
L01 Introduction 2

L02 Linear Regression 12

L03 Linear Classifiers 21

L04 Training a Classifier 31

L05 Multilayer Perceptrons 42

L06 Backpropagation 49

L07 Distributed Representations 58

L08 Optimization 65

L09 Generalization 77

L11 Convolutional Networks 88

L12 Object Recognition 97

L15 Recurrent Neural Nets 107

L16 Learning Long Term Dependencies 118

L17 ResNets and Attention 129

L18 Learning Probabilistic Models 135

L19 GANs 153

L20 Reversible and Autoregressive Models 162

Lecture 1: Introduction

Roger Grosse

This series of readings forms the lecture notes for the course CSC321,
“Intro to Neural Networks,” for undergraduates at the University of Toronto.
I’m aiming for it also to function as a stand-alone mini-textbook for self-
directed learners and for students at other universities. These notes are
aimed at students who have some background in basic calculus, probability
theory, and linear algebra, but possibly no prior background in machine
learning.

1 Motivation

1.1 Why machine learning?

Think about some of the things we do effortlessly on a day-to-day basis:
visually recognize people, places and things, pick up objects, understand
spoken language, and so on. How would you program a machine to do these
things? Unfortunately, it’s hard to give a step-by-step program, since we
have very little introspective awareness of the workings of our minds. How
do you recognize your best friend? Exactly which facial features do you
pick up on? AI researchers tried for decades to come up with computational
procedures for these sorts of tasks, and it proved frustratingly difficult.

Machine learning takes a different approach: collect lots of data, and
have an algorithm automatically figure out a good behavior from the data.
If you’re trying to write a program to distinguish different categories of
objects (tree, dog, etc.), you might first collect a dataset of images of each
kind of object, and then use a machine learning algorithm to train a model
(such as a neural network) to classify an image as one category or another.
Maybe it will learn to see in a way analogous to the human visual system,
or maybe it will come up with a different approach altogether. Either way,
the whole process can be much easier than specifying everything by hand.

Aside from being easier, there are lots of other reasons we might want
to use machine learning to solve a given problem:

• A system might need to adapt to a changing environment. For in-
stance, spammers are constantly trying to figure out ways to trick our
e-mail spam classifiers, so the classification algorithms will need to
constantly adapt.

• A learning algorithm might be able to perform better than its human
programmers. Learning algorithms have become world champions at
a variety of games, from checkers to chess to Go. This would be
impossible if the programs were only doing what they were explicitly
told to.

1

• We may want an algorithm to behave autonomously for privacy or
fairness reasons, such as with ranking search results or targeting ads.

Here are just a few important applications where machine learning al-
gorithms are regularly deployed:

• Detecting credit card fraud

• Determining when to apply a C-section

• Transcribing human speech

• Recognizing faces

• Robots learning complex behaviors

1.2 How is machine learning different from statistics?

A lot of the algorithms we cover in this course originally came from statistics:
linear regression, principal component analysis (PCA), maximum likelihood
estimation, Bayesian parameter estimation, and Expectation-Maximization
(EM). (Statisticians got there first because we had data before we had com-
puters.) Much of machine learning, from the most basic techniques to the
state-of-the-art algorithms presented at research conferences, is statistical
in flavor. It’s unsurprising that there should be overlap, since both fields
are fundamentally concerned with the question of how to learn things from
data.

What, then, is different about machine learning? Opinions will differ
on this question, but if I had to offer one rule of thumb, it’s this: statistics
is motivated by guiding human decision making, while machine learning
is motivated by autonomous agents. This means that, even when we talk
about the same algorithm, practitioners in the two fields are likely to ask
different questions. Statisticians might put more emphasis on being able to
interpret the results of an algorithm, or being able to rigorously determine
whether a certain observed pattern might have just happened by chance.
Machine learning practitioners might put more emphasis on algorithms that
can perform well in a variety of situations without human intervention. This
overlap in techniques, coupled with the differences in motivation, creates a
lot of awkwardness as practitioners in both fields will talk past each other
without realizing it.

1.3 Why a course on neural networks?

Neural networks are one particular approach to machine learning, very
loosely inspired by how the brain processes information. A neural network
is composed of a large number of units, each of which does very simple com-
putations, but which produce sophisticated behaviors in aggregate. There
are lots of other widely used approaches to machine learning, but this class
focuses on neural networks for several reasons:

• Neural nets are becoming very widely used in the software indus-
try. They underlie systems for speech recognition, translation, rank-
ing search results, face recognition, sentiment analysis, image search,
and many other applications. It’s an important tool to know.

2

• There are powerful software packages like Caffe, Theano, Torch, and
TensorFlow, which allow us to quickly implement sophisticated learn-
ing algorithms.

• Many of the important algorithms are much simpler to explain, com-
pared with other subfields of machine learning. This makes it possible
for undergraduates to quickly get up to speed on state-of-the-art tech-
niques in the field.

This class is very unusual among undergrad classes, in that it covers
modern research techniques, i.e. algorithms introduced in the last 5 years.
It’s pretty amazing that with less than a page of code, we can build learning
algorithms more powerful than the best ones researchers had come up with
as of 5 years ago.

In fact, these software packages make neural nets deceptively easy. One
might wonder, if you can implement a neural net in TensorFlow using a
handful of lines of code, why do we need a whole class on the subject?
The answer is that the algorithms generally won’t work perfectly the first
time. Diagnosing and fixing the problems requires careful detective work
and a sophisticated understanding of what’s going on beneath the hood.
In this class, we’ll work from the bottom up: we’ll derive the algorithms
mathematically, implement them from scratch, and only then look at the
out-of-the-box implementations. This will help us build up the depth of
understanding we need to reason about how an algorithm is behaving.

2 Types of machine learning

I said above that in machine learning, we collect lots of data, and then train
a model to learn a particular behavior from it. But what kind of data do
we collect? The answer will determine what sort of learning algorithm we’ll
apply to any given problem. Roughly speaking, there are three different
types of machine learning:

• In supervised learning, we have examples of the desired behavior.
For instance, if we’re trying to train a neural net to distinguish cars
and trucks, we would collect images of cars and trucks, and label each
one as a car or a truck.

• In reinforcement learning, we don’t have examples of the behav-
ior, but we have some method of determining how good a particular
behavior was — this is known as a reward signal. (By analogy, think
of training dogs to perform tricks.) One example would be training
an agent to play video games, where the reward signal is the player’s
score.

• In unsupervised learning, we have neither labels nor a reward sig-
nal. We just have a bunch of data, and want to look for patterns in
the data. For instance, maybe we have lots of examples of patients
with autism, and want to identify different subtypes of the condition.

This taxonomy is a vast oversimplification, but it will still help us to organize
the algorithms we cover in this course. Now let’s look at some examples
from each category.

3

2.1 Supervised learning

The majority of this course will focus on supervised learning. This is the
best-understood type of machine learning, because (compared with unsu-
pervised and reinforcement learning) supervised learning problems are much
easier to assign a mathematically precise formulation that matches what one
is trying to achieve. In general, one defines a task, where the algorithm’s
goal is to train a model which takes an input (such as an image) and
predicts a target (such as the object category). One collects a dataset
consisting of pairs of inputs and labels (i.e. true values of the target). A
subset of the data, called the training set, is used to train the model, and
a separate subset, called the test set, is used to measure the algorithm’s
performance. There are a lot of highly effective and broadly applicable su-
pervised learning algorithms, many of which will be covered in this course.

For several decades, image classification has been perhaps the pro-
totypical application of neural networks. In the late 1980s, the US Postal
Service was interested in automatically reading handwritten zip codes, so
they collected 9,298 examples of handwritten digits (0-9), given as 16 × 16
images, and labeled each one; the task is to predict the digit class from
the image. This dataset is now known as the USPS Dataset1. In the ter-
minology of supervised learning, we say that the input is the image, and
the target is the digit class. By the late 1990s, neural networks were good
enough at this task that they became regularly used to sort letters.

In the 1990s, researchers collected a similar but larger handwritten digit
dataset called MNIST2; for decades, MNIST has served as the “fruit fly” of
neural network research. I.e., even though handwritten digit classification
is now considered too easy a problem to be of practical interest, MNIST
has been used for almost two decades to benchmark neural net learning
algorithms. Amazingly, this classic dataset continues to yield algorithmic
insights which generalize to challenging problems of more practical interest.

A more challenging task is to classify full-size images into object cat-
egories, a task known as object recognition. The ImageNet dataset3

consists of 14 million images of nearly 22,000 distinct object categories. A
(still rather large) subset of this dataset, containing 1.2 million images in
1000 object categories, is currently one of the most important benchmarks
for computer vision algorithms; this task is known as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). Since 2012, all of the best-
performing algorithms have been neural networks. Recently, progress on
the ILSVRC has been extremely rapid, with the error rate4 dropping from
25.7% to 5.7% over the span of a few years!

All of the above examples concerned image classification, where the goal
is to predict a discrete category for each image. A closely related task is
object detection, where the task is to identify all of the objects present in
their image, as well as their locations. I.e., the input is an image, and the
target is a listing of object categories together with their bounding boxes.

1http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
2http://yann.lecun.com/exdb/mnist/
3http://www.image-net.org/
4In particular, the top-5 error rate; the algorithm predicts 5 object categories, and

gets it right if any of the 5 is correct.

4

http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://yann.lecun.com/exdb/mnist/
http://www.image-net.org/

Other variants include localization, where one is given a list of object
categories and has to predict their locations, and semantic segmentation,
where one tries to label each pixel of an image as belonging to an object
category. There are a huge variety of different supervised learning problems
related to image understanding, depending on exactly what one is hoping
to achieve. The variety of tasks can be bewildering, but fortunately we can
approach most of them using very similar principles.

Neural nets have been applied in lots of areas other than vision. Another
important problem domain is language. Consider, for example, the problem
of machine translation. The task is to translate a sentence from one
language (e.g. French) to another language (e.g. English). One has available
a large corpus of French sentences coupled with their English translations; a
good example is the proceedings of the Canadian Parliament. Observe that
this task is more complex than image classification, in that the target is an
entire sentence. Observe also that there generally won’t be a unique best
translation, so it may be preferable for the algorithm to return a probability
distribution over possible translations, rather than a single translation. This
ambiguity also makes evaluation difficult, since one needs to distinguish
almost-correct translations from completely incorrect ones.

The general category of supervised learning problem where the inputs
and targets are both sequences is known as sequence-to-sequence learn-
ing. The sequences need not be of the same type. An important example
is speech recognition, where one is given a speech waveform and wants
to produce a transcription of what was said. Neural networks led to dra-
matic advances in speech recognition around 2010, and form the basis of
all of the modern systems. Caption generation is a task which combines
vision and language understanding; here the task is to take an image and
return a textual description of the image. The most successful approaches
are based on neural nets. Caption generation is far from a solved problem,
and the systems can be fun to experiment with, not least because of their
entertaining errors.5

2.2 Reinforcement Learning

The second type of learning problem is reinforcement learning. Here, one
doesn’t have labels of the correct behavior, but instead has a way of quanti-
tatively evaluating how good a behavior was; this is known as the reward
signal. Reinforcement learning problems generally involve an agent situ-
ated in an environment. In each time step, the agent has available a set of
actions which (either deterministically or stochastically) affect the state of
the agent and the environment. The goal is to learn a policy, determining
which action to perform depending on the state, in order to achieve has
high a reward as possible on average.

Throughout the history of AI, a lot of progress has been driven by game
playing. Over the years, AIs have come to defeat human champions in board
games of increasing complexity, including backgammon, checkers, chess,
and Go. In the case of Go, the success was achieved by a neural network
called AlphaGo. Most of these games involve playing against an opponent,

5http://deeplearning.cs.toronto.edu/i2t

5

http://deeplearning.cs.toronto.edu/i2t

or adversary; this adversarial setting is beyond the scope of this class.
However, single-player games can be formulated as reinforcement learning
problems. For instance, we will look at the example of training an agent
to play classic Atari games. The agent observes the pixels on the screen,
has a set of actions corresponding to the controller buttons, and receives
rewards corresponding to the score of the game. Neural net algorithms have
outperformed humans on many games, in the sense of being able to achieve
a high score in a short period of time.

2.3 Unsupervised Learning

The third type of machine learning, where one has neither labels of the
correct behavior nor a reward signal, is known as unsupervised learning.
Here, one simply has a collection of data and is interested in finding patterns
in the data. We will just barely touch upon unsupervised learning in this
class, because compared with supervised and reinforcement learning, the
principles are less well understood, the algorithms are more mathematically
involved, and one must account for a lot more domain-specific structure.

One of the most important types of unsupervised learning is distribu-
tion modeling, where one has an unlabeled dataset (such as a collection
of images or sentences), and the goal is to learn a probability distribution
which matches the dataset as closely as possible. In principle, one should be
able to generate from, or draw samples from, the distribution, and those
samples should be indistinguishable from the original data. Sometimes we
care about the samples themselves, e.g. if we want to generate images of
textures for graphics applications. Another important use of distribution
models is to resolve ambiguities; for instance, in speech recognition, “recog-
nize speech” may sound very similar to “wreck a nice beach,” but a good
distribution model ought to be able to tell us that the former is a more
likely explanation than the latter.

Another important use of unsupervised learning is to recover latent
structure, or high-level explanations that yield insight into the structure
underlying the data. One important example is clustering, where one is
interested in dividing a set of data points into clusters, where data points
assigned to the same cluster are similar, and data points assigned to differ-
ent clusters are dissimilar. Much fancier models are possible as well. For
instance, a biology lab was running behavior genetics experiments on mice,
and wanted to automatically analyze videos of mice to determine whether
one genetic variant was more likely to engage in a particular behavior than
another variant. If experts had explicitly labeled different behaviors, this
would be a supervised learning problem; however, the lab avoided doing this
because it would have introduced human biases into the interpretation. In-
stead, they ran an unsupervised learning algorithm to automatically analyze
mouse videos and group them into different categories of behaviors.

3 Neural nets and the brain

The neuron is the basic unit of processing in the brain. It has a broad,
branching tree of dendrites, which receive chemical signals from other neu-
rons at junctions called synapses, and convert these into electrical signals.

6

output bias

i'th input

i'th weighty

x1 x2 x3

output

weights

inputs

w1 w2 w3 y = g

�
b +

�

i

xiwi

�

nonlinearity

Figure 1: Simplified neuron-like processing unit.

The dendrites integrate these electrical signals in complex, nonlinear ways,
and if the combined signal is strong enough, the neuron generates an action
potential. This is an electrical signal that’s propagated down the neuron’s
axon, which eventually causes the neuron to release chemical signals at its
synapses with other neurons. Those neurons then integrate their incoming
signals, and so on.

In machine learning, we abstract away nearly all of this complexity, and
use an extremely simplified model of a neuron shown in Figure [[]]. This
neuron has a set of incoming connections from other neurons, each with
an associated strength, or weight. It computes a value, called the pre-
activation, which is the sum of the incoming signals times their weights:

z =
∑

j

wjxj + b.

The scalar value b, called a bias, determines the neuron’s activation in the
absence of inputs. The pre-activation is passed through a nonlinearity φ
(also called an activation function) to compute the activation a = φ(z).
Examples of nonlinearities include the logistic sigmoid

φ(z) =
1

1 + e−z

and linear rectification

φ(z) =

{
z if z > 0
0 if z ≤ 0.

In summary, the activation is computed as

a = φ

∑

j

wjxj + b

 .

That’s it. That’s all that our idealized neurons do. Note that the whole
idea of a continuous-valued activation is biologically unrealistic, since a real
neuron’s action potentials are an all-or-nothing phenomenon: either they
happen or they don’t, and they do not vary in strength. The continuous-
valued activation is sometimes thought of as representing a “firing rate,” but
mostly we just ignore the whole issue and don’t even think about the rela-
tionships with biology. From now on, we’ll refer to these idealized neurons
using the more scientifically neutral term units, rather than neurons.

If the relationship with biology seems strained, it gets even worse when
we talk about learning, i.e. adapting the weights of the neurons. Most

7

modern neural networks are trained using a procedure called backprop-
agation, where each neuron propagates error signals backwards through
its incoming connections. Nothing analogous has been observed in actual
biological neurons. There have been some creative proposals for how bio-
logical neurons might implement something like backpropagation, but for
the most part we just ignore the issue of whether our neural nets are bio-
logically realistic, and simply try to get the best performance we can out of
the tools we have. (There is a separate field called theoretical neuroscience,
which builds much more accurate models of neurons, towards the goal of
understanding better how the brain works. This field has produced lots of
interesting insights, and has achieved accurate quantitative models of some
neural systems, but so far there doesn’t appear to be much practical benefit
to using more realistic neuronal models in machine learning systems.)

However, neural networks do share one important commonality with the
brain: they consist of a very large number of computational units, each of
which performs a rather simple set of operations, but which in aggregate
produce very sophisticated and complex behaviors. Most of the models
we’ll discuss in this course are simply large collections of units, each of
which computes a linear function followed by a nonlinearity.

Another analogy with the brain is worth pointing out: the brain is or-
ganized into hierarchies of processing, where different brain regions encode
information at different levels of abstraction. Information processing starts
at the retina of the eye, where neurons compute simple center-surround
functions of their inputs. Signals are passed to the primary visual cor-
tex, where (to vastly oversimplify things) cells detect simple image features
such as edges. Information is passed through several additional “layers” of
processing, each one taking place in a different brain region, until the in-
formation reaches areas of the cortex which encode things at a high level of
abstraction. For instance, individual neurons in the infero-temporal cortex
have been shown (again, vastly ovsersimplifying) to encode the identities of
objects.

In summary, visual information is processed in a series of layers of in-
creasing abstraction. This inspired machine learning researchers to build
neural networks which are many layers deep, in hopes that they would
learn analogous representations where higher layers represent increasingly
abstract features. In the last 5 years or so, very deep networks have indeed
been found to achieve startlingly good performance on a wide variety of
problems in vision and other application areas; for this reason, the research
area of neural networks is often referred to as deep learning. There is
some circumstantial evidence that deep networks learn hierarchical repre-
sentations, but this is notoriously difficult to analyze rigorously.

4 Software

There are a lot of software tools that make it easy to build powerful and
sophisticated neural nets. In this course, we will use the programming lan-
guage Python, a friendly but powerful high-level language which is widely
used both in introductory programming courses and a wide variety of pro-
duction systems. Because Python is an interpreted language, executing a

8

line of Python code is very slow, perhaps hundreds of times slower than the
C equivalent. Therefore, we never write algorithms directly using for-loops
in Python. Instead, we vectorize the algorithms by expressing them in
terms of operations on matrices and vectors; those operations are imple-
mented in an efficient low-level language such as C or Fortran. This allows
a large number of computational operations to be performed with minimal
interpreter overhead. In this course, we will use the NumPy library, which
provides an efficient and easy-to-use array abstraction in Python.

Ten years ago, most neural networks were implemented directly on top
of a linear algebra framework like NumPy, or perhaps a lower level pro-
gramming language when efficiency was especially critical. More recently,
a variety of powerful neural net frameworks have been developed, including
Torch, Caffe, Theano, TensorFlow, and PyTorch. These frameworks
make it easy to quickly implement a sophisticated neural net model. Here
are some of the features provided by some or all of these frameworks (we’ll
use TensorFlow as an example):

• Automatic differentiation. If one implements a neural net directly
on top of NumPy, much of the implementational work involves writing
procedures to compute derivatives. TensorFlow automatically con-
structs routines for computing derivatives which are generally at least
as efficient as the ones we would have written by hand.

• Compiling computation graphs. If we implement a network in
NumPy, a lot of time is wasted allocating and deallocating memory
for matrices. TensorFlow takes a different approach: you first build
a graph defining the network’s computation, and TensorFlow figures
out an efficient strategy for performing those computations. It handles
memory efficiently and performs some other code optimizations.

