in Fig. 1b.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The simulated patient dataset and all intermediate data used in its
creation have been deposited in Harvard Dataverse under accession
code https://doi.org/10.7910/DVN/ANFOR344. Anonymized UDN data
has been deposited in dbGaP (accession phs001232) and Phenome-
Central. Phenotypes and causal variants and genes related to UDN
diagnoses are also shared publicly in ClinVar: ncbi.nlm.nih.gov/clinvar/
submitters/505999/. Our simulation process and analyses leverage the
following external databases: Human Phenotype Ontology (https://
hpo.jax.org/app/), HPO Annotations (http://github.com/drseb/HPO-
archive/tree/master/hpo.ann522otations.monthly/2015-01-2814-15-03/
archive/annotation and http://github.com/drseb/HPO-arc523hive/
tree/master/2014-2015/2015week4/annotations/artefacts), Orphanet
(orphadata.org), Unified Medical Language System (nlm.nih.gov/
research/umls/index.html), Human Transcriptional Regulation Inter-
actions Database (available in the Phenolyzer Github at https://github.
com/WGLab/phenolyzer), Human Protein Reference Database
(https://www.hprd.org/ and in the Phenolyzer Github), CADD (https://
cadd.gs.washington.edu/), and Ensembl BioMart (https://useast.
ensembl.org/info/data/biomart/index.html). All data sources used in
our analyses can be found on the HarvardDataverse. Furthermore, the
processed data needed to recreate the figures can be found in the
“Source Data” section of our Harvard Dataverse. Source data are pro-
vided with this paper.

Code availability
The code to reproduce results, together with documentation and
examples of usage, can be found at https://github.com/
EmilyAlsentzer/rare-disease-simulation with https://doi.org/10.5281/
zenodo.819087245.
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