• Libraries of algorithms and network primitives. Lots of differ-
ent neural net primitives and training algorithms have been proposed
in the research literature, and many of these are made available as
black boxes in TensorFlow. This makes it easy to iterate with differ-
ent choices of network architecture and training algorithm.

• GPU support. While NumPy is much faster than raw Python, it’s
not nearly fast enough for modern neural nets. Because neural nets
consist of a large collection of simple processing units, they natu-
rally lend themselves to parallel computation. Graphics processing
units (GPUs) are a particular parallel architecture which has been
especially powerful in training neural nets. It can be a huge pain to
write GPU routines at a low level, but TensorFlow provides an easy
interface so that the same code can run on either a CPU or a GPU.

For this course, we’ll use two neural net frameworks. The first is Au-
tograd, a lightweight automatic differentiation library. It is simple enough
that you will be able to understand how it is implemented; while it is miss-
ing many of the key features of PyTorch or TensorFlow, it provides a useful
mental model for reasoning about those frameworks.

For roughly the second half of the course, we will use PyTorch, a pow-
erful and widely used neural net framework. It’s not quite as popular as

9

TensorFlow, but we think it is easier to learn. But once you are done
with this course, you should find it pretty easy to pick up any of the other
frameworks.

10

Lecture 2: Linear regression

Roger Grosse

1 Introduction

Let’s jump right in and look at our first machine learning algorithm, linear
regression. In regression, we are interested in predicting a scalar-valued
target, such as the price of a stock. By linear, we mean that the target must
be predicted as a linear function of the inputs. This is a kind of supervised
learning algorithm; recall that, in supervised learning, we have a collection
of training examples labeled with the correct outputs.

Regression is an important problem in its own right. But today’s dis-
cussion will also highlight a number of themes which will recur throughout
the course:

• Formulating a machine learning task mathematically as an optimiza-
tion problem.

• Thinking about the data points and the model parameters as vectors.

• Solving the optimization problem using two different strategies: deriv-
ing a closed-form solution, and applying gradient descent. These two
strategies are how we will derive nearly all of the learning algorithms
in this course.

• Writing the algorithm in terms of linear algebra, so that we can think
about it more easily and implement it efficiently in a high-level pro-
gramming language.

• Making a linear algorithm more powerful using basis functions, or
features.

• Analyzing the generalization performance of an algorithm, and in par-
ticular the problems of overfitting and underfitting.

1.1 Learning goals

• Know what objective function is used in linear regression, and how it
is motivated.

• Derive both the closed-form solution and the gradient descent updates
for linear regression.

• Write both solutions in terms of matrix and vector operations.

• Be able to implement both solution methods in Python.

1

Figure 1: Three possible hypotheses for a linear regression model, shown in
data space and weight space.

• Know how linear regression can learn nonlinear functions using feature
maps.

• What is meant by generalization, overfitting, and underfitting? How
can we measure generalization performance in practice?

2 Problem setup

In order to formulate a learning problem mathematically, we need to define
two things: a model and a loss function. The model, or architecture
defines the set of allowable hypotheses, or functions that compute predic-
tions from the inputs. In the case of linear regression, the model simply
consists of linear functions. Recall that a linear function of D inputs is
parameterized in terms of D coefficients, which we’ll call the weights, and
an intercept term, which we’ll call the bias. Mathematically, this is written
as:

y =
∑
j

wjxj + b. (1)

Figure 1 shows two ways to visualize linear models. In this case, the data are
one-dimensional, so the model reduces to simply y = wx+ b. On one side,
we have the data space, or input space, where t is plotted as a function
of x. Three different possible linear fits are shown. On the other side, we
have weight space, where the corresponding pairs (w, b) are plotted. You should study these figures and

try to understand how the lines in
the left figure map onto the X’s on
the right figure. Think back to
middle school. Hint: w is the slope
of the line, and b is the y-intercept.

Clearly, some of these linear fits are better than others. In order to
quantify how good the fit is, we define a loss function. This is a function
L(y, t) which says how far off the prediction y is from the target t. In linear
regression, we use squared error, defined as

L(y, t) =
1

2
(y − t)2. (2)

This is small when y and t are close together, and large when they are far
apart. Why is there the factor of 1/2 in

front? It just makes the
calculations convenient.

In general, the value y − t is known as the residual, and we’d like
the residuals to be close to zero.

When we combine our model and loss function, we get an optimization
problem, where we are trying to minimize a cost function with respect
to the model parameters (i.e. the weights and bias). The cost function is
simply the loss, averaged over all the training examples. When we plug in

2

Figure 2: Left: three hypotheses for a regression dataset. Middle: Contour
plot of least-squares cost function for the regression problem. Colors of the
points match the hypotheses. Right: Surface plot matching the contour
plot. Surface plots are usually hard to interpret, so we won’t look at them
very often.

the model definition (Eqn. 1), we get the following cost function:

E(w1, . . . , wD, b) =
1

N

N∑
i=1

L(y(i), t(i)) (3)

=
1

2N

N∑
i=1

(
y(i) − t(i)

)2
(4)

=
1

2N

N∑
i=1

∑
j

wjx
(i)
j + b− t(i)

2

(5)

Our goal is to choose w1, . . . , wD and b to minimize E . Note the difference
between the loss function and the cost function. The loss is a function of the
predictions and targets, while the cost is a function of the model parameters.

The distinction between loss
functions and cost functions will
become clearer in a later lecture,
when the cost function is
augmented to include more than
just the loss — it will also include
a term called a regularizer which
encourages simpler hypotheses.

The cost function is visualized in Figure 2.

3 Solving the optimization problem

In order to solve the optimization problem, we’ll need the concept of partial
derivatives. If you haven’t seen these before, then you should go learn about
them, on Khan Academy.1 Just as a quick recap, suppose f is a function of
x1, . . . , xD. Then the partial derivative ∂f/∂xi says in what way the value
of f changes if you increase xi by a small amount, while holding the rest
of the arguments fixed. We can evaluate partial derivatives using the tools
of single-variable calculus: to compute ∂f/∂xi simply compute the (single-
variable) derivative with respect to xi, treating the rest of the arguments as
constants.

Whenever we want to solve an optimization problem, a good place to
start is to compute the partial derivatives of the cost function. Let’s do
that in the case of linear regression. Applying the chain rule for derivatives

1https://www.khanacademy.org/math/calculus-home/multivariable-calculus/

multivariable-derivatives#partial-derivatives

3

https://www.khanacademy.org/math/calculus-home/multivariable-calculus/multivariable-derivatives#partial-derivatives
https://www.khanacademy.org/math/calculus-home/multivariable-calculus/multivariable-derivatives#partial-derivatives

to Eqn. 5, we get

∂E
∂wj

=
1

N

N∑
i=1

x
(i)
j

∑
j′

wj′x
(i)
j′ + b− t(i)

 (6)

∂E
∂b

=
1

N

N∑
i=1

∑
j′

wj′x
(i)
j′ + b− t(i)

 . (7)

It’s possible to simplify this a bit — notice that part of the term in paren-
theses is simply the prediction. It’s always a good idea to try to

simplify equations by finding
familiar terms.

The partial derivatives can be rewritten
as:

∂E
∂wj

=
1

N

N∑
i=1

x
(i)
j (y(i) − t(i)) (8)

∂E
∂b

=
1

N

N∑
i=1

y(i) − t(i). (9)

Now, it’s good practice to do a sanity check of the derivatives. For instance,
suppose we overestimated all of the targets. Then we should be able to
improve the predictions by decreasing the bias, while holding all of the
weights fixed. Does this work out mathematically? Well, the residuals y(i)−
t(i) will be positive, so based on Eqn. 9, ∂E/∂b will be positive. This means
increasing the bias will increase E , and deceasing the bias will decrease E
— which matches up with our expectation. So Eqn. 9 is plausible. Try to
come up with a similar sanity check for ∂E/∂wj . Later in this course, we’ll

introduce a more powerful way to
test partial derivative
computations, but you should still
get used to doing sanity checks on
all your computations!

Now how do we use these partial derivatives? Let’s discuss the two
methods which we will use throughout the course.

3.1 Direct solution

One way to compute the minimum of a function is to set the partial deriva-
tives to zero. Recall from single variable calculus that (assuming a function
is differentiable) the minimum x? of a function f has the property that the
derivative df/dx is zero at x = x?. Note that the converse is not true: if
df/dx = 0, then x? might be a maximum or an inflection point, rather than
a minimum. But the minimum can only occur at points that have derivative
zero.

An analogous result holds in the multivariate case: if f is differentiable,
then all of the partial derivatives ∂f/∂xi are zero at the minimum. The
intuition is simple: if ∂f/∂xi is positive, then one can decrease f slightly
by decreasing xi slightly. Conversely, if ∂f/∂xi is negative, then one can
decrease f slightly by increasing xi slightly. In either case, this implies we’re
not at the minimum. Therefore, if the minimum exists (i.e. f doesn’t keep
growing as x goes to infinity), it occurs at a critical point, i.e. a point
where the partial derivatives are zero. This gives us a strategy for finding
minima: set the partial derivatives to zero, and solve for the parameters.
This method is known as direct solution.

Let’s apply this to linear regression. For simplicity, let’s assume the
model doesn’t have a bias term. (We actually don’t lose anything by getting

4

rid of the bias. Just add a “dummy” input x0 which always takes the value
1; then the weight w0 acts as a bias.) We simplify Eqn. 6 to remove the
bias, and set the partial derivatives to zero:

∂E
∂wj

=
1

N

N∑
i=1

x
(i)
j

 D∑
j′=1

wj′x
(i)
j′ − t

(i)

 = 0 (10)

Since we’re trying to solve for the weights, let’s pull these out:

∂E
∂wj

=
1

N

D∑
j′=1

(
N∑
i=1

x
(i)
j x

(i)
j′

)
wj′ −

1

N

N∑
i=1

x
(i)
j t(i) = 0 (11)

The details of this equation aren’t important; what’s important is that
we’ve wound up with a system of D linear equations in D variables. In
other words, we have the system of linear equations

D∑
j′=1

Ajj′wj′ − cj = 0 ∀j ∈ {1, . . . , D}, (12)

where Ajj′ = 1
N

∑N
i=1 x

(i)
j x

(i)
j′ and cj = 1

N

∑N
i=1 x

(i)
j t(i). As computer scien-

tists, we’re done, because this gives us an algorithm for finding the optimal
regression weights: we first compute all the values Ajj′ and cj , and then
solve the system of linear equations using a linear algebra library such as
NumPy. (We’ll give an implementation of this later in this lecture.)

Note that the solution we just derived is very particular to linear re-
gression. In general, the system of equations will be nonlinear, and except
in rare cases, systems of nonlinear equations don’t have closed form solu-
tions. Linear regression is very unusual, in that it has a closed-form solution.
We’ll only be able to come up with closed form solutions for a handful of
the algorithms we cover in this course.

3.2 Gradient descent

Now let’s minimize the cost function a different way: gradient descent.
This is an example of an iterative algorithm, which means that we apply
a certain update rule over and over again, and if we’re lucky, our iterates
will gradually improve according to our objective function. To do gradient
descent, we initialize the weights to some value (e.g. all zeros), and repeat-
edly adjust them in the direction that most decreases the cost function. If
we visualize the cost function as a surface, so that lower is better, this is the
direction of steepest descent. We repeat this procedure until the iterates
converge, or stop changing much. (Or, in practice, we often run it until
we get tired of waiting.) If we’re lucky, the final iterate will be close to the
optimum.

In order to make this mathematically precise, we must introduce the
gradient, the direction of steepest ascent (i.e. fastest increase) of a function.
The entries of the gradient vector are simply the partial derivatives with
respect to each of the variables:

∂E
∂w

=

∂E
∂w1

...
∂E
∂wD

 (13)

5

The reason that this formula gives the direction of steepest ascent is beyond
the scope of this course. (You would learn about it in a multivariable
calculus class.) But this suggests that to decrease a function as quickly
as possible, we should update the parameters in the direction opposite the
gradient.

We can formalize this using the following update rule, which is known
as gradient descent:

w← w − α ∂E
∂w

, (14)

or in terms of coordinates,

wj ← wj − α
∂E
∂wj

. (15)

The symbol ← means that the left-hand side is updated to take the value
on the right-hand side; the constant α is known as a learning rate. The
larger it is, the larger a step we take. We’ll talk in much more detail later
about how to choose a learning rate, but in general it’s good to choose a
small value such as 0.01 or 0.001. If we plug in the formula for the partial
derivatives of the regression model (Eqn. 8), we get the update rule: In practice, we rarely if ever go

through this last step. From a
software engineering perspective,
it’s better to write our code in a
modular way, where one function
computes the gradient, and
another function implements
gradient descent, taking the
gradient as given.

wj ← wj − α
1

N

N∑
i=1

xj(y
(i) − t(i)) (16)

So we just repeat this update lots of times. What does gradient descent
give us in the end? For analyzing iterative algorithms, it’s useful to look for
fixed points, i.e. points where the iterate doesn’t change. By inspecting
Eqn. 14, setting the left-hand side equal to the right-hand side, we see that
the fixed points occur where ∂E/∂w = 0. Since we know the gradient must
be zero at the optimum, this is an encouraging sign that maybe it will
converge to the optimum. But there are lots of things that could go wrong,
such as divergence or local optima; we’ll look at these in more detail in a
later lecture. Lecture 9 discusses optimization

issues.You might ask: by setting the partial derivatives to zero, we compute the
exact solution. With gradient descent, we never actually reach the optimum,
but merely approach it gradually. Why, then, would we ever prefer gradient
descent? Two reasons:

1. We can only solve the system of equations explicitly for a handful of
models. By contrast, we can apply gradient descent to any model for
which we can compute the gradient. This is usually pretty easy to
do efficiently. Importantly, it can usually be done automatically, so
software packages like Theano and TensorFlow can save us from ever
having to compute partial derivatives by hand.

2. Solving a large system of linear equations can be expensive, possi-
bly many orders of magnitude more expensive than a single gradient
descent update. Therefore, gradient descent can sometimes find a rea-
sonable solution much faster than solving the linear system. There-
fore, gradient descent is often more practical than computing exact
solutions, even for models where we are able to derive the latter.

6

For these reasons, gradient descent will be our workhorse throughout the
course. We will use it to train almost all of our models, with the exception
of a handful for which we can derive exact solutions.

4 Vectorization

Now it’s time to bring in linear algebra. We’re going to rewrite the linear
regression model, as well as both solution methods, in terms of operations
on matrices and vectors. This process is known as vectorization. There
are two reasons for doing this: Vectorization takes a lot of

practice to get used to. We’ll cover
a lot of examples in the first few
weeks of the course. I’d
recommend practicing these until
they start to feel natural.

1. The formulas can be much simpler, more compact, and more readable
in this form.

2. Vectorized code can be much faster than explicit for-loops, for several
reasons.

• High-level languages like Python can introduce a lot of inter-
preter overhead, and if we explicitly write a for-loop correspond-
ing to Eqn. 16, this might be 10-100 times slower than the C
equivalent. If we instead write the algorithm in terms of a much
smaller number of linear algebra operations, then it can per-
form the same computations much faster with minimal inter-
preter overhead.

• Since linear algebra is used all over the place, linear algebra li-
braries have been extremely well optimized for various computer
architectures. Hence, they use much more efficient memory-
access patterns than a näıve for-loop, even one written in C.

• Matrix multiplication is inherently highly parallelizable and in-
volve little control flow. Hence, it’s ideal for graphics process-
ing unit (GPU) architectures. We’re not going to talk much
about GPUs in this course, but just think “matrix multiplication
+ GPU = good”. If you run vectorized code on a GPU using
a framework like TensorFlow or PyTorch, it may run 50 times
faster than the CPU version. As it turns out, most of the com-
putation in deep learning is matrix multiplications, which is why
it’s been such an incredibly good match for GPUs.

First, we need to represent the data and model parameters in the form of
matrices and vectors. If we have N training examples, each D-dimensional,
we will represent the inputs as an N × D matrix X. Each row of X cor-
responds to a training example, and each column corresponds to a single
input dimension. The weights are represented as a D-dimensional vector
w, and the targets are represented as a N -dimensional vector t. In general, matrices will be

denoted with capital boldface,
vectors with lowercase boldface,
and scalars with plain type.

The predictions are computed using a matrix-vector product

y = Xw + b1, (17)

where 1 denotes a vector of all ones. We can express the cost function in

7

vectorized form: You should stop now and try to
show that these equations are
equivalent to Eqns. 3–5. The only
way you get comfortable with this
is by practicing.

E =
1

2N
‖y − t‖2 (18)

=
1

2N
‖Xw + b1− t‖2 . (19)

Note that this is considerably simpler than Eqn. 5. Even more importantly,
it saves us from having to explicitly sum over the indices i and j. As our
models get more complicated, we would run out of convenient letters to use
as indices if we didn’t vectorize.

Now let’s revisit the exact solution for linear regression. We derived

a system of linear equations, with coefficients Ajj′ = 1
N

∑N
i=1 x

(i)
j x

(i)
j′ and

cj = 1
N

∑N
i=1 x

(i)
j t(i). In terms of linear algebra, we can write these as the

matrix A = 1
N X>X and c = 1

N X>t. The solution to the linear system
Aw = c is given by w = A−1c (assuming A is invertible), so this gives us
a formula for the optimal weights:

w =
(
X>X

)−1
X>t. (20)

An exact solution which we can express with a formula is known as a closed-
form solution.

Similarly, we can vectorize the gradient descent update from Eqn. 16:

w← w − α

N
X>(y − t), (21)

where y is computed as in Eqn. 17.

5 Feature mappings

Linear regression might sound pretty limited. What if the true relationship
between inputs and targets is nonlinear? Fortunately, there’s an easy way to
use linear regression to learn nonlinear dependencies: use a feature mapping.
I’ll introduce this by way of an example. Suppose we want to approximate it
with a cubic polynomial. In other words, we would compute the predictions
as:

y = w3x
3 + w2x

2 + w1x+ w0. (22)

This setting is known as polynomial regression.
Let’s use the squared error loss function, just as with ordinary linear re-

gression. The important thing to notice is that algorithmically, polynomial
regression is no different from linear regression. We can apply any of the
linear regression algorithms described above, using (x, x2, x3) as the inputs.
Mathematically, we define a feature mapping φ, in this case Just as in Section 3.1, we’re

including a constant feature to
account for the bias term, since
this simplifies the notation.

φ(x) =

1
x
x2

x3

 , (23)

and compute the predictions as y = w>φ(x) instead of w>x. The rest of
the algorithm is completely unchanged.

8

Feature maps are a useful tool, but they’re not a silver bullet, for several
reasons:

• The features must be known in advance. It’s not always easy to pick
good features, and up until very recently, feature engineering would
take up most of the time and ingenuity in building a practical machine
learning system.

• In high dimensions, the feature representations can get very large. For
instance, the number of terms in a cubic polynomial is cubic in the
dimension! It’s possible to work with

polynomial feature maps efficiently
using something called the “kernel
trick,” but that’s beyond the scope
of this course.

In this course, rather than construct feature maps, we will use neural net-
works to learn nonlinear predictors directly from the raw inputs. In most
cases, this eliminates the need for hand-engineering of features.

6 Generalization

We don’t just want a learning algorithm to make correct predictions on
the training examples; we’d like it to generalize to examples it hasn’t
seen before. The average squared error on novel examples is known as the
generalization error, and we’d like this to be as small as possible.

Returning to the previous example, let’s consider three different polyno-
mial models: (a) a linear function, or equivalently, a degree 1 polynomial;
(b) a cubic polynomial; (c) a degree-10 polynomial. The linear function may
be too simplistic to describe the data; this is known as underfitting. The terms underfitting and

overfitting are a bit misleading,
since they suggest the two
phenomena are mutually exclusive.
In fact, most machine learning
models suffer from both problems
simultaneously.

The
degree-10 polynomial may be able to fit every training example exactly, but
only by learning a crazy function. It would make silly predictions every-
where except the observed data. This is known as overfitting. The cubic
polynomial is a reasonable compromise. We need to worry about both
underfitting and overfitting in pretty much every application of machine
learning.

The degree of the polynomial is an example of a hyperparameter.
Hyperparameters are values that we can’t include in the training procedure
itself, but which we need to set using some other means. Statisticians prefer the term

metaparameter since
hyperparameter has a different
meaning in statistics.

In practice, we nor-
mally tune hyperparameters by partitioning the dataset into three different
subsets:

1. The training set is used to train the model.

2. The validation set is used to estimate the generalization error of
each hyperparameter setting.

3. The test set is used at the very end, to estimate the generalization
error of the final model, once all hyperparameters have been chosen.

We will talk about validation and generalization in a lot more detail later
on in this course.

9

Lecture 3: Linear Classification

Roger Grosse

1 Introduction

Last week, we saw an example of a learning task called regression. There,
the goal was to predict a scalar-valued target from a set of features. This
week, we’ll focus on a slightly different task: binary classification, where
the goal is to predict a binary-valued target. Here are some examples of
binary classification problems:

• You want to train a medical diagnosis system to predict whether a
patient has a given disease. You have a training set consisting of a
set of patients, a set of features for those individuals (e.g. presence or
absence of various symptoms), and a label saying whether or not the
patient had the disease.

• You are running an e-mail service, and want to determine whether
a given e-mail is spam. You have a large collection of e-mails which
have been hand-labeled as spam or non-spam.

• You are running an online payment service, and want to determine
whether or not a given transaction is fraudulent. You have a labeled
training dataset of fraudulent and non-fraudulent transactions; fea-
tures might include the type of transaction, the amount of money, or
the time of day.

Like regression, binary classification is a very restricted kind of task.
Most learning problems you’ll encounter won’t fit nicely into one of these
two categories. Our motivation for focusing on binary classification is to
introduce several fundamental ideas that we’ll use throughout the course.
In this lecture, we discuss how to view both data points and linear classifiers
as vectors. Next lecture, we discuss the perceptron, a particular classifica-
tion algorithm, and use it as an example of how to efficiently implement a
learning algorithm in Python. Starting next week, we’ll look at supervised
learning in full generality, and see that regression and binary classification
are just special cases of a more general learning framework.

This lecture focuses on the geometry of classification. We’ll look in
particular at two spaces:

• The input space, where each data case corresponds to a vector. A
classifier corresponds to a decision boundary, or a hyperplane such
that the positive examples lie on one side, and negative examples lie
on the other side.

1

• Weight space, where each set of classification weights corresponds to
a vector. Each training case corresponds to a constraint in this space,
where some regions of weight space are “good” (classify it correctly)
and some regions are “bad” (classify it incorrectly).

The idea of weight space may seem pretty abstract, but it is very important
that you become comfortable with it, since it underlies nearly everything
we do in the course.

Using our understanding of input space and weight space, the limita-
tions of linear classifiers will become immediately apparent. We’ll see some
examples of datasets which are not linearly separable (i.e. no linear classi-
fier can correctly classify all the training cases), but which become linearly
separable if we use a basis function representation.

1.1 Learning goals

• Know what is meant by binary linear classification.

• Understand why an explicit threshold for a classifier is redundant.
Understand how we can get rid of the bias term by adding a “dummy”
feature.

• Be able to specify weights and biases by hand to represent simple
functions (e.g. AND, OR, NOT).

• Be familiar with input space and weight space.

– Be able to plot training cases and classification weights in both
input space and weight space.

• Be aware of the limitations of linear classifiers.

– Know what is meant by convexity, and be able to use convexity
to show that a given set of training cases is not linearly separable.

– Understand how we can sometimes still separate the classes using
a basis function representation.

2 Binary linear classifiers

We’ll be looking at classifiers which are both binary (they distinguish be-
tween two categories) and linear (the classification is done using a linear
function of the inputs). As in our discussion of linear regression, we assume
each input is given in terms of D scalar values, called input dimensions
or features, which we think summarize the important information for clas-
sification. (Some of the features, e.g. presence or absence of a symptom,
may in fact be binary valued, but we’re going to treat these as real-valued

anyway.) The jth feature for the ith training example is denoted x
(i)
j . All

of the features for a given training case are concatenated together to form a
vector, which we’ll denote x(i). (Recall that vectors and matrices are shown
in boldface.)

Associated with each data case is a binary-valued target, the thing we’re
trying to predict. By definition, a binary target takes two possible values,

2

which we’ll call classes, and which are typically referred to as positive
and negative. (E.g., the positive class might be “has disease” and the
negative class might be “does not have disease.”) Data cases belonging
to these classes are called positive examples and negative examples,
respectively. The training set consists of a set of N pairs (x(i), t(i)), where
x(i) is the input and t(i) is the binary-valued target, or label. Since the
training cases come with labels, they’re referred to as labeled examples.
Confusingly, even though we talk about positive and negative examples, the
t(i) typically take values in {0, 1}, where 0 corresponds to the “negative”
class. Sorry, you’ll just have to live with this terminology.

Our goal is to correctly classify all the training cases (and, hopefully,
examples not in the training set). In order to do the classification, we need
to specify a model, which determines how the predictions are computed
from the inputs. As we said before, our model for this week is binary linear
classifiers.

The way binary linear classifiers work is simple: they compute a linear
function of the inputs, and determine whether or not the value is larger
than some threshold r. Recall from Lecture 2 that a linear function of the
input can be written as

w1x1 + · · ·+ wDxD + b = wTx + b,

where w is a weight vector and b is a scalar-valued bias. Therefore, the
prediction y can be computed as follows:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r

This is the model we’ll use for the rest of the week.

2.1 Thresholds and biases

Dealing with thresholds is rather inconvenient, but fortunately we can get
rid of them entirely. In particular, observe that

wTx + b ≥ r ⇐⇒ wTx + b− r ≥ 0.

In other words, we can obtain an equivalent model by replacing the bias
with b − r and setting r to 0. From now on, we’ll assume (without loss
of generality) that the threshold is 0. Therefore, we rewrite the model as
follows:

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

In fact, it’s possible to eliminate the bias as well. We simply add another
input dimension x0, called a dummy feature, which always takes the value
1. Then

w0x0 + w1x1 + · · ·+ wDxD = w0 + w1x1 + · · ·+ wDxD,

3

so w0 effectively plays the role of a bias. We can then simply write

z = wTx.

Eliminating the bias often simplifies the statements of algorithms, so we’ll
sometimes use it for notational convenience. However, you should be aware
that, when actually implementing the algorithms, the standard practice is
to include the bias parameter explicitly.

2.2 Some examples

Let’s look at some examples of how to represent simple functions using
linear classifiers — specifically, AND, OR, and NOT.

Example 1. Let’s start with NOT, since it only involves a single
input. Here’s a “training set” of inputs and targets we’re trying
to match:

x1 t

0 1
1 0

Each of the training cases provides a constraint on the weights
and biases. Let’s start with the first training case. If x1 = 0,
then t = 1, so we need z = w1x1 + b = b ≥ 0. Technically we
could satisfy this constraint with b = 0, but it’s good practice to
avoid solutions where z lies on the decision boundary. Therefore,
let’s tentatively set b = 1.

Now let’s consider the second training case. The input is x1 = 1
and the target is t = 0, so we need z = w1 · 1 + b = w1 + 1 < 0.
We can satisfy this inequality with w1 = −2. This gives us our
solution: w1 = −2, b = 1.

Example 2. Now let’s consider AND. This is slightly more com-
plicated, since we have 2 inputs and 4 training cases. The train-
ing cases are as follows:

x1 x2 t

0 0 0
0 1 0
1 0 0
1 1 1

Just like in the previous example, we can start by writing out the
inequalities corresponding to each training case. We get:

b < 0

w2 + b < 0

w1 + b < 0

w1 + w2 + b > 0

4

From these inequalities, we immediately see that b < 0 and
w1, w2 > 0. The simplest way forward at this point is proba-
bly trial and error. Since the problem is symmetric with respect
to w1 and w2, we might as well decide that w1 = w2. So let’s
try b = −1, w1 = w2 = 1 and see if it works. The first and
fourth inequalities are clearly satisfied, but the second and third
are not, since w1+b = w2+b = 0. So let’s try making the bias a
bit more negative. When we try b = −1.5, w1 = w2 = 1, we see
that all four inequalities are satisfied, so we have our solution.

Following these examples, you should attempt the OR function on your
own.

3 The geometric picture

Now let’s move on to the main concepts of this lecture: data space and
weight space. These are the spaces that the inputs and the weight vectors
live in, respectively. It’s very important to become comfortable thinking
about these spaces, since we’re going to treat the inputs and weights as
vectors for the rest of the term.

In this lecture, we’re going to focus on two-dimensional input and weight
spaces. But keep in mind that this is a vast oversimplification: in practi-
cal settings, these spaces are typically many thousands, or even millions,
of dimensions. It’s pretty much impossible to visualize spaces this high-
dimensional.

3.1 Data space

The first space to be familiar with is data space, or input space. Each
point in this space corresponds to a possible input vector. (We’re going to
abuse mathematical terminology a bit by using “point” and “vector” in-
terchangeably.) It’s customary to represent positive and negative examples
with the symbols “+” and “−”, respectively.

Once we’ve chosen the weights w and bias b, we can divide the data
space into a region where the points are classified as positive (the posi-
tive region), and a region where the points are classified as negative (the
negative region). The boundary between these regions, i.e. the set where
wTx + b = 0, is called the decision boundary. Think back to your lin-
ear algebra class, and recall that the set determined by this equation is a
hyperplane. The set of points on one side of the hyperplane is called a
half-space. Examples are shown in Figure 1

When we plot examples in two dimensions, the hyperplanes are actually
lines. But you shouldn’t think of them as lines — you should think of them
as hyperplanes.

If it’s possible to choose a linear decision boundary that correctly clas-
sifies all of the training cases, the training set is said to be linearly sepa-
rable. As we’ll see later, not all training sets are linearly separable.

5

(a) (b) (c) (d)

Figure 1: (a) Training examples and for NOT function, in data space. (b)
NOT, in weight space. (c) Slice of data space for AND function correspond-
ing to x0 = 1. (d) Slice of weight space for AND function corresponding to
w0 = −1.

3.2 Weight space

As you’d expect from the name, weight vectors are also vectors, and the
space they live in is called weight space. In this section, we’ll assume
there is no bias parameter unless stated otherwise. (See Section 2.1.) Each
point in weight space is a possible weight vector.

Consider a positive training case (x, 1). The set of weight vectors which
correctly classify this training case is given by the linear inequality wTx ≥ 0.
(In fact, it’s exactly the sort of inequality we derived in Examples 1 and 2.)
Geometrically, the set of points satisfying this inequality is a half-space. For
lack of a better term, we’ll refer to the side which satisfies the constraint as
the good region, and the other side as the bad region. Similarly, the set
of weight vectors which correctly classify a negative training case (x, 0) is
given by wTx < 0; this is also a half-space. We’re going to completely ignore

the fact that one of these
inequalities is strict and the other
is not. The question of what
happens on the decision
boundaries isn’t very interesting.

Examples are shown in Figure 1.
The set of weight vectors which correctly classify all of the training

examples is the intersection of all the half-spaces corresponding to the in-
dividual examples. This set is called the feasible region. If the feasible
region is nonempty, the problem is said to be feasible; otherwise it’s said
to be infeasible.

When we draw the constraints in two dimensions, we typically draw the
line corresponding to the boundary of the constraint set, and then indicate
the good region with an arrow. As with our data space visualizations, you
should think of the boundary as a hyperplane, not as a line. There’s one constraint per training

example. What happened to the
fourth constraint in Figure 1(d)?

We can visualize three-dimensional examples by looking at slices. As
shown in Figure 2, these slices will resemble our previous visualizations,
except that the decision boundaries and constraints need not pass through
the origin.

4 The perceptron learning rule

The perceptron is a kind of binary linear classifier. Recall from last lecture
that this means it makes predictions by computing wTx+b and seeing if the
result is positive or negative. Here, x is the input vector, w is the weight
vector, and b is a scalar-valued bias. Recall as well that we can eliminate
the bias by adding a dummy dimension to x. For the perceptron algorithm,
it will be convenient to represent the positive and negative classes with 1
and -1, instead of 1 and 0 as we use in the rest of the course. Therefore,

6

Figure 2: Visualizing a slice of a 3-dimensional weight space.

the classification model is as follows:

z = wTx (1)

y =

{
1 if z ≥ 0
−1 if z < 0

(2)

Here’s a rough sketch of the perceptron algorithm. We examine each
of the training cases one at a time. For each input x(i), we compute the
prediction y(i) and see if it matches the target t(i). If the prediction is
correct, we do nothing. If it is wrong, we adjust the weights in a direction
that makes it more correct.

Now for the details. First of all, how do we determine if the prediction is
correct? We could simply check if y(i) = t(i), but this has a slight problem:
if x(i) lies exactly on the classification boundary, it is technically classified as
positive according to the above definition. But we don’t want our training
cases to lie on the decision boundary, since this means the classification may
change if the input is perturbed even slightly. We’d like our classifiers to be
more robust than this. Instead, we’ll use the stricter criterion

z(i)t(i) > 0. (3)

You should now check that this criterion correctly handles the various cases
that may occur.

The other question is, how do we adjust the weight vector? If the train-
ing case is positive and we classify it as negative, we’d like to increase the
value of z. In other words, we’d like

z′ = w′Tx > wTx = z, (4)

where w′ and w are the new and old weight vectors, respectively. The
perceptron algorithm achieves this using the update

w′ = w + αx, (5)

where α > 0. We now check that (4) is satisfied:

w′Tx = (w + αx)Tx (6)

= wTx + αxTx (7)

= wTx + α‖x‖2. (8)

7

Here, ‖x‖ represents the Euclidean norm of x. Since the squared norm is
always positive, we have z′ > z.

Conversely, if it’s a negative example which we mistakenly classified as
positive, we want to decrease z, so we use a negative value of α. Since it’s
possible to show that the absolute value of α doesn’t matter, we generally
use α = 1 for positive cases and α = −1 for negative cases. We can denote
this compactly with

w← w + tx. (9)

This rule is known as the perceptron learning rule.
Now we write out the perceptron algorithm in full:

For each training case (x(i), t(i)),

z(i) ← wTx(i)

If z(i)t(i) ≤ 0,

w← w + t(i)x(i)

In thinking about this algorithm, remember that we’re denoting the classes
with -1 and 1 (rather than 0 and 1, as we do in the rest of the course).

5 The limits of linear classifiers

Linear classifiers can represent a lot of things, but they can’t represent
everything. The classic example of what they can’t represent is the XOR
function. It should be pretty obvious from inspection that you can’t draw
a line separating the two classes. But how do we actually prove this?

5.1 Convex sets

An important geometric concept which helps us out here is convexity. A
set S is convex if the line segment connecting any two points in S must lie
within S. It’s not too hard to show that if S is convex, then any weighted
average of points in S must also lie within S. A weighted average of points
x(1), . . . ,x(N) is a point given by the linear combination

x(avg) = λ1x
(1) + · · ·+ λNx(N),

where 0 ≤ λi ≤ 1 and λ1 + · · · + λN = 1. You can think of the weighted
average as the center of mass, where the mass of each point is given by λi.

In the context of binary classification, there are two important sets that
are always convex:

1. In data space, the positive and negative regions are both convex. Both
regions are half-spaces, and it should be visually obvious that half-
spaces are convex. This implies that if inputs x(1), . . . ,x(N) are all
in the positive region, then any weighted average must also be in the
positive region. Similarly for the negative region.

2. In weight space, the feasible region is convex. The rough mathematical
argument is as follows. Each good region (the set of weights which
correctly classify one data point) is convex because it’s a half-space.
The feasible region is the intersection of all the good regions, so it
must be convex because the intersection of convex sets is convex.

8

Figure 3: The XOR function is not linearly separable.

Discriminating simple patterns
under translation with wrap-around

•  Suppose we just use pixels as
the features.

•  Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
–  Not if the patterns can

translate with wrap-around!

pattern A

pattern A

pattern A

pattern B

pattern B

pattern B

Discriminating simple patterns
under translation with wrap-around

•  Suppose we just use pixels as
the features.

•  Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
–  Not if the patterns can

translate with wrap-around!

pattern A

pattern A

pattern A

pattern B

pattern B

pattern B

Figure 4: No linear hypothesis can separate these two patterns in all possible
translations (with wrap-around).

5.2 Showing that functions aren’t linearly separable

Now let’s see how convexity can be used to show functions aren’t linearly
separable.

Example 3. Let’s return to the XOR example. Since the posi-
tive region is convex, if we draw the line segment connecting the
two positive examples (0, 1) and (1, 0), this entire line segment
must be classified as positive. Similarly, if we draw the line seg-
ment connecting the two negative examples (0, 0) and (1, 1), the
entire line segment must be classified as negative. But these two
line segments intersect at (0.5, 0.5), which means this point must
be classified as both positive and negative, which is impossible.
(See Figure 3.) Therefore, XOR isn’t linearly separable.

Example 4. Our last example was somewhat artificial. Let’s
now turn to a somewhat more troubling, and practically relevant,
limitation of linear classifiers. Let’s say we want to give a robot
a vision system which can recognize objects in the world. Since
the robot could be looking any given direction, it needs to be
able to recognize objects regardless of their location in its visual
field. I.e., it should be able to recognize a pattern in any possible
translation.

As a simplification of this situation, let’s say our inputs are
16-dimensional binary vectors and we want to distinguish two
patterns, A, and B (shown in Figure 4), which can be placed in
any possible translation, with wrap-around. (I.e., if you shift the
pattern right, then whatever falls off the right side reappears on
the left.) Thus, there are 16 examples of A and 16 examples of
B that our classifier needs to distinguish.

By convexity, if our classifier is to correctly classify all 16 in-
stances of A, then it must also classify the average of all 16

9

instances as A. Since 4 out of the 16 values are on, the aver-
age of all instances is simply the vectors (0.25, 0.25, . . . , 0.25).
Similarly, for it to correctly classify all 16 instances of B, it
must also classify their average as B. But the average is also
(0.25, 0.25, . . . , 0.25). Since this vector can’t possibly be classi-
fied as both A and B, this dataset must not be linearly separable.

More generally, we can’t expect any linear classifier to detect a
pattern in all possible translations. This is a serious limitation
of linear classifiers as a basis for a vision system.

5.3 Circumventing this problem by using feature represen-
tations

We just saw a negative result about linear classifiers. Let’s end on a more
positive note. In Lecture 2, we saw how linear regression could be made
more powerful using a basis function, or feature, representation. The same
trick applies to classification. Essentially, in place of z = wTx + b, we use
z = wTφ(x) + b, where φ(x) = (φ1(x), . . . , φD(x)) is a function mapping
input vectors to feature vectors. Let’s see how we can represent XOR using
carefully selected features.

Example 5. Consider the following feature representation for
XOR:

φ1(x) = x1

φ2(x) = x2

φ3(x) = x1x2

In this representation, our training set becomes

φ1(x) φ2(x) φ3(x) t

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Using the same techniques as in Examples 1 and 2, we find that
the following set of weights and biases correctly classifies all the
training examples:

b = −0.5 w1 = 1 w2 = 1 w3 = −2.

The only problem is, where do we get the features from? In this example,
we just pulled them out of a hat. Unfortunately, there’s no recipe for coming
up with good features, which is part of what makes machine learning hard.
But next week, we’ll see how we can learn a set of features by training a
multilayer neural net.

10

Lecture 4: Training a Classifier

Roger Grosse

1 Introduction

Now that we’ve defined what binary classification is, let’s actually train a
classifier. We’ll approach this problem in much the same way as we did
linear regression: define a model and a cost function, and minimize the
cost using gradient descent. The one thing that makes the classification
case harder is that it’s not obvious what loss function to use. We can’t
just use the classification error itself, because the gradient is zero almost
everywhere! Instead, we’ll define a surrogate loss function, i.e. an alternative
loss function which is easier to optimize.

1.1 Learning Goals

• Understand why classification error and squared error are problematic
cost functions for classification.

• Know what cross-entropy is and understand why it can be easier to
optimize than squared error (assuming a logistic activation function).

• Be able to derive the gradient descent updates for all of the models
and cost functions mentioned in this lecture and to implement the
learning algorithms in Python.

• Know what hinge loss is, and how it relates to cross-entropy loss.

• Understand how binary logistic regression can be generalized to mul-
tiple variables.

• Know what it means for a function to be convex, how to check con-
vexity visually, and why it’s important for optimization.

– Algebraically proving functions to be convex is beyond the scope
of this course.

• Know how to check the correctness of gradients using finite differences.

2 Choosing a cost function

Recall the setup from the previous lecture. We have a set of training ex-
amples {(x(i), t(i))}Ni=1, where the x(i) are vector-valued inputs, and t(i) are
binary-valued targets. We would like to learn a binary linear classifier,
where we compute a linear function of x(i) and threshold it at zero:

y =

{
1 if w>x > 0
0 otherwise.

(1)

1

In the last lecture, our goal was to correctly classify every training exam-
ple. But this might be impossible if the dataset isn’t linearly separable.
Even if it’s possible to correctly classify every training example, it may be
undesirable since then we might just overfit!

How can we define a sensible learning criterion when the dataset isn’t
linearly separable? One natural criterion is to minimize the number of mis-
classified training examples. We can formalize this with the classification
error loss, or the 0-1 loss:

L0−1(y, t) =

{
0 if y = t
1 otherwise.

(2)

As always, the cost function is just the loss averaged over the training
examples; in this case, that corresponds to the error rate, or fraction of
misclassified examples. How do we make this small?

2.1 Attempt 1: 0-1 loss

As a first attempt, let’s try to minimize 0-1 loss directly. In order to compute
the gradient descent updates, we need to compute the partial derivatives
∂L0−1/∂wj . Rather than mechanically deriving this derivative, let’s think
about what it means. It means, how much does L0−1 change if you make a
very small change to wj? As long as we’re not on the classification boundary,
making a small enough change to wj will have no effect on L0−1, because
the prediction won’t change. This implies that ∂L0−1/∂wj = 0, as long as
we’re not on the boundary. Gradient descent will go nowhere. (If we are on
the boundary, the cost is discontinuous, which certainly isn’t any better!)
OK, we certainly can’t optimize 0-1 loss with gradient descent. Near the end of the course, when

we discuss reinforcement learning,
we’ll see an algorithm which can
minimize 0-1 loss directly. It’s
nowhere near as efficient as
gradient descent, though, so we
still need the techniques of this
lecture!

2.2 Attempt 2: linear regression

Since that didn’t work, let’s try using something we already know: linear
regression. Recall that this assumes a linear model and the squared error
loss function:

y = w>x + b (3)

LSE(y, t) =
1

2
(y − t)2 (4)

We’ve already seen two ways of optimizing this: gradient descent, and a
closed-form solution. But does it make sense for classification? One obvious
problem is that the predictions are real-valued rather than binary. But
that’s OK, since we can just pick some scheme for binarizing them, such
as thresholding at y = 1/2. When we replace a loss function we trust with
another one we trust less but which is easier to optimize, the replacement
one is called a surrogate loss function.

But there’s still a problem. Suppose we have a positive example, i.e. t =
1. If we predict y = 1, we get a cost of 0, whereas if we make the wrong
prediction y = 0, we get a cost of 1/2; so far, so good. But suppose we’re
really confident that this is a positive example, and predict y = 9. Then we
pay a cost of 1

2(9− 1)2 = 32. This is far higher than the cost for y = 0, so
the learning algorithm will try very hard to prevent this from happening.

2

That’s not bad in itself, but it means that something else might need to be
sacrificed, if it’s impossible to match all of the targets exactly. Perhaps the
sacrifice will be that it incorrectly classifies some other training examples.

2.3 Attempt 3: logistic nonlinearity

The problem with linear regression is that the predictions were allowed to
take arbitrary real values. But it makes no sense to predict anything smaller
than 0 or larger than 1. If you predict y > 1, then

regardless of the target, you can
decrease the loss by setting y = 1.
Similarly for y < 0.

Let’s fix this problem by applying a nonlinearity,
or activation function, which squashes the predictions to be between 0
and 1. In particular, we’ll use something called the logistic function:

σ(z) =
1

1 + e−z
. (5)

This is a kind of sigmoidal, or S-shaped, function:

What’s important about this function is that it increases monotonically,
with asymptotes at 0 and 1. (Plus, it’s smooth, so we can compute deriva-
tives.) Another advantage of the logistic

function is that calculations tend
to work out very nicely.

We refine the model as follows:

z = w>x + b (6)

y = σ(z) (7)

LSE(y, t) =
1

2
(y − t)2. (8)

Notice that this model solves the problem we observed with linear regression.
As the predictions get more and more confident on the correct answer, the
loss continues to decrease.

To derive the gradient descent updates, we’ll need the partial derivatives
of the cost function. We’ll do this by applying the Chain Rule twice: first
to compute dLSE/dz, and then again to compute ∂LSE/∂wj . But first, let’s
note the convenient fact that This is equivalent to the elegant

identity σ′(z) = σ(z)(1 − σ(z)).

∂y

∂z
=

e−z

(1 + e−z)2

= y(1− y). (9)

3

Figure 1: Visualization of derivatives of squared error loss with logistic
nonlinearity, for a training example with t = 1. The derivative dE/dz
corresponds to the slope of the tangent line.

Now for the Chain Rule:

dLSE
dz

=
dLSE

dy

dy

dz

= (y − t)y(1− y) (10)

∂LSE
∂wj

=
dLSE

dz

∂z

∂wj

=
dLSE

dz
· xj . (11)

Done! At this point, you should stop and
sanity check the equations we just
derived, e.g. checking that they
have the sign that they ought to.
Get in the habit of doing this.

Why don’t we go one step further and plug Eqn. 10 into Eqn. 11?
The reason is that our goal isn’t to compute a formula for ∂LSE/∂wj ; as
computer scientists, our goal is to come up with a procedure for computing
it. The two formulas above give us a procedure which we can implement
directly in Python. One advantage of doing it this way is that we can reuse
some of the work we’ve done in computing the derivative with respect to
the bias: Reusing computation of derivatives

is one of the main insights behind
backpropagation, one of the
central algorithms in this course.

dLSE
db

=
dLSE

dz

∂z

∂b

=
dLSE

dz
(12)

If we had expanded out the entire formula, it might not be obvious to us
that we can reuse computation like this.

So far, so good. But there’s one hitch. Let’s suppose you classify one
of the training examples extremely wrong, e.g. you confidently predict a
negative label with z = −5, which gives y ≈ 0.0067, for a positive example
(i.e. t = 1). Plugging these values into Eqn 10, we find that ∂LSE/∂z ≈
−0.0066. This is a pretty small value, considering how big the mistake
was. As shown in Figure 1, the more confident the wrong prediction, the
smaller the gradient is! The most badly misclassified examples will have
hardly any effect on the training. This doesn’t seem very good. We say
the learning algorithm does not have a strong gradient signal for those
training examples.

4

Figure 2: Plot of cross-entropy loss as a function of the input z to the
logistic activation function.

The problem with squared error loss in the classification setting is that
it doesn’t distinguish bad predictions from extremely bad predictions. Think about how the argument in

this paragraph relates to the one
in the previous paragraph.

If
t = 1, then a prediction of y = 0.01 has roughly the same squared-error
loss as a prediction of y = 0.00001, even though in some sense the latter is
more wrong. This isn’t necessarily a problem in terms of the cost function
itself: whether 0.00001 is inherently much worse than 0.01 depends on the
situation. (If all we care about is classification error, they’re essentially
equivalent.) But from the perspective of optimization, the fact that the
losses are nearly equivalent is a big problem. Actually, the effect discussed here

can also be beneficial, because it
makes the algorithm robust, in that
it can learn to ignore mislabeled
examples. Cost functions like this
are sometimes used for this reason.
However, when you do use it, you
should be aware of the
optimization difficulties it creates!

If we can increase y from
0.00001 to 0.0001, that means we’re “getting warmer,” but this doesn’t
show up in the squared-error loss. We’d like a loss function which reflects
our intuitive notion of getting warmer.

2.4 Final touch: cross-entropy loss

The problem with squared-error loss is that it treats y = 0.01 and y =
0.00001 as nearly equivalent (for a positive example). We’d like a loss
function which makes these very different. One such loss function is cross-
entropy (CE). You’ll sometimes see cross-entropy

abbreviated XE.
This is defined as follows:

LCE(y, t) =

{
− log y if t = 1
− log 1− y if t = 0

(13)

In our earlier example, we see that LCE(0.01, 1) = 4.6, whereas LCE(0.00001, 1) =
11.5, so cross-entropy treats the latter as much worse than the former.

When we do calculations, it’s cumbersome to use the case notation, so
we instead rewrite Eqn. 13 in the following form. You should check that
they are equivalent:

LCE(y, t) = −t log y − (1− t) log 1− y. (14)

Remember, See if you can derive the equations
for the asymptote lines.

the logistic function squashes y to be between 0 and 1, but
cross-entropy draws big distinctions between probabilities close to 0 or 1.
Interestingly, these effects cancel out: Figure 2 plots the loss as a function
of z. You get a sizable gradient signal even when the predictions are very
wrong.

5

When we combine the logistic activation function with cross-entropy
loss, you get logistic regression:

z = w>x + b

y = σ(z)

LCE = −t log y − (1− t) log 1− y.
(15)

Now let’s compute the derivatives. We’ll do it two different ways: the
mechanical way, and the clever way. Let’s do the mechanical way first, as
an example of the chain rule for derivatives. Remember, our job here isn’t
to produce a formula for the derivatives, the way we would in calculus class.
Our job is to give a procedure for computing the derivatives which we could
translate into NumPy code. The following does that: The second step of this derivation

uses Eqn. 9.

dLCE

dy
= − t

y
+

1− t
1− y

dLCE

dz
=

dLCE

dy

dy

dz

=
dLCE

dy
· y(1− y)

∂LCE

∂wj
=

dLCE

dz

∂z

∂wj

=
dLCE

dz
· xj

(16)

This can be translated directly into NumPy (exercise: how do you vec-
torize this?). If we were good little computer scientists, we would stop here.
But today we’re going to be naughty computer scientists and break the
abstraction barrier between the activation function (logistic) and the cost
function (cross-entropy).

2.5 Logistic-cross-entropy function

There’s a big problem with Eqns. 15 and 16: what happens if we have a
positive example (t = 1), but we confidently classify it as a negative example
(z � 0, implying y ≈ 0)? This is likely to happen at the very beginning
of training, so we should be able to handle it. But if y is small enough, it
could be smaller than the smallest floating point value, i.e. numerically
zero. Then when we compute the cross-entropy, we take the log of 0 and
get −∞. Or if this doesn’t happen, think about Eqn. 16. Since y appears
in the denominator, dLCE/dy will be extremely large in magnitude, which
again can cause numerical difficulties. These bugs are very subtle, and can
be hard to track down if you don’t expect them.

What we do instead is combine the logistic function and cross-entropy
loss into a single function, which we term logistic-cross-entropy:

LLCE(z, t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez) (17)

This still isn’t numerically stable if we implement it directly, since ez could
blow up. But most scientific computing environments provide a numerically

6

Figure 3: Comparison of the loss functions considered so far.

stable log-sum-exp routine.1 In numpy, this is np.logaddexp. So the
following code would compute the logistic-cross-entropy:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Now to compute the loss derivatives:

dLLCE

dz
=

d

dz

[
t log(1 + e−z) + (1− t) log(1 + ez)

]
= −t · e−z

1 + e−z
+ (1− t) ez

1 + ez

= −t(1− y) + (1− t)y
= y − t

(18)

This is like magic! This isn’t a coincidence. The
reason it happens is beyond the
scope of this course, but if you’re
curious, look up “generalized
linear models.”

We took a somewhat complicated formula for the logistic
activation function, combined it with a somewhat complicated formula for
the cross-entropy loss, and wound up with a stunningly simple formula for
the loss derivative! Observe that this is exactly the same formula as for
dLSE/dy in the case of linear regression. And it has the same intuitive
interpretation: if y > t, you made too positive a prediction, so you want
to shift your prediction in the negative direction. Conversely, if y < t, you
want to shift your prediction in the positive direction.

2.6 Another alternative: hinge loss

Another loss function you might encounter is hinge loss. Here, y is a real
value, and t ∈ {−1, 1}.

LH(y, t) = max(0, 1− ty)

Hinge loss is plotted in Figure 3 for a positive example. One useful property
of hinge loss is that it’s an upper bound on 0–1 loss; this is a useful property

1The log-sum-exp trick is pretty neat. https://hips.seas.harvard.edu/blog/2013/

01/09/computing-log-sum-exp/

7

https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/

for a surrogate loss function, since it means that if you make the hinge loss
small, you’ve also made 0–1 loss small. A linear model with hinge loss is
known as a support vector machine (SVM):

y = w>x + b (19)

LH = max(0, 1− ty) (20)

If you take CSC411, you’ll learn a lot about SVMs, including their statis-
tical motivation, how to optimize them efficiently and how to make them
nonlinear (using something called the “kernel trick”). But you already know
one optimization method: you already know enough to derive the gradient
descent updates for an SVM.

Interestingly, even though SVMs came from a different community and
had a different sort of motivation from logistic regression, the algorithms
behave very similarly in practice. The reason has to do with the loss func-
tions. Figure 3 compares hinge loss to cross-entropy loss; even though cross-
entropy is smoother, the asymptotic behavior is the same, suggesting the
loss functions are basically pretty similar.

All of the loss functions covered so far is shown in Figure 3. Take the
time to review them, to understand their strengths and weaknesses.

3 Multiclass classification

So far we’ve talked about binary classification, but most classification prob-
lems involve more than two categories. Fortunately, this doesn’t require any
new ideas: everything pretty much works by analogy with the binary case.
The first question is how to represent the targets. We could represent them
as integers, but it’s more convenient to use a one-hot vector, also called
a one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

(21)

Now let’s design the whole model by analogy with the binary case.
First of all, consider the linear part of the model. We have K outputs

and D inputs. To represent a linear function, we’ll need a K ×D weight
matrix, as well as a K-dimensional bias vector. We first compute the
intermediate quantities as follows:

z = Wx + b. (22)

This is the general form of a linear function from RD to RK .
Next, the activation function. We saw that the logistic function was a

good thing to use in the binary case. There’s a multivariate generalization
of the logistic function called the softmax function: Try plugging in K = 2 to figure

out how the softmax relates to the
logistic function.

yk = softmax(z1, . . . , zK)k =
ezk∑
k′ e

zk′
(23)

Importantly, the outputs of the softmax function are nonnegative and sum
to 1, so they can be interpreted as a probability distribution over the K

8

classes (just like the output of the logistic could be interpreted as a prob-
ability). The inputs to the softmax are called the logits. Think about the logits as the

“log-odds”, because when you
exponentiate them you get the
odds ratios of the probabilities.

Note that when
one of the zk’s is much larger than the others, the output of the softmax
will be approximately the argmax, in the one-hot encoding. Hence, a more
accurate name might be “soft-argmax.”

Finally, the loss function. Cross-entropy can be generalized to the
multiple-output case: You’ll sometimes see σ(z) used to

denote the softmax function, by
analogy with the logistic. But in
this course, it will always denote
the logistic function.

LCE(y, t) = −
K∑
k=1

tk log yk

= −t>(log y).

Here, log y represents the elementwise log. Note that only one of the tk’s is
1 and the rest are 0, so the summation has the effect of picking the relevant
entry of the vector log y. (See how convenient the one-hot notation is?)

Try plugging in K = 2 to see how
this relates to binary cross-entropy.

Note that this loss function only makes sense for predictions which sum to
1; if you eliminate that constraint, you could trivially minimize the loss by
making all the yk’s large.

When we put these things together, we get multiclass logistic regres-
sion, or softmax regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

We won’t go through the derivatives in detail, but it basically works out
exactly like logistic regression. The softmax and cross-entropy functions
interact nicely with each other, so we always combine them into a single
softmax-cross-entropy function LSCE for purposes of numerical stability.
The derivatives of LSCE have the same elegant formula we’ve been seeing
repeatedly, except this time remember that t and y are both vectors:

∂LSCE

∂z
= y − t (24)

Softmax regression is an elegant learning algorithm which can work very
well in practice.

4 Convex Functions

An important criterion we often use to compare different loss functions is
convexity. Recall that a set S is convex if the line segment connecting any
two points in S lies entirely within S. Mathematically, this means that for
x0,x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

The definition of a convex function is closely related. A function f is
convex if for any x0,x1 in the domain of f ,

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) (25)

9

Figure 4: Left: Definition of convexity. Right: Proof-by-picture that if
the model is linear and L is a convex function of z = w>x+ b, then it’s also
convex as a function of w and b.

This is shown graphically in Figure 4. Another way to phrase this require-
ment is that the line segment connecting any two points on the graph of f
must lie above the graph of f . Equivalently, the set of points lying above
the graph of f must be a convex set. Intuitively, convex functions are bowl-
shaped.

Convexity is a really important property from the standpoint of opti-
mization. There are two main reasons for this:

1. All critical points are global minima, so if you can set the derivatives
to zero, you’ve solved the problem.

2. Gradient descent will always converge to the global minimum.

We’ll talk in more detail in a later lecture about what can go wrong when the
cost function is not convex. Look back at our comparison of loss functions
in Figure 3. You can see visually that squared error, hinge loss, and the
logistic regression objective are all convex; 0–1 loss, and logistic-with-least-
squares are not convex. It’s not a coincidence that the loss functions we
might actually try to optimize are the convex ones. There is an entire field
of research on convex optimization, which comes up with better ways to
minimize convex functions over convex sets, as well as ways to formulate
various kinds of problems in terms of convex optimization.

Note that even though convexity is important, most of the optimization
problems we’ll consider in this course will be non-convex, because training
a deep neural network is a non-convex problem, even when the loss func-
tion is convex. Nonetheless, convex loss functions somehow still tend to be
advantageous from the standpoint of optimization.

5 Gradient Checking with Finite Differences

We’ve derived a lot of gradients so far. How do we know if they’re correct?
Fortunately, there’s an easy and effective procedure for testing them. Recall

10

Figure 5: Estimating a derivative using one-sided and two-sided finite dif-
ferences.

the definition of the partial derivative:

∂

∂xi
f(x1, . . . , xN) = lim

h→0

f(x1, . . . , xi + h, . . . , xN)− f(x1, . . . , xi, . . . , xN)

h
(26)

We can check the derivatives numerically by plugging in a small value of h,
such as 10−10. This is known as the method of finite differences. You don’t want to implement your

actual learning algorithm using
finite differences, because it’s very
slow, but it’s great for testing.

It’s actually better to use the two-sided definition of the partial deriva-
tive than the one-sided one, since it is much more accurate:

∂

∂xi
f(x1, . . . , xN) = lim

h→0

f(x1, . . . , xi + h, . . . , xN)− f(x1, . . . , xi − h, . . . , xN)

2h
(27)

An example is shown in Figure 5 of estimating a derivative using the one-
sided and two-sided formulas.

Gradient checking is really important! In machine learning, your algo-
rithm can often seem to learn well even if the gradient calculation is totally
wrong. This might lead you to skip the correctness checks. But it might
work even better if the derivatives are correct, and this is important when
you’re trying to squeeze out the last bit of accuracy. Wrong derivatives can
also lead you on wild goose chases, as you make changes to your system
which appear to help significantly, but actually are only helping because
they compensate for errors in the gradient calculations. If you implement
derivatives by hand, gradient checking is the single most important thing
you need to do to get your algorithm to work well.

11

Lecture 5: Multilayer Perceptrons

Roger Grosse

1 Introduction

So far, we’ve only talked about linear models: linear regression and linear
binary classifiers. We noted that there are functions that can’t be rep-
resented by linear models; for instance, linear regression can’t represent
quadratic functions, and linear classifiers can’t represent XOR. We also saw
one particular way around this issue: by defining features, or basis func-
tions. E.g., linear regression can represent a cubic polynomial if we use the
feature map ψ(x) = (1, x, x2, x3). We also observed that this isn’t a very
satisfying solution, for two reasons:

1. The features need to be specified in advance, and this can require a
lot of engineering work.

2. It might require a very large number of features to represent a certain
set of functions; e.g. the feature representation for cubic polynomials
is cubic in the number of input features.

In this lecture, and for the rest of the course, we’ll take a different ap-
proach. Some people would claim that the

methods covered in this course are
really “just” adaptive basis
function representations. I’ve
never found this a very useful way
of looking at things.

We’ll represent complex nonlinear functions by connecting together
lots of simple processing units into a neural network, each of which com-
putes a linear function, possibly followed by a nonlinearity. In aggregate,
these units can compute some surprisingly complex functions. By historical
accident, these networks are called multilayer perceptrons.

1.1 Learning Goals

• Know the basic terminology for neural nets

• Given the weights and biases for a neural net, be able to compute its
output from its input

• Be able to hand-design the weights of a neural net to represent func-
tions like XOR

• Understand how a hard threshold can be approximated with a soft
threshold

• Understand why shallow neural nets are universal, and why this isn’t
necessarily very interesting

1

Figure 1: A multilayer perceptron with two hidden layers. Left: with the
units written out explicitly. Right: representing layers as boxes.

2 Multilayer Perceptrons

In the first lecture, we introduced our general neuron-like processing unit:

a = φ

∑
j

wjxj + b

 ,

where the xj are the inputs to the unit, the wj are the weights, b is the bias,
φ is the nonlinear activation function, and a is the unit’s activation. We’ve
seen a bunch of examples of such units:

• Linear regression uses a linear model, so φ(z) = z.

• In binary linear classifiers, φ is a hard threshold at zero.

• In logistic regression, φ is the logistic function σ(z) = 1/(1 + e−z).

A neural network is just a combination of lots of these units. Each one
performs a very simple and stereotyped function, but in aggregate they can
do some very useful computations. For now, we’ll concern ourselves with
feed-forward neural networks, where the units are arranged into a graph
without any cycles, so that all the computation can be done sequentially.
This is in contrast with recurrent neural networks, where the graph can
have cycles, so the processing can feed into itself. These are much more
complicated, and we’ll cover them later in the course.

The simplest kind of feed-forward network is a multilayer perceptron
(MLP), as shown in Figure 1. MLP is an unfortunate name. The

perceptron was a particular
algorithm for binary classification,
invented in the 1950s. Most
multilayer perceptrons have very
little to do with the original
perceptron algorithm.

Here, the units are arranged into a set of
layers, and each layer contains some number of identical units. Every unit
in one layer is connected to every unit in the next layer; we say that the
network is fully connected. The first layer is the input layer, and its
units take the values of the input features. The last layer is the output
layer, and it has one unit for each value the network outputs (i.e. a single
unit in the case of regression or binary classifiation, or K units in the case
of K-class classification). All the layers in between these are known as
hidden layers, because we don’t know ahead of time what these units
should compute, and this needs to be discovered during learning. The units

2

Figure 2: An MLP that computes the XOR function. All activation func-
tions are binary thresholds at 0.

in these layers are known as input units, output units, and hidden
units, respectively. The number of layers is known as the depth, and the
number of units in a layer is known as the width. Terminology for the depth is very

inconsistent. A network with one
hidden layer could be called a
one-layer, two-layer, or three-layer
network, depending if you count
the input and output layers.

As you might guess,
“deep learning” refers to training neural nets with many layers.

As an example to illustrate the power of MLPs, let’s design one that
computes the XOR function. Remember, we showed that linear models
cannot do this. We can verbally describe XOR as “one of the inputs is 1,
but not both of them.” So let’s have hidden unit h1 detect if at least one
of the inputs is 1, and have h2 detect if they are both 1. We can easily do
this if we use a hard threshold activation function. You know how to design
such units — it’s an exercise of designing a binary linear classifier. Then
the output unit will activate only if h1 = 1 and h2 = 0. A network which
does this is shown in Figure 2.

Let’s write out the MLP computations mathematically. Conceptually,
there’s nothing new here; we just have to pick a notation to refer to various
parts of the network. As with the linear case, we’ll refer to the activations
of the input units as xj and the activation of the output unit as y. The units

in the `th hidden layer will be denoted h
(`)
i . Our network is fully connected,

so each unit receives connections from all the units in the previous layer.
This means each unit has its own bias, and there’s a weight for every pair
of units in two consecutive layers. Therefore, the network’s computations
can be written out as:

h
(1)
i = φ(1)

∑
j

w
(1)
ij xj + b

(1)
i

h
(2)
i = φ(2)

∑
j

w
(2)
ij h

(1)
j + b

(2)
i

yi = φ(3)

∑
j

w
(3)
ij h

(2)
j + b

(3)
i

(1)

Note that we distinguish φ(1) and φ(2) because different layers may have
different activation functions.

Since all these summations and indices can be cumbersome, we usually

3

write the computations in vectorized form. Since each layer contains mul-
tiple units, we represent the activations of all its units with an activation
vector h(`). Since there is a weight for every pair of units in two consecutive
layers, we represent each layer’s weights with a weight matrix W(`). Each
layer also has a bias vector b(`). The above computations are therefore
written in vectorized form as:

h(1) = φ(1)
(
W(1)x + b(1)

)
h(2) = φ(2)

(
W(2)h(1) + b(2)

)
y = φ(3)

(
W(3)h(2) + b(3)

) (2)

When we write the activation function applied to a vector, this means it’s
applied independently to all the entries.

Recall how in linear regression, we combined all the training examples
into a single matrix X, so that we could compute all the predictions using a
single matrix multiplication. We can do the same thing here. We can store
all of each layer’s hidden units for all the training examples as a matrix H(`).
Each row contains the hidden units for one example. The computations are
written as follows (note the transposes): If it’s hard to remember when a

matrix or vector is transposed, fear
not. You can usually figure it out
by making sure the dimensions
match up.

H(1) = φ(1)
(
XW(1)> + 1b(1)>

)
H(2) = φ(2)

(
H(1)W(2)> + 1b(2)>

)
Y = φ(3)

(
H(2)W(3)> + 1b(3)>

) (3)

These equations can be translated directly into NumPy code which effi-
ciently computes the predictions over the whole dataset.

3 Feature Learning

We already saw that linear regression could be made more powerful using a
feature mapping. For instance, the feature mappingψ(x) = (1, x, x2, xe) can
represent third-degree polynomials. But static feature mappings were lim-
ited because it can be hard to design all the relevant features, and because
the mappings might be impractically large. Neural nets can be thought
of as a way of learning nonlinear feature mappings. E.g., in Figure 1, the
last hidden layer can be thought of as a feature map ψ(x), and the output
layer weights can be thought of as a linear model using those features. But
the whole thing can be trained end-to-end with backpropagation, which
we’ll cover in the next lecture. The hope is that we can learn a feature
representation where the data become linearly separable:

4

Figure 3: Left: Some training examples from the MNIST handwritten digit
dataset. Each input is a 28 × 28 grayscale image, which we treat as a 784-
dimensional vector. Right: A subset of the learned first-layer features.
Observe that many of them pick up oriented edges.

Consider training an MLP to recognize handwritten digits. (This will
be a running example for much of the course.) The input is a 28 × 28
grayscale image, and all the pixels take values between 0 and 1. We’ll ignore
the spatial structure, and treat each input as a 784-dimensional vector.

Later on, we’ll talk about
convolutional networks, which use
the spatial structure of the image.

This is a multiway classification task with 10 categories, one for each digit
class. Suppose we train an MLP with two hidden layers. We can try to
understand what the first layer of hidden units is computing by visualizing
the weights. Each hidden unit receives inputs from each of the pixels, which
means the weights feeding into each hidden unit can be represented as a 784-
dimensional vector, the same as the input size. In Figure 3, we display these
vectors as images.

In this visualization, positive values are lighter, and negative values are
darker. Each hidden unit computes the dot product of these vectors with
the input image, and then passes the result through the activation function.
So if the light regions of the filter overlap the light regions of the image,
and the dark regions of the filter overlap the dark region of the image,
then the unit will activate. E.g., look at the third filter in the second row.
This corresponds to an oriented edge: it detects vertical edges in the
upper right part of the image. This is a useful sort of feature, since it gives
information about the locations and orientation of strokes. Many of the
features are similar to this; in fact, oriented edges are a very commonly
learned by the first layers of neural nets for visual processing tasks.

It’s harder to visualize what the second layer is doing. We’ll see some
tricks for visualizing this in a few weeks. We’ll see that higher layers of a
neural net can learn increasingly high-level and complex features.

4 Expressive Power

Linear models are fundamentally limited in their expressive power: they
can’t represent functions like XOR. Are there similar limitations for MLPs?
It depends on the activation function.

5

Figure 4: Designing a binary threshold network to compute a particular
function.

4.1 Linear networks

Deep linear networks are no more powerful than shallow ones. The reason
is simple: if we use the linear activation function φ(x) = x (and forget
the biases for simplicity), the network’s function can be expanded out as
y = W(L)W(L−1) · · ·W(1)x. But this could be viewed as a single linear
layer with weights given by W = W(L)W(L−1) · · ·W(1). Therefore, a deep
linear network is no more powerful than a single linear layer, i.e. a linear
model.

4.2 Universality

As it turns out, nonlinear activation functions give us much more power:
under certain technical conditions, even a shallow MLP (i.e. one with a
single hidden layer) can represent arbitrary functions. Therefore, we say it
is universal.

Let’s demonstrate universality in the case of binary inputs. This argument can easily be made
into a rigorous proof, but this
course won’t be concerned with
mathematical rigor.

We do this
using the following game: suppose we’re given a function mapping input
vectors to outputs; we will need to produce a neural network (i.e. specify
the weights and biases) which matches that function. The function can be
given to us as a table which lists the output corresponding to every possible
input vector. If there are D inputs, this table will have 2D rows. An example
is shown in Figure 4. For convenience, let’s suppose these inputs are ±1,
rather than 0 or 1. All of our hidden units will use a hard threshold at 0
(but we’ll see shortly that these can easily be converted to soft thresholds),
and the output unit will be linear.

Our strategy will be as follows: we will have 2D hidden units, each
of which recognizes one possible input vector. We can then specify the
function by specifying the weights connecting each of these hidden units
to the outputs. For instance, suppose we want a hidden unit to recognize
the input (−1, 1,−1). This can be done using the weights (−1, 1,−1) and
bias −2.5, and this unit will be connected to the output unit with weight 1.
(Can you come up with the general rule?) Using these weights, any input
pattern will produce a set of hidden activations where exactly one of the
units is active. The weights connecting inputs to outputs can be set based
on the input-output table. Part of the network is shown in Figure 4.

6

Universality is a neat property, but it has a major catch: the network
required to represent a given function might have to be extremely large (in
particular, exponential). In other words, not all functions can be represented
compactly. We desire compact representations for two reasons:

1. We want to be able to compute predictions in a reasonable amount of
time.

2. We want to be able to train a network to generalize from a limited
number of training examples; from this perspective, universality sim-
ply implies that a large enough network can memorize the training
set, which isn’t very interesting.

4.3 Soft thresholds

In the previous section, our activation function was a step function, which
gives a hard threshold at 0. This was convenient for designing the weights of
a network by hand. But recall from last lecture that it’s very hard to directly
learn a linear classifier with a hard threshold, because the loss derivatives
are 0 almost everywhere. The same holds true for multilayer perceptrons.
If the activation function for any unit is a hard threshold, we won’t be able
to learn that unit’s weights using gradient descent. The solution is the same
as it was in last lecture: we replace the hard threshold with a soft one.

Does this cost us anything in terms of the network’s expressive power?
No it doesn’t, because we can approximate a hard threshold using a soft
threshold. In particular, if we use the logistic nonlinearity, we can approxi-
mate a hard threshold by scaling up the weights and biases:

4.4 The power of depth

If shallow networks are universal, why do we need deep ones? One important
reason is that deep nets can represent some functions more compactly than
shallow ones. For instance, consider the parity function (on binary-valued
inputs):

fpar(x1, . . . , xD) =

{
1 if

∑
j xj is odd

0 if it is even.
(4)

We won’t prove this, but it requires an exponentially large shallow network
to represent the parity function. On the other hand, it can be computed
by a deep network whose size is linear in the number of inputs. Designing
such a network is a good exercise.

7

Lecture 6: Backpropagation

Roger Grosse

1 Introduction

So far, we’ve seen how to train “shallow” models, where the predictions are
computed as a linear function of the inputs. We’ve also observed that deeper
models are much more powerful than linear ones, in that they can compute a
broader set of functions. Let’s put these two together, and see how to train
a multilayer neural network. We will do this using backpropagation, the
central algorithm of this course. Backpropagation (“backprop” for short) is
a way of computing the partial derivatives of a loss function with respect to
the parameters of a network; we use these derivatives in gradient descent,
exactly the way we did with linear regression and logistic regression.

If you’ve taken a multivariate calculus class, you’ve probably encoun-
tered the Chain Rule for partial derivatives, a generalization of the Chain
Rule from univariate calculus. In a sense, backprop is “just” the Chain Rule
— but with some interesting twists and potential gotchas. This lecture and
Lecture 8 focus on backprop. (In between, we’ll see a cool example of how
to use it.) This lecture covers the mathematical justification and shows how
to implement a backprop routine by hand. Implementing backprop can get
tedious if you do it too often. In Lecture 8, we’ll see how to implement an
automatic differentiation engine, so that derivatives even of rather compli-
cated cost functions can be computed automatically. (And just as efficiently
as if you’d done it carefully by hand!)

This will be your least favorite lecture, since it requires the most tedious
derivations of the whole course.

1.1 Learning Goals

• Be able to compute the derivatives of a cost function using backprop.

1.2 Background

I would highly recommend reviewing and practicing the Chain Rule for
partial derivatives. I’d suggest Khan Academy1, but you can also find lots
of resources on Metacademy2.

1https://www.khanacademy.org/math/multivariable-calculus/

multivariable-derivatives/multivariable-chain-rule/v/

multivariable-chain-rule
2https://metacademy.org/graphs/concepts/chain_rule

1

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/multivariable-chain-rule/v/multivariable-chain-rule
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/multivariable-chain-rule/v/multivariable-chain-rule
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/multivariable-chain-rule/v/multivariable-chain-rule
https://metacademy.org/graphs/concepts/chain_rule

2 The Chain Rule revisited

Before we get to neural networks, let’s start by looking more closely at an
example we’ve already covered: a linear classification model. For simplicity,
let’s assume we have univariate inputs and a single training example (x, t).
The predictions are a linear function followed by a sigmoidal nonlinearity.
Finally, we use the squared error loss function. The model and loss function
are as follows:

z = wx+ b (1)

y = σ(z) (2)

L =
1

2
(y − t)2 (3)

Now, to change things up a bit, let’s add a regularizer to the cost function.
We’ll cover regularizers properly in a later lecture, but intuitively, they try to
encourage “simpler” explanations. In this example, we’ll use the regularizer
λ
2w

2, which encourages w to be close to zero. (λ is a hyperparameter; the
larger it is, the more strongly the weights prefer to be close to zero.) The
cost function, then, is:

R =
1

2
w2 (4)

Lreg = L+ λR. (5)

In order to perform gradient descent, we wish to compute the partial deriva-
tives ∂E/∂w and ∂E/∂b.

This example will cover all the important ideas behind backprop; the
only thing harder about the case of multilayer neural nets will be the cruftier
notation.

2.1 How you would have done it in calculus class

Recall that you can calculate partial derivatives the same way you would
calculate univariate derivatives. In particular, we can expand out the cost
function in terms of w and b, and then compute the derivatives using re-

2

peated applications of the univariate Chain Rule.

Lreg =
1

2
(σ(wx+ b)− t)2 +

λ

2
w2

∂Lreg
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− t)2 +

λ

2
w2

]
=

1

2

∂

∂w
(σ(wx+ b)− t)2 +

λ

2

∂

∂w
w2

= (σ(wx+ b)− t) ∂
∂w

(σ(wx+ b)− t) + λw

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂w
(wx+ b) + λw

= (σ(wx+ b)− t)σ′(wx+ b)x+ λw

∂Lreg
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− t)2 +

λ

2
w2

]
=

1

2

∂

∂b
(σ(wx+ b)− t)2 +

λ

2

∂

∂b
w2

= (σ(wx+ b)− t) ∂
∂b

(σ(wx+ b)− t) + 0

= (σ(wx+ b)− t)σ′(wx+ b)
∂

∂b
(wx+ b)

= (σ(wx+ b)− t)σ′(wx+ b)

This gives us the correct answer, but hopefully it’s apparent from this
example that this method has several drawbacks:

1. The calculations are very cumbersome. In this derivation, we had to
copy lots of terms from one line to the next, and it’s easy to acciden-
tally drop something. (In fact, I made such a mistake while writing
these notes!) While the calculations are doable in this simple example,
they become impossibly cumbersome for a realistic neural net.

2. The calculations involve lots of redundant work. For instance, the
first three steps in the two derivations above are nearly identical.

3. Similarly, the final expressions have lots of repeated terms, which
means lots of redundant work if we implement these expressions di-
rectly. Actually, even in this derivation, I

used the “efficiency trick” of not
expanding out σ′. If I had
expanded it out, the expressions
would be even more hideous, and
would involve six copies of wx+ b.

For instance, wx+ b is computed a total of four times between
∂E/∂w and ∂E/∂b. The larger expression (σ(wx+ b)− t)σ′(wx+ b) is
computed twice. If you happen to notice these things, then perhaps
you can be clever in your implementation and factor out the repeated
expressions. But, as you can imagine, such efficiency improvements
might not always jump out at you when you’re implementing an al-
gorithm.

The idea behind backpropagation is to share the repeated computations
wherever possible. We’ll see that the backprop calculations, if done properly,
are very clean and modular.

3

2.2 Multivariable chain rule: the easy case

We’ve already used the univariate Chain Rule a bunch of times, but it’s
worth remembering the formal definition:

d

dt
f(g(t)) = f ′(g(t))g′(t). (6)

Roughly speaking, increasing t by some infinitesimal quantity h1 “causes” g
to change by the infinitesimal h2 = g′(t)h1. This in turn causes f to change
by f ′(g(t))h2 = f ′(g(t))g′(t)h1.

The multivariable Chain Rule is a generalization of the univariate one.
Let’s say we have a function f in two variables, and we want to compute
d
dtf(x(t), y(t)). Changing t slightly has two effects: it changes x slightly,
and it changes y slightly. Each of these effects causes a slight change to f .
For infinitesimal changes, these effects combine additively. The Chain Rule,
therefore, is given by:

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
. (7)

2.3 An alternative notation

It will be convenient for us to introduce an alternative notation for the
derivatives we compute. In particular, notice that the left-hand side in all
of our derivative calculations is dL/dv, where v is some quantity we compute
in order to compute L. (Or substitute for L whichever variable we’re trying
to compute derivatives of.) We’ll use the notation

v ,
∂L
∂v
. (8)

This notation is less crufty, and also emphasizes that v is a value we com-
pute, rather than a mathematical expression to be evaluated. This notation
is nonstandard; see the appendix if you want more justification for it.

We can rewrite the multivariable Chain rule (Eqn. 7) using this notation:

t = x
dx

dt
+ y

dy

dt
. (9)

Here, we use dx/dt to mean we should actually evaluate the derivative
algebraically in order to determine the formula for t, whereas x and y are
values previously computed by the algorithm.

2.4 Using the computation graph

In this section, we finally introduce the main algorithm for this course,
which is known as backpropagation, or reverse mode automatic dif-
ferentiation (autodiff).3

3Automatic differentiation was invented in 1970, and backprop in the late 80s. Origi-
nally, backprop referred to the special case of reverse mode autodiff applied to neural nets,
although the derivatives were typically written out by hand (rather than using an autodiff
package). But in the last few years, neural nets have gotten so diverse that we basically
think of them as compositions of functions. Also, very often, backprop is now imple-
mented using an autodiff software package. For these reasons, the distinction between
autodiff and backprop has gotten blurred, and we will use the terms interchangeably in
this course. Note that there is also a forward mode autodiff, but it’s rarely used in neural
nets, and we won’t cover it in this course.

4

Figure 1: Computation graph for the regularized linear regression example
in Section 2.4. The magenta arrows indicate the case which requires the
multivariate chain rule because w is used to compute both z and R.

Now let’s return to our running example, written again for convenience:

z = wx+ b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w2

Lreg = L+ λR.

Let’s introduce the computation graph. The nodes in the graph corre-
spond to all the values that are computed, with edges to indicate which
values are computed from which other values. The computation graph for
our running example is shown in Figure 1. Note that the computation graph

is not the network architecture.
The nodes correspond to values
that are computed, rather than to
units in the network.

The goal of backprop is to compute the derivatives w and b. We do this
by repeatedly applying the Chain Rule (Eqn. 9). Observe that to compute
a derivative using Eqn. 9, you first need the derivatives for its children in
the computation graph. This means we must start from the result of the
computation (in this case, E) and work our way backwards through the
graph. It is because we work backward through the graph that backprop
and reverse mode autodiff get their names.

Let’s start with the formal definition of the algorithm. Let v1, . . . , vN
denote all of the nodes in the computation graph, in a topological ordering.
(A topological ordering is any ordering where parents come before children.)
We wish to compute all of the derivatives vi, although we may only be
interested in a subset of these values. We first compute all of the values in
a forward pass, and then compute the derivatives in a backward pass.
As a special case, vN denotes the result of the computation (in our running
example, vN = E), and is the thing we’re trying to compute the derivatives
of. Therefore, by convention, we set vN = 1. E = 1 because increasing the cost

by h increases the cost by h.
The algorithm is as follows:

For i = 1, . . . , N

Compute vi as a function of Pa(vi)

vN = 1

For i = N − 1, . . . , 1

vi =
∑

j∈Ch(vi)
vj
∂vj
∂vi

5

Here Pa(vi) and Ch(vi) denote the parents and children of vi.
This procedure may become clearer when we work through the example

in full:

Lreg = 1

R = Lreg
dLreg
dR

= Lreg λ

L = Lreg
dLreg
dL

= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz
= y σ′(z)

w = z
∂z

∂w
+RdR

dw
= z x+Rw

b = z
∂z

∂b
= z

Since we’ve derived a procedure for computing w and b, we’re done. Let’s
write out this procedure without the mess of the derivation, so that we can
compare it with the näıve method of Section 2.1:

Lreg = 1

R = Lreg λ
L = Lreg
y = L (y − t)
z = y σ′(z)

w = z x+Rw
b = z

The derivation, and the final result, are much cleaner than with the näıve
method. There are no redundant computations here. Actually, there’s one redundant

computation, since σ(z) can be
reused when computing σ′(z). But
we’re not going to focus on this
point.

Furthermore, the
procedure is modular : it is broken down into small chunks that can be
reused for other computations. For instance, if we want to change the
loss function, we’d only have to modify the formula for y. With the näıve
method, we’d have to start over from scratch.

3 Backprop on a multilayer net

Now we come to the prototypical use of backprop: computing the loss
derivatives for a multilayer neural net. This introduces no new ideas beyond

6

(a) (b)

Figure 2: (a) Full computation graph for the loss computation in a multi-
layer neural net. (b) Vectorized form of the computation graph.

what we’ve already discussed, so think of it as simply another example to
practice the technique. We’ll use a multilayer net like the one from the
previous lecture, and squared error loss with multiple output units:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi)

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)2

As before, we start by drawing out the computation graph for the network.
The case of two input dimensions and two hidden units is shown in Figure
2(a). Because the graph clearly gets pretty cluttered if we include all the
units individually, we can instead draw the computation graph for the vec-
torized form (Figure 2(b)), as long as we can mentally convert it to Figure
2(a) as needed.

Based on this computation graph, we can work through the derivations
of the backwards pass just as before. One you get used to it, feel free to

skip the step where we write down
L.L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi)

w
(1)
ij = zi xj

b
(1)
i = zi

Focus especially on the derivation of hi, since this is the only step which
actually uses the multivariable Chain Rule.

7

Once we’ve derived the update rules in terms of indices, we can find
the vectorized versions the same way we’ve been doing for all our other
calculations. For the forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

And the backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z

4 Appendix: why the weird notation?

Recall that the partial derivative ∂E/∂w means, how much does E change
when you make an infinitesimal change to w, holding everything else fixed?
But this isn’t a well-defined notion, because it depends what we mean by
“holding everything else fixed.” In particular, Eqn. 5 defines the cost as a
function of two arguments; writing this explicitly,

E(L, w) = L+
λ

2
w2. (10)

Computing the partial derivative of this function with respect to w,

∂E
∂w

= λw. (11)

But in the previous section, we (correctly) computed

∂E
∂w

= (σ(wx+ b)− t)σ′(wx+ b)x+ λw. (12)

What gives? Why do we get two different answers?
The problem is that mathematically, the notation ∂E/∂w denotes the

partial derivative of a function with respect to one of its arguments. We
make an infinitesimal change to one of the arguments, while holding the
rest of the arguments fixed. When we talk about partial derivatives, we
need to be careful about what are the arguments to the function. When
we compute the derivatives for gradient descent, we treat E as a function
of the parameters of the model — in this case, w and b. In this context,

8

∂E/∂w means, how much does E change if we change w while holding b
fixed? By contrast, Eqn. 10 treats E as a function of L and w; in Eqn. 10,
we’re making a change to the second argument to E (which happens to be
denoted w), while holding the first argument fixed.

Unfortunately, we need to refer to both of these interpretations when
describing backprop, and the partial derivative notation just leaves this dif-
ference implicit. Doubly unfortunately, our field hasn’t consistently adopted
any notational conventions which will help us here. There are dozens of ex-
planations of backprop out there, most of which simply ignore this issue,
letting the meaning of the partial derivatives be determined from context.
This works well for experts, who have enough intuition about the problem
to resolve the ambiguities. But for someone just starting out, it might be
hard to deduce the meaning from context.

That’s why I picked the bar notation. It’s the least bad solution I’ve
been able to come up with.

9

Lecture 7: Distributed Representations

Roger Grosse

1 Introduction

We’ll take a break from derivatives and optimization, and look at a partic-
ular example of a neural net that we can train using backprop: the neural
probabilistic language model. Here, the goal is to model the distribution
of English sentences (a task known as language modeling), and we do this
by reducing it to a sequential prediction task. I.e., we learn to predict the
distribution of the next word in a sentence given the previous words. This
lecture will also serve as an example of one of the most important concepts
about neural nets, that of a distributed representation. We can understand
this in contrast with a localized representation, where a particular piece
of information is stored in only one place. In a distributed representation,
information is spread throughout the representation. This turns out to be
really useful, since it lets us share information between related entities —
in the case of language modeling, between related words.

2 Motivation: Language Modeling

Language modeling is the problem of modeling the probability distribu-
tion of natural language text. I.e., we would like to be able to determine
how likely a given sentence is to be uttered. This is an instance of the more
general problem of distribution modeling, i.e. learning a model which
tries to approximate the distribution which some dataset is drawn from.
Why would we want to fit such a model? One of the most important use
cases is Bayesian inference.

Suppose we are building a speech recognition system. I.e., given an
acoustic signal a, we’d like to infer the sentence s (or a set of candidate
sentences) that was probably spoken. One way to do this is to build a
generative model. In this case, such a model consists of two probability
distributions:

• The observation model, represented as p(a | s), The notation p(· | ·) denotes the
conditional distribution.

which tells us how
likely a sentence is to lead to a given acoustic signal. You might, for
instance, build a model of the human vocal system. A lot of work has
gone into this, but we’re not going to talk about it here.

• The prior, represented as p(s), which tells us how likely a given sen-
tence is to be spoken, before we’ve seen a. This is the thing we’re
trying to estimate when we do language modeling.

Given these two distributions, we can combine them using Bayes’ Rule
to infer the posterior distribution over sentences, i.e. the probability

1

distribution over sentences taking into account the observations. Recall
that Bayes’ Rule is as follows:

p(s |a) =
p(s) p(a | s)∑
s′ p(s′) p(a | s′)

. (1)

The denominator is simply a normalization term, and we rarely ever have
to compute it or deal with it explicitly. So we can leave the normalization
implicit, using the notation ∝ to denote proportionality:

p(s |a) ∝ p(s) p(a | s). (2)

Hence, Bayes’ Rule lets us combine our prior beliefs with an observation
model in a principled and elegant way.

Having a good prior distribution p(s) is very useful, since speech signals
are inherently ambiguous. E.g., “recognize speech” sounds very similar to
“wreck a nice beach”, but the former is much more likely to be spoken. This
is the sort of thing we’d like our language models to capture.

2.1 Autoregressive Models

Now we’re going to recast the distribution modeling task as a sequential
prediction task. Suppose we’re given a corpus of sentences s(1), . . . , s(N).
We’ll make the simplifying assumption that the sentences are independent.
This means that their probabilities multiply:

p(s(1), . . . , s(N)) =
N∏
i=1

p(s(i)). (3)

Hence, we can talk instead about modeling the distribution over sentences.
We’ll try to fit a model which represents a distribution pθ(s), parame-

terized by θ. The maximum likelihood criterion says we’d like to choose
the θ which maximizes the likelihood, or the probability of the observed
data:

max
θ

N∏
i=1

pθ(s(i)). (4)

At this point, you might be concerned that the probability of any particular
sentence will be vanishingly small. This is true, but we can fix that prob-
lem by working with log probabilities. Then the probability of the corpus
conveniently decomposes as a sum: Since it’s easier to work with

positive numbers, and log
probabilities are negative, we often
rephrase maximum likelihood as
minimizing negative log
probabilities.

log

N∏
i=1

p(s(i)) =

N∑
i=1

log p(s(i)). (5)

The log probability of monkeys typing the entire works of Shakespeare is
on a scale we can reasonably work with. What is this probability, under the

assumption that they type all keys
uniformly at random?

And if slightly better trained
monkeys are slightly more likely to type Hamlet, it will give us a smooth
training criterion we can optimize with gradient descent.

A sentence is a sequence of words A sentence is a sequence of words
w1, w2, . . . , wT . The chain rule of conditional probability implies that

2

p(s) factorizes as the products of conditional probabilities of individual
words: Note that the Chain Rule applies

to any distribution, i.e. we’re not
making any assumptions here.p(s) = p(w1, . . . , wT) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . , wT−1). (6)

Hence, the language modeling problem is equivalent to being able to predict
the next word!

We typically make a Markov assumption, i.e. that the distribution
over the next word only depends on the preceding few words. I.e., if we use
a context of length 3, this means

p(wt |w1, . . . , wt−1) = p(wt |wt−3, wt−2, wt−1). (7)

Such a model is called memoryless, since it has no memory of what oc-
curred earlier in the sentence. When we decompose the distribution model-
ing problem into a sequential prediction task with limited context lengths,
we call that an autoregressive model. “Regressive” because it’s a predic-
tion problem Statisticians use “regression” to

refer to general supervised
prediction problems, not just least
squares.

, and “auto” because the sequences are used as both the inputs
and the targets.

2.2 n-Gram Language Models

The simplest sort of Markov model is a conditional probability table
(CPT), where we explicitly represent the distribution over the next word
given the context words. This is a table with a row for every possible
context word senence, and a column for every word, and the entry gives the
conditional probability. Since each row represents a probability distribution,
the entries must be nonnegative, and the entries in each row must sum to
1. Otherwise, the numbers can be anything.

The simplest way to estimate a CPT is using the empirical counts,
i.e. the number of times a sequence of words occurs in the training corpus.
For instance, We’ll show later in the course that

the formula corresponds to the
maximum likelihood estimate of
the CPT.p(w3 = cat |w1 = the, w2 = fat) =

count(the fat cat)

count(the fat)
(8)

This requires counting the number of occurrences of all sequences of length
2 and 3. Sequences of length n are called n-grams, and a model based on
counting such sequences is called an n-gram model. Gotcha: this example is a 3-gram

model, even though it uses a
context of length 2.

For n = 1, 2, 3, these
are called unigram, bigram, and trigram models. See here1 for some exam-
ples of language models. Notice that unigram models are totally incoherent
(since they sample all the words independently from the marginal distri-
bution over words), but trigram models capture a fair amount of syntactic
structure.

Observe that the number of possible contexts grows exponentially in n.
This means that except for very small n, you’re unlikely to see all possible
n-grams in the training corpus, and many or most of the counts will be 0.
This problem is referred to as data sparsity. The model described above is
somewhat of a straw man, and natural language processing researchers came

1https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf#

page=10

3

https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf#page=10
https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf#page=10

up with a variety of clever ways for dealing with data sparsity, including
adding imaginary counts of all the words, and combining the predictions of
different context lengths.

But there’s one problem fundamental to the n-gram approach: it’s hard
to share information between related words. If we see the sentence “The
cat got squashed in the garden on Friday”, we should estimate a higher
probability o seeing the sentence “The dog got flattened in the yard on
Monday”, even though these two sentences have few words in common.
Distributed representations give a great way of doing this.

2.3 Distributed Representations

Conditional probability tables are a kind of localist representation, which
means a given piece of information (e.g. the probability of seeing “cat” after
“the fat”) is stored in just one place. If we’d like to share information be-
tween related words, we might want to use a distributed representation,
where the same piece of information would be distributed throughout the
whole representation. E.g., suppose we build a table of attributes of words:

academic politics plural person building

students 1 0 1 1 0
colleges 1 0 1 0 1

legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

as well as the effect (+ or −) of those attributes on the probabilities of
seeing possible next words:

bill is are papers built standing
academic − +
politics + −
plural − +
person +
building + +

Information about the distribution over the next word is distributed
throughout the representation. E.g., the fact that “students” is likely to be
followed by “are” comes from the fact that “students” is plural, combined
with the fact that plural nouns are likely to be followed by “are”. Since
“colleges” is also plural, this information is shared between “students” and
“colleges”.

3 Neural Probabilistic Language Model

Now let’s talk about a network that learns distributed representations of
language, called the neural probabilistic language model, or just neu-
ral language model. This network is basically a multilayer perceptron.
It’s an autoregressive model, so we have a prediction task where the input
is the sequence of context words, and the output is the distribution over
the next word. We associate each word in the dictionary with a unique and
arbitrary integer index.

4

If we write out the negative log-likelihood for a sentence, it decomposes
as the sum of cross-entropies for predicting each word:

− log p(s) = − log
T∏
t=1

p(wt |w1, . . . , wt−1) (9)

= −
T∑
t=1

log p(wt |w1, . . . , wt−1) (10)

= −
T∑
t=1

log ytv (11)

= −
T∑
t=1

V∑
v=1

ttv log ytv, (12)

where ytv = p(wt |w1, . . . , wt−1) is the predicted probability of the next
word, and ttv is the one-hot encoding of the target word. So this justifies
using cross-entropy loss, just as we did in multiway classification.

The neural language model uses the following architecture:
Bengio�s neural net for predicting the next word

 “softmax” units (one per possible next word)

index of word at t-2 index of word at t-1

learned distributed
encoding of word t-2

learned distributed
encoding of word t-1

units that learn to predict the output word from features of the input words

table look-up table look-up

skip-layer
connections

The only new concept here is the table look-up in the first layer. The
network learns a representation of every word in the dictionary as a vector,
and keeps these in a lookup table. This can be seen as a matrix R, where
each column gives the vector representation of one word. The network does
one table lookup for each of the context words, and the activation vector
for the embedding layer is the concatenation of the representations of all
the context words.

There’s another way to think of the embedding layer: suppose the con-
text words are represented with one-hot encodings. Then we can think of
the embedding layer as basically a linear layer whose weights are shared
between all the context words. Recall that a linear layer just computes
a matrix-vector product. In this case, we’re multiplying the representa-
tion matrix R by the one-hot vectors, which corresponds to pulling out the
corresponding column of R. You should convince yourself that

this is the case.

5

After the embedding layer, there’s a hidden layer, followed by a softmax
output layer, which is what we’d expect if we’re using cross-entropy loss.
This architecture also includes a skip connection from the embedding layer
to the output layer; we’ll talk about skip connections later in the course,
but roughly speaking, they help information travel faster through the net-
work. This whole network can be trained using backpropagation, exactly
as we’ve discussed in the previous lecture. You’ll implement this for your
first homework assignment.

There are various synonyms for word representation:

• Embedding, to emphasize that it’s a location in a high-dimensional
space. As we’ll see, semantically related words should be close to-
gether.

• Feature vector, to emphasize that it picks out semantically relevant
features that might be useful for downstream tasks. This is analogous
to the polynomial feature mappings for polynomial regression, or the
oriented edge filters in our MNIST classifier.

• Encoding, to emphasize that it’s a sort of code, and that we can go
back and forth between the words and their encodings.

Observe that unlike n-gram models, the neural language model is very
compact, even for long context lengths. While the size of the CPTs grows
exponentially in the context length, the size of the network (number of
weights, or number of units) grows linearly in the context length. The number of weights is linear

only assuming the number of
hidden units stays fixed. But in
practice, we might need more
hidden units to represent longer
contexts.

This
means that we can efficiently account for much longer context lengths, such
as 10.

If all goes well, the learned representations will reflect the semantic
relationships between words. Here are two common ways to measure this:

• If two words are similar, the dot product of their representations,
r>1 r2, should be large.

• If two words are dissimilar, the Euclidean distance between their rep-
resentations, ‖r1 − r2‖, should be large.

These two criteria aren’t equivalent in general, but they are equivalent in
the case where r1 and r2 are both unit vectors: If the representations are unit

vectors, r>1 r2 is also referred to as
cosine similarity, since it is the
cosine of the angle between the
representations.

‖r1 − r2‖2 = (r1 − r2)
>(r1 − r2) (13)

= r>1 r1 − 2r>1 r2 + r>2 r2 (14)

= 2− 2r>1 r2 (15)

To visualize the learned word vectors, we need to somehow map them
down to two dimensions. There’s an algorithm called tSNE that does just
that. Roughly speaking, it tries to assign locations to all the words in two
dimensions to match the high-dimensional distances as closely as possible.
This is impossible to do exactly (e.g. you can’t map the vertices of a cube
to 2 dimensions while preserving all the distances), and the low-dimensional
representation introduces distortions. E.g., words that are far away in high

6

dimensions might be put close together in 2-D. But it is still a pretty in-
structive visualization. Here2 is an example of a tSNE visualization of word
representations learned by a different model, but one based on similar prin-
ciples. Notice that semantically similar words get grouped together.

2http://www.cs.toronto.edu/ hinton/turian.png

7

Lecture 8: Optimization

Roger Grosse

1 Introduction

Now that we’ve seen how to compute derivatives of the cost function with
respect to model parameters, what do we do with those derivatives? In this
lecture, we’re going to take a step back and look at optimization problems
more generally. We’ve briefly discussed gradient descent and used it to train
some models, but what exactly is the gradient, and why is it a good idea to
move opposite it? We also introduce stochastic gradient descent, a way of
obtaining noisy gradient estimates from a small subset of the data.

Using modern neural network libraries, it is easy to implement the back-
prop algorithm so that it correctly computes the gradient. It’s not always
so easy to get it to work well. In this lecture, we’ll make a list of things that
can go drastically wrong in neural net training, and talk about how we can
spot them. This includes: learning rates that are too large or too small,
symmetries, dead or saturated units, and badly conditioned curvature. We
discuss tricks to ameliorate all of these problems. In general, debugging a
learning algorithm is like debugging any other complex piece of software:
if something goes wrong, you need to make hypotheses about what might
have happened, and look for evidence or design experiments to test those
hypotheses. This requires a thorough understanding of the principles of
optimization. Understanding the principles of

neural nets and being able to
diagnose failure modes are what
distinguishes someone who’s
finished CSC321 from someone
who’s merely worked through the
TensorFlow tutorial.

Our style of thinking in this lecture will be very different from that
in the last several lectures. When we discussed backprop, we looked at the
gradient computations algebraically : we derived mathematical equations for
computing all the derivatives. We also looked at the computations imple-
mentationally, seeing how to implement them efficiently (e.g. by vectorizing
the computations), and designing an automatic differentiation system which
separated the backprop algorithm itself from the design of a network archi-
tecture. In this lecture, we’ll look at gradient descent geometrically : we’ll
reason qualitatively about optimization problems and about the behavior
of gradient descent, without thinking about how the gradients are actually
computed. I.e., we abstract away the gradient computation. One of the
most important skills to develop as a computer scientist is the ability to
move between different levels of abstraction, and to figure out which level
is most appropriate for the problem at hand.

1.1 Learning goals

• Be able to interpret visualizations of cross-sections of an error surface.

• Know what the gradient is and how to draw it geometrically.

1

• Know why stochastic gradient descent can be faster than batch gradi-
ent descent, and understand the tradeoffs in choosing the mini-batch
size.

• Know what effect the learning rate has on the training process. Why
can it be advantageous to decay the learning rate over time?

• Be aware of various potential failure modes of gradient descent. How
might you diagnose each one, and how would you solve the problem
if it occurs?

– slow progress

– instability

– fluctuations

– dead or saturated units

– symmetries

– badly conditioned curvature

• Understand why momentum can be advantageous.

2 Visualizing gradient descent

When we train a neural network, we’re trying to minimize some cost function
E , which is a function of the network’s parameters, which we’ll denote with
the vector θ. In general, θ would contain all of the network’s weights and
biases, and perhaps a few other parameters, but for the most part, we’re not
going to think about what the elements of θ represent in this lecture. We’re
going to think about optimization problems in the abstract. In general, the
cost function will be the sum of losses over the training examples; it may
also include a regularization term (which we’ll discuss in the next lecture).
But for the most part, we’re not going to think about the particulars of the
cost function.

In order to think qualitatively about optimization problems, we’ll need
some ways to visualize them. Suppose θ consists of two weights, w1 and w2.
One way to visualize E is to draw the cost surface, as in Figure 1(a); this is
an example of a surface plot. This particular cost function has two local
minima, or points which minimize the cost within a small neighborhood.
One of these local optima is also a global optimum, a point which achieves
the minimum cost over all values of θ. A function can have multiple

global minima if there are multiple
points that achieve the minimum
cost. Technically speaking, global
optima are also local optima, but
informally when we refer to “local
optima,” we usually mean the ones
which aren’t global optima.

In the context of optimization, local
and global minima are also referred to as local and global optima.

Surface plots can be hard to interpret, so we’re only going to use them
when we absolutely have to. Instead, we’ll primarily rely on two other visu-
alizations. First, suppose we have a one-dimensional optimization problem,
i.e. θ consists of a single weight w. We can visualize this by plotting E as a
function of w, as in Figure 1(b). This figure also shows the gradient descent
iterates (i.e. the points the algorithm visits) starting from two different
initializations. One of these sequences converges to the global optimum,
and the other one converges to the other local optimum. In general, gra-
dient descent greedily tries to move downhill; by historical accident, it is

2

(a) (b)

Figure 1: (a) Cost surface for an optimization problem with two local min-
ima, one of which is the global minimum. (b) Cartoon plot of a one-
dimensional optimization problem, and the gradient descent iterates start-
ing from two different initializations, in two different basins of attraction.

(a) (b)

Figure 2: (a) Contour plot of a cost function. (b) A saddle point.

referred to as a hill-climbing algorithm. It’s important to choose a good
initialization, because we’d like to converge to the global optimum, or at
least a good local optimum. The set of weights which lead to a given local
optimum are known as a basin of attraction.

Figure 1(a) also shows a different feature of the cost function, known as
a plateau (plural = plateaux). This is a region where the function is flat, or
nearly flat, i.e. the derivative is zero or very close to zero. Gradient descent
can perform very badly on plateaux, because the parameters change very
slowly. Remember when we observed that

the gradient of 0–1 loss is zero
almost everywhere? That’s an
example of a plateau.

In neural net training, plateaux are generally a bigger problem than
local optima: while most local optima tend to be good enough in practice,
plateaux can cause the training to get stuck on a very bad solution.

Figure 2(a) shows a different visualization of a two-dimensional opti-
mization problem: a contour plot. Here, the axes correspond to w1 and
w2; this means we’re visualizing weight space (just like we did in our lecture
on linear classifiers). Each of the contours represents a level set, or set of
parameters where the cost takes a particular value. Check your understanding: how

can you (approximately) see local
optima on a countour plot? How
do you tell which one is the global
optimum?

One of the most important things we can visualize on a contour plot is
the gradient, or the direction of steepest ascent, of the cost function,

3

denoted ∇θE . This is the direction which goes directly uphill, i.e. the di-
rection which increases the cost the fastest relative to the distance moved.
We can’t determine the magnitude of the gradient from the contour plot,
but it is easy to determine its direction: the gradient is always orthogonal
(perpendicular) to the level sets. This gives an easy way to draw it on a
contour plot (e.g. see Figure 2(a)). Algebraically, the gradient is simply the
vector of partial derivatives of the cost function: In this context, E is taken as a

function of the parameters, not of
the loss L. Therefore, the partial
derivatives correspond to the
values wij , bi, etc., computed from
backpropagation.

∇θE =
∂E
∂θ

=

 ∂E/∂θ1
...

∂E/∂θM

 (1)

The fact that the vector of partial derivatives gives the steepest ascent
direction is far from obvious; you would see the derivation in a multivariable
calculus class, but here we will take it for granted.

The gradient descent update rule (which we’ve already seen multiple
times) can be written in terms of the gradient:

θ ← θ − α∇θE , (2)

where α is the scalar-valued learning rate. This shows directly that gra-
dient descent moves opposite the gradient, or in the direction of steepest
descent. Too large a learning rate can cause instability, whereas too small
a learning rate can cause slow progress. In general, the learning rate is one
of the most important hyperparameters of a learning algorithm, so it’s very
important to tune it, i.e. look for a good value. Recall that hyperparameters are

parameters which aren’t part of
the model and which aren’t tuned
with gradient descent.

(Most commonly, one tries
a bunch of values and picks the one which works the best.)

For completeness, it’s worth mentioning one more possible feature of a
cost function, namely a saddle point, shown in Figure 2(b). This is a point
where the gradient is zero, but which isn’t a local minimum because the cost
increases in some directions and decreases in others. If we’re exactly on a
saddle point, gradient descent won’t go anywhere because the gradient is
zero.

3 Stochastic gradient descent

In machine learning, our cost function generally consists of the average
of costs for individual training examples. By linearity of derivatives, the
gradient is the average of the gradients for individual examples:

E =
1

N

N∑
n=1

En (3)

=
1

N

N∑
n=1

L(y(n), ŷ(n)) (4)

∇θE = ∇θ
1

N

N∑
n=1

En (5)

=
1

N

N∑
n=1

∇θEn (6)

4

If we use this formula directly, we must visit every training example to com-
pute the gradient. This is known as batch training, since we’re treating
the entire training set as a batch. But this can be very time-consuming, and
it’s also unnecessary: we can get a stochastic estimate of the gradient from
a single training example. In stochastic gradient descent (SGD), we
pick a training example, and update the parameters opposite the gradient
for that example: This is identical to the gradient

descent update rule, except that E
is replaced with En.

θ ← θ − α∇θEn. (7)

SGD is able to make a lot of progress even before the whole training set has
been visited. A lot of datasets are so large that it can take hours or longer
to make a single pass over the training set; in such cases, batch training is
impractical, and we need to use a stochastic algorithm.

In practice, we don’t compute the gradient on a single example, but
rather average it over a batch of B training examples known as a mini-
batch. Typical mini-batch sizes are on the order of 100. Why mini-batches?
Observe that the number of operations required to compute the gradient for
a mini-batch is linear in the size of the mini-batch (since mathematically, the
gradient for each training example is a separate computation). Therefore, if
all operations were equally expensive, one would always prefer to use B = 1.
In practice, there are two important reasons to use B > 1:

• Operations on mini-batches can be vectorized by writing them in
terms of matrix operations. This reduces the interpreter overhead,
and makes use of efficient and carefully tuned linear algebra libraries.

In previous lectures, we already
derived vectorized forms of batch
gradient descent. The same
formulas can be applied in
mini-batch mode.

• Most large neural networks are trained on GPUs or some other ar-
chitecture which enables a high degree of parallelism. There is much
more parallelism to exploit when B is large, since the gradients can
be computed independently for each training example.

On the flip side, we don’t want to make B too large, because then it takes
too long to compute the gradients. In the extreme case where B = N , we
get batch gradient descent. (The activations for large mini-batches may also
be too large to store in memory.)

4 Problems, diagnostics, and workarounds

Now we get to the most important part of this lecture: debugging gradient
descent training. When you first learned to program, whenever something
didn’t work, you might have looked through your code line by line to try
and spot the mistake. This might have worked for 10-line programs, but
it probably became unworkable for more complex programs. Line-by-line
inspection doesn’t work very well in machine learning either — not just
because the programs are complicated, but also because most of the prob-
lems we’re going to talk about can occur even for a correctly implemented
training algorithm. E.g., if the problem is that you set the learning rate too
small, you’re not going to be able to deduce this by looking at your code,
since you don’t know ahead of time what the right learning rate is.

Let’s make a list of various things that can go wrong, and how to diag-
nose and fix them.

5

4.1 Incorrect gradient computations

If your computed gradients are wrong, then all bets are off. If you’re lucky,
the training will fail completely, and you’ll notice that something is wrong.
If you’re unlucky, it will sort of work, but it will also somehow be broken.
This is much more common than you might expect: it’s not unusual for
an incorrectly implemented learning algorithm to perform reasonably well.
But it will perform a bit worse than it should; furthermore, it will make it
harder to tune, since some of the diagnostics might give misleading results
if the gradients are wrong. Therefore, it’s completely useless to do anything
else until you’re sure the gradients are correct.

Fortunately, it’s possible to be confident in the correctness of the gra-
dients. We’ve already covered finite difference methods, which are pretty
reliable (see the lecture “Training a Classifier”). If you’re using one of
the major neural net frameworks, you’re pretty safe, because the gradients
are being computed automatically by a system which has been thoroughly
tested. For the rest of this discussion, we’ll assume the gradient computa-
tion is correctly implemented.

4.2 Local optima

We’re trying to minimize the cost function, and one of the ways we can fail
to do this is if we get stuck in a local optimum. Actually, that formulation
isn’t quite precise, since we rarely converge exactly to any optimum (local
or global) when training neural nets. A more precise statement would be,
we might wind up in a bad basin of attraction, and therefore not achieve as
low a cost as we would be able to in the best basin of attraction.

In general, it’s very hard to diagnose if you’re in a bad basin of attrac-
tion. In many areas of machine learning, one tries to ameliorate the issue
using random restarts: initialize the training from several random loca-
tions, run the training procedure from each one, and pick whichever result
has the lowest cost. This is sometimes done in neural net training, but
more often we just ignore the problem. In practice, the local optima are
usually fine, so we think about training in terms of converging faster to a
local optimum, rather than finding the global optimum.

4.3 Symmetries

Suppose we initialize all the weights and biases of a neural network to zero.
All the hidden activations will be identical, and you can check by inspection
(see the lecture on backprop) that all the weights feeding into a given hid-
den unit will have identical derivatives. Therefore, these weights will have
identical values in the next step, and so on. With nothing to distinguish
different hidden units, no learning will occur. This phenomenon is perhaps
the most important example of a saddle point in neural net training.

Fortunately, the problem is easy to deal with, using any sort of sym-
metry breaking. Once two hidden units compute slightly different things,
they will probably get a gradient signal driving them even farther apart.
(Think of this in terms of the saddle point picture; if you’re exactly on
the saddle point, you get zero gradient, but if you’re slightly to one side,

6

(a) (b) (c)

Figure 3: (a) Slow progress due to a small learning rate. (b) Instability
due to a large learning rate. (c) Oscillations due to a large learning rate.

you’ll move away from it, which gives you a larger gradient, and so on.) In
practice, we typically initialize all the weights randomly.

4.4 Slow progress

If the learning rate is too small, gradient descent makes very slow progress,
as shown in Figure 3(a). When you plot the training curve, this may show
up as a cost which decreases very slowly, but at an approximately linear
rate. If you see this happening, then try increasing the learning rate.

4.5 Instability and oscillations

Conversely, if the learning rate is too large, the gradient descent step will
overshoot. In some cases, it will overshoot so much that the gradient gets
larger, a situation known as instability. If this repeats itself, the parameter
values and gradient can quickly blow up; this is visualized in Figure 3(b).
In the training curve, the cost may appear to suddenly shoot up to infinity.
If this is happening, you should decrease the learning rate.

If the learning rate is too large, yet not enough to cause instability, you
might get oscillations, as shown in Figure 3(c). While the phenomenon
might seem easy to spot based on this picture, it’s actually pretty hard in
practice — keep in mind that weight space is very high-dimensional, and it
might not be obvious in which direction to look for oscillations. Also note
that oscillations in weight space don’t necessarily lead to oscillations in the
training curve.

Since we can’t detect oscillations, we simply try to tune the learning rate,
finding the best value we can. Typically, we do this using a grid search over
values spaced approximately by factors of 3, i.e. {0.3, 0.1, 0.03, . . . , 0.0001}.
The learning rate is one of the most important parameters, and one of the
hardest to choose a good value for a priori, so it is usually worth tuning it
carefully.

As it happens, there’s one more idea which can dampen oscillations
while also speeding up training: momentum. The physical intuition is as
follows: the parameter vector θ is treated as a particle which is moving
through a field whose potential energy function is the cost E . The gradient
does not determine the velocity of the particle (as it would in SGD), but
rather the acceleration. As a rough intuition, imagine you’ve built a surface
in 3-D corresponding to a 2-D cost function, and you start a frictionless ball
rolling from somewhere on that surface. If the surface is sufficiently flat,

7

the dynamics are essentially those described above. (The potential energy
is the height of the surface.)

We can simulate these dynamics with the following update rule, known
as gradient descent with momentum. (Momentum can be used with
either the batch version or with SGD.)

p← µp− α∇θEn (8)

θ ← θ + p (9)

Just as with ordinary SGD, there is a learning rate α. There is also another
parameter µ, called the momentum parameter, satisfying 0 ≤ µ ≤ 1.
It determines the timescale on which momentum decays. In terms of the
physical analogy, it determines the amount of friction (with µ = 1 being
frictionless). As usual, it’s useful to think about the edge cases:

• µ = 0 yields standard gradient descent.

• µ = 1 is frictionless, so momentum never decays. This is problematic
because of conservation of energy. We would like to minimize the
cost function, but whenever the particle gets near the optimum, it has
low potential energy, and hence high kinetic energy, so it doesn’t stay
there very long. We need µ < 1 in order for the energy to decay.

In practice, µ = 0.9 is a reasonable value. Momentum sometimes helps a
lot, and it hardly ever hurts, so using momentum is standard practice.

4.6 Fluctuations

All of the problems we’ve discussed so far occur both in batch training and
in SGD. But in SGD, we have the further problem that the gradients are
stochastic; even if they point in the right direction on average, individual
stochastic gradients are noisy and may even increase the cost function. The
effect of this noise is to push the parameters in a random direction, causing
them to fluctuate. Note the difference between oscillations and fluctua-
tions: oscillations are a systematic effect caused by the cost surface itself,
whereas fluctuations are an effect of the stochasticity in the gradients.

Fluctuations often show up as fluctuations in the cost function, and can
be seen in the training curves. One solution to fluctuations is to decrease
the learning rate; however, this can slow down the progress too much. It’s
actually fine to have fluctuations during training, since the parameters are
still moving in the right direction “on average.”

A better approach to deal with fluctuations is learning rate decay.
My favorite approach is to keep the learning rate relatively high throughout
training, but then at the very end, to decay it using an exponential schedule,
i.e.

αt = α0e
−t/τ , (10)

where α0 is the initial learning rate, t is the iteration count, τ is the decay
timescale, and t = 0 corresponds to the start of the decay.

I should emphasize that we don’t begin the decay until late in training,
when the parameters are already pretty good “on average” and we merely
have a high cost because of fluctuations. Once you start decaying α, progress

8

Figure 4: If you decay the learning rate too soon, you’ll get a sudden drop
in the loss as a result of reducing fluctuations, but the algorithm will stop
making progress towards the optimum, leading to slower convergence in the
long run. This is a big problem in practice, and we haven’t figured out any
good ways to detect if this is happening.

slows down drastically. If you decay α too early, you may get a sudden
improvement in the cost from reducing fluctuations, at the cost of failure to
converge in the long term. This phenomenon is illustrated in Figure 4.

Another neat trick for dealing with fluctuations is iterate averaging.
Separate from the training process, we keep an exponential moving av-
erage θ̃ of the iterates, as follows:

θ̃ ←
(

1− 1

τ

)
θ̃ +

1

τ
θ. (11)

τ is a hyperparameter called the timescale. Iterate averaging doesn’t
change the training algorithm itself at all, but when we apply or evalu-
ate the network, we use θ̃ rather than θ. In practice, iterate averaging can
give a huge performance boost by reducing the fluctuations.

4.7 Dead and saturated units

Another tricky problem is that of saturated units, i.e. units whose ac-
tivations are nearly always near the ends of their dynamic range (i.e. the
range of possible values). An important special case is that of dead units,
units whose activations are always very close to zero. To understand why
saturated units are problematic, we need to revisit one of the equations we
derived for backprop. Suppose hi = φ(zi), where φ is a sigmoidal nonlin-
earity (such as the logistic function). Then:

zi = hi
dhi
dzi

= hi φ
′(zi). (12)

If h is near the edge of its dynamic range, then φ′(z) is very small. (Think
about why this is the case.) Therefore, z is also very small, and no gradient
signal will pass through this node in the computation graph. In particular,
all the weights that feed into zi will get no gradient signal:

wij = zi xj ≈ 0 (13)

bi = zi ≈ 0. (14)

If the incoming weights and bias don’t change, then this unit can stay
saturated for a long time. In terms of our visualizations, this situation
corresponds to a plateau.

9

Figure 5: The Rosenbrock function, a function which is commonly used as
an optimization benchmark and demonstrates badly conditioned curvature
(i.e. a ravine).

Diagnosing saturated units is simple: just look at a histogram of the av-
erage activations, and make sure they’re not concentrated at the endpoints.

Preventing saturated units is pretty hard, but there are some tricks that
help. One trick is to carefully choose the scale of the random initialization
of the weights so that the activations are in the middle of their dynamic
range. One such trick is the “Xavier initialization”, named after one of its
inventors1.

Another way to avoid saturation is to use an activation function which
doesn’t saturate. Linear activation functions would fit the bill, but unfor-
tunately we saw that deep linear networks aren’t any more powerful than
shallow ones. Instead, consider rectified linear units (ReLUs), which
have the activation function

φ(z) =

{
z if z ≥ 0
0 if z < 0.

(15)

ReLU units don’t saturate for positive z, which is convenient. Unfortu-
nately, they can die if z is consistently negative, so it helps to initialize the
biases to a small positive value (such as 0.1).

4.8 Badly conditioned curvature

All of the problems we’ve discussed so far are fairly specific things that can
be attenuated using simple tricks. But there’s one more problem that’s
fundamentally very hard to deal with: badly conditioned curvature. Let’s
unpack this. Intuitively, curvature refers to how fast the function curves
upwards when you move in a given direction. In directions of high curvature,
you want to take a small step, because you can overshoot very quickly. The curvature and its conditioning

are formalized in terms of the
eigenvalues of the matrix of second
derivatives of E , but we won’t go
into that here.

In directions of low curvature, you want to take a large step, because
there’s a long distance you need to travel. But what actually happens in
gradient descent is precisely the opposite: it likes to take large steps in
high curvature directions and small steps in low curvature directions. If

1X. Glorot and Y. Bengio, 2010. Understanding the difficulty of training deep feed-
forward neural networks. AISTATS

10

(a)

(b)

Figure 6: Unnormalized data can lead to badly conditioned curvature. (a)
The two inputs have vastly different scales. Changing w1 has a much bigger
effect on the model’s predictions than changing w2, so the cost function
curves more rapidly along that dimension. (b) The two inputs are offset by
about the same amount. Changing the weights in a direction that preserves
w1 + w2 has little effect on the predictions, while changing w1 + w2 has a
much larger effect.

the curvature is very different in different directions, we say the curvature
is badly conditioned. An example is shown in Figure 5. A region with
badly conditioned curvature is sometimes called a ravine, because of what
it looks like in a surface plot of the cost function. Think about the effect
this has on optimization. You need to set α small enough that you don’t
get oscillations or instability in the high curvature directions. But if α is
small, then progress will be very slow in the low curvature directions.

In practice, neural network training is very badly conditioned. This is
likely a big part of why modern neural nets can take weeks to train. Much
effort has been spent researching second-order optimization methods, alter-
natives to SGD which attempt to correct for the curvature. Unfortunately,
these methods are complicated and pretty hard to tune (in the context of
neural nets), so SGD is still the go-to algorithm, and we just have to live
with badly conditioned curvature.

However, we can at least try to eliminate particular egregious instances
of badly conditioned curvature. One way in which badly conditioned cur-
vature can arise is if the inputs have very different scales or are off-center.
See Figure 6 for examples of this effect in linear regression problems. Such
examples could arise because inputs represent arbitrary units, such as feet
or years. This framing almost immediately suggests a workaround: nor-
malize the inputs so that they have zero mean and unit variance. It is perhaps less intuitive why

having the means far from zero
causes badly conditioned
curvature, but rest assured this is
an important effect, and worth
combating.

I.e.,
take

x̃j =
xj − µj
σj

, (16)

where µj = E[xj] and σ2j = Var(xj).
It’s worth mentioning two very popular algorithms which help with badly

11

conditioned curvature: batch normalization and Adam. We won’t cover
them properly, but the original papers are very readable, in case you’re cu-
rious.2 Batch normalization normalizes the activations of each layer of a
network to have zero mean and unit variance. This can help significantly
for the reason outlined above. (It can also attenuate the problem of satu-
rated units.) Adam separately adapts the learning rate of each individual
parameter, in order to correct for differences in curvature along individual
coordinate directions.

4.9 Recap

Here is a table to summarize all the pitfalls, diagnostics, and workarounds
that we’ve covered:

Problem Diagnostics Workarounds

incorrect gradients finite differences fix them, or use an autodiff package

local optima (hard) random restarts
symmetries visualize W initialize W randomly

slow progress slow, linear training curve increase α
instability cost increases decrease α

oscillations fluctuations in training curve decrease α; momentum
fluctuations fluctuations in training curve decay α; iterate averaging

dead/saturated units activation histograms initial scale of W; ReLU
badly conditioned curvature (hard) normalization; momentum;

Adam; second-order opt.

2D. P. Kingma and J. L. Ba, 2015. Adam: a method for stochastic optimization. ICLR
S. Ioffe and C. Szegedy, 2015. Batch normalization: accelerating deep network training
by reducing internal covariate shift.

12

Lecture 9: Generalization

Roger Grosse

1 Introduction

When we train a machine learning model, we don’t just want it to learn to
model the training data. We want it to generalize to data it hasn’t seen
before. Fortunately, there’s a very convenient way to measure an algorithm’s
generalization performance: we measure its performance on a held-out test
set, consisting of examples it hasn’t seen before. If an algorithm works well
on the training set but fails to generalize, we say it is overfitting. Improving
generalization (or preventing overfitting) in neural nets is still somewhat of
a dark art, but this lecture will cover a few simple strategies that can often
help a lot.

1.1 Learning Goals

• Know the difference between a training set, validation set, and test
set.

• Be able to reason qualitatively about how training and test error de-
pend on the size of the model, the number of training examples, and
the number of training iterations.

• Understand the motivation behind, and be able to use, several strate-
gies to improve generalization:

– reducing the capacity

– early stopping

– weight decay

– ensembles

– input transformations

– stochastic regularization

2 Measuring generalization

So far in this course, we’ve focused on training, or optimizing, neural net-
works. We defined a cost function, the average loss over the training set:

1

N

N∑
i=1

L(y(x(i)), t(i)). (1)

But we don’t just want the network to get the training examples right; we
also want it to generalize to novel instances it hasn’t seen before.

Fortunately, there’s an easy way to measure a network’s generalization
performance. We simply partition our data into three subsets:

1

• A training set, a set of training examples the network is trained on.
There are lots of variants on this
basic strategy, including something
called cross-validation. Typically,
these alternatives are used in
situations with small datasets,
i.e. less than a few thousand
examples. Most applications of
neural nets involve datasets large
enough to split into training,
validation and test sets.

• A validation set, which is used to tune hyperparameters such as the
number of hidden units, or the learning rate.

• A test set, which is used to measure the generalization performance.

The losses on these subsets are called training, validation, and test
loss, respectively. Hopefully it’s clear why we need separate training and
test sets: if we train on the test data, we have no idea whether the network
is correctly generalizing, or whether it’s simply memorizing the training
examples. It’s a more subtle point why we need a separate validation set.

• We can’t tune hyperparameters on the training set, because we want
to choose values that will generalize. For instance, suppose we’re
trying to choose the number of hidden units. If we choose a very large
value, the network will be able to memorize the training data, but will
generalize poorly. Tuning on the training data could lead us to choose
such a large value.

• We also can’t tune them on the test set, because that would be “cheat-
ing.” We’re only allowed to use the test set once, to report the final
performance. If we “peek” at the test data by using it to tune hyper-
parameters, it will no longer give a realistic estimate of generalization
performance.1

The most basic strategy for tuning hyperparameters is to do a grid
search: for each hyperparameter, choose a set of candidate values. Sep-
arately train models using all possible combinations of these values, and
choose whichever configuration gives the best validation error. A closely
related alternative is random search: train a bunch of networks using
random configurations of the hyperparameters, and pick whichever one has
the best validation error. The advantage of random search over grid search
is as follows: suppose your model has 10 hyperparameters, but only two
of them are actually important. (You don’t know which two.) It’s infea-
sible to do a grid search in 10 dimensions, but random search still ought
to provide reasonable coverage of the 2-dimensional space of the important
hyperparameters. On the other hand, in a scientific setting, grid search has
the advantage that it’s easy to reproduce the exact experimental setup.

3 Reasoning about generalization

If a network performs well on the training set but generalizes badly, we
say it is overfitting. A network might overfit if the training set contains
accidental regularities. For instance, if the task is to classify handwritten
digits, it might happen that in the training set, all images of 9’s have pixel
number 122 on, while all other examples have it off. The network might

1Actually, there’s some fascinating recent work showing that it’s possible to use a test
set repeatedly, as long as you add small amounts of noise to the average error. This hasn’t
yet become a standard technique, but it may sometime in the future. See Dwork et al.,
2015, “The reusable holdout: preserving validity in adaptive data analysis.”

2

Figure 1: (left) Qualitative relationship between the number of training
examples and training and test error. (right) Qualitative relationship be-
tween the number of parameters (or model capacity) and training and test
error.

decide to exploit this accidental regularity, thereby correctly classifying all
the training examples of 9’s, without learning the true regularities. If this
property doesn’t hold on the test set, the network will generalize badly.

As an extreme case, remember the network we constructed in Lecture
5, which was able to learn arbitrary Boolean functions? It had a separate
hidden unit for every possible input configuration. This network architec-
ture is able to memorize a training set, i.e. learn the correct answer for
every training example, even though it will have no idea how to classify
novel instances. The problem is that this network has too large a capac-
ity, i.e. ability to remember information about its training data. Capacity
isn’t a formal term, but corresponds roughly to the number of trainable
parameters (i.e. weights). The idea is that information is stored in the net-
work’s trainable parameters, so networks with more parameters can store
more information.

In order to reason qualitatively about generalization, let’s think about
how the training and generalization error vary as a function of the number
of training examples and the number of parameters. Having more train-
ing data should only help generalization: for any particular test example,
the larger the training set, the more likely there will be a closely related
training example. Also, the larger the training set, the fewer the accidental
regularities, so the network will be forced to pick up the true regularities.
Therefore, generalization error ought to improve as we add more training
examples. If the test error increases with the

number of training examples,
that’s a sign that you have a bug
in your code or that there’s
something wrong with your model.

On the other hand, small training sets are easier to memorize
than large ones, so training error tends to increase as we add more exam-
ples. As the training set gets larger, the two will eventually meet. This is
shown qualitatively in Figure 1.

Now let’s think about the model capacity. As we add more parameters,
it becomes easier to fit both the accidental and the true regularities of the
training data. Therefore, training error improves as we add more parame-
ters. The effect on generalization error is a bit more subtle. If the network
has too little capacity, it generalizes badly because it fails to pick up the
regularities (true or accidental) in the data. If it has too much capacity, it
will memorize the training set and fail to generalize. Therefore, the effect

3

of capacity on test error is non-monotonic: it decreases, and then increases.
We would like to design network architectures which have enough capacity
to learn the true regularities in the training data, but not enough capacity
to simply memorize the training set or exploit accidental regularities. This
is shown qualitatively in Figure 1.

3.1 Bias and variance

For now, let’s focus on squared error loss. We’d like to mathematically
model the generalization error of the classifier, i.e. the expected error on
examples it hasn’t seen before. To formalize this, we need to introduce the
data generating distribution, a hypothetical distribution pD(x, t) that
all the training and test data are assumed to have come from. We don’t
need to assume anything about the form of the distribution, so the only
nontrivial assumption we’re making here is that the training and test data
are drawn from the same distribution.

Suppose we have a test input x, and we make a prediction y (which,
for now, we treat as arbitrary). We’re interested in the expected error
if the targets are sampled from the conditional distribution pD(t |x). By
applying the properties of expectation and variance, we can decompose this
expectation into two terms: This derivation makes use of the

formula Var[z] = E[z2] − E[z]2 for
a random variable z.E[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]

= y2 − 2yE[t |x] + E[t2 |x] by linearity of expectation

= y2 − 2yE[t |x] + E[t |x]2 + Var[t |x] by the formula for variance

= (y − E[t |x])2 + Var[t |x]

, (y − y?)2 + Var[t |x],

where in the last step we introduce y? = E[t |x], which is the best possible
prediction we can make, because the first term is nonnegative and the second
term doesn’t depend on y. The second term is known as the Bayes error,
and corresponds to the best possible generalization error we can achieve
even if we model the data perfectly.

Now let’s treat y as a random variable. Assume we repeat the following
experiment: sample a training set randomly from pD, train our network,
and compute its predictions on x. If we suppress the dependence on x for
simplicity, the expected squared error decomposes as:

E[(y − t)2] = E[(y − y?)2] + Var(t)

= E[y2? − 2y?y + y2] + Var(t)

= y2? − 2y?E[y] + E[y2] + Var(t) by linearity of expectation

= y2? − 2y?E[y] + E[y]2 + Var(y) + Var(t) by the formula for variance

= (y? − E[y])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

The first term is the bias, which tells us how far off the model’s average
prediction is. The second term is the variance, which tells us about the
variability in its predictions as a result of the choice of training set, i.e. the

4

amount to which it overfits the idiosyncrasies of the training data. The
third term is the Bayes error, which we have no control over. So this de-
composition is known as the bias-variance decomposition.

To visualize this, suppose we have two test examples, with targets
(t(1), t(2)). Figure 2 is a visualization in output space, where the axes
correspond to the outputs of the network on these two examples. Understand why output space is

different from input space or
weight space.

It shows
the test error as a function of the predictions on these two test examples;
because we’re measuring mean squared error, the test error takes the shape
of a quadratic bowl. The various quantities computed above can be seen in
the diagram:

• The generalization error is the average squared length ‖y− t‖2 of the
line segment labeled residual.

• The bias term is the average squared length ‖E[y] − y∗‖2 of the line
segment labeled bias.

• The variance term is the spread in the green x’s.

• The Bayes error is the spread in the black x’s.

4 Reducing overfitting

Now that we’ve talked about generalization error and how to measure it,
let’s see how we can improve generalization by reducing overfitting. Notice
that I said reduce, rather than eliminate, overfitting. Good models will
probably still overfit at least a little bit, and if we try to eliminate overfitting,
i.e. eliminate the gap between training and test error, we’ll probably cripple
our model so that it doesn’t learn anything at all. Improving generalization
is somewhat of a dark art, and there are very few techniques which both
work well in practice and have rigorous theoretical justifications. In this
section, I’ll outline a few tricks that seem to help a lot. In practice, most
good neural networks combine several of these tricks. Unfortunately, for the
most part, these intuitive justifications are hard to translate into rigorous
guarantees.

4.1 Reducing capacity

Remember the nonmonotonic relationship between model capacity and gen-
eralization error from Figure 1? This immediately suggests a strategy: there
are various hyperparameters which affect the capacity of a network, such as
the number of layers, or the number of units per layer. A network with L layers and H

units per layer will have roughly
LH2 weights. Think about why
this is.

We can tune these
parameters on a validation set in order to find the sweet spot, which has
enough capacity to learn the true regularities, but not enough to overfit.
(We can do this tuning with grid search or random search, as described
above.)

Besides reducing the number of layers or the number of units per layer,
another strategy is to reduce the number of parameters by adding a bottle-
neck layer. This is a layer with fewer units than the layers below or above
it. As shown in Figure 3, this can reduce the total number of connections,
and hence the number of parameters.

5

Figure 2: Schematic relating bias, variance, and error. Top: If the model
is underfitting, the bias will be large, but the variance (spread of the green
x’s) will be small. Bottom: If the model is overfitting, the bias will be
small, but the variance will be large.

Figure 3: An example of reducing the number of parameters by inserting a
linear bottleneck layer.

6

In general, linear and nonlinear layers have different uses. Recall that
adding nonlinear layers can increase the expressive power of a network archi-
tecture, i.e. broaden the set of functions it’s able to represent. By contrast,
adding linear layers can’t increase the expressivity, because the same func-
tion can be represented by a single layer. For instance, in Figure 3, the
left-hand network can represent all the same functions as the right-hand
one, since one can set W̃ = W(2)W(1); it can also represent some functions
that the right-hand one can’t. The main use of linear layers, therefore, is
for bottlenecks. One benefit is to reduce the number of parameters, as de-
scribed above. Bottlenecks are also useful for another reason which we’ll
talk about later on, when we discuss autoencoders.

Reducing capacity has an important drawback: it might make the net-
work too simple to learn the true regularities in the data. Therefore, it’s
often preferable to keep the capacity high, but prevent it from overfitting
in other ways. We’ll discuss some such alternatives now.

4.2 Early stopping

Think about how the training and test error change over the course of
training. Clearly, the training error ought to continue improving, since we’re
optimizing the training error. (If you find the training error going up, there
may be something wrong with your optimizer.) The test error generally
improves at first, but it may eventually start to increase as the network
starts to overfit. Such a pattern is shown in Figure 4. (Curves such as these
are referred to as training curves.) This suggests an obvious strategy: stop
the training at the point where the generalization error starts to increase.
This strategy is known as early stopping. Of course, we can’t do early
stopping using the test set, because that would be cheating. Instead, we
would determine when to stop by monitoring the validation error during
training.

Unfortunately, implementing early stopping is a bit harder than it looks
from this cartoon picture. The reason is that the training and validation
error fluctuate during training (because of stochasticity in the gradients), so
it can be hard to tell whether an increase is simply due to these fluctuations.
One common heuristic is to space the validation error measurements far
apart, e.g. once per epoch. If the validation error fails to improve after one
epoch (or perhaps after several consecutive epochs), then we stop training.
This heuristic isn’t perfect, and if we’re not careful, we might stop training
too early.

4.3 Regularization and weight decay

So far, all of the cost functions we’ve discussed have consisted of the average
of some loss function over the training set. Often, we want to add another
term, called a regularization term, or regularizer, which penalizes hy-
potheses we think are somehow pathological and unlikely to generalize well.

7

Figure 4: Training curves, showing the relationship between the number of
training iterations and the training and test error. (left) Idealized version.
(right) Accounting for fluctuations in the error, caused by stochasticity in
the SGD updates.

Figure 5: Two sets of weights which make the same predictions assuming
inputs x1 and x2 are identical.

The total cost, then, is

E(θ) =
1

N

N∑
i=1

L(y(x,θ), t)︸ ︷︷ ︸
training loss

+ R(θ)︸ ︷︷ ︸
regularizer

(2)

For instance, suppose we are training a linear regression model with two
inputs, x1 and x2, and these inputs are identical in the training set. The
two sets of weights shown in Figure 5 will make identical predictions on the
training set, so they are equivalent from the standpoint of minimizing the
loss. However, Hypothesis A is somehow better, because we would expect it
to be more stable if the data distribution changes. E.g., suppose we observe
the input (x1 = 1, x2 = 0) on the test set; in this case, Hypothesis A will
predict 1, while Hypothesis B will predict -8. The former is probably more
sensible. We would like a regularizer to favor Hypothesis A by assigning it
a smaller penalty.

One such regularizer which achieves this is L2 regularization; This is an abuse of terminology;
mathematically speaking, this
really corresponds to the squared
L2 norm.

for a
linear model, it is defined as follows:

RL2(w) =
λ

2

D∑
j=1

w2
j . (3)

(The hyperparameter λ is sometimes called the weight cost.) L2 reg-
ularization tends to favor hypotheses where the norms of the weights are

8

smaller. For instance, in the above example, with λ = 1, it assigns a penalty
of 1

2(12+12) = 1 to Hypothesis A and 1
2((−8)2+102) = 82 to Hypothesis B,

so it strongly prefers Hypothesis A. Because the cost function includes both
the training loss and the regularizer, the training algorithm is encouraged
to find a compromise between the fit to the training data and the norms
of the weights. L2 regularization can be generalized to neural nets in the
obvious way: penalize the sum of squares of all the weights in all layers of
the network.

It’s pretty straightforward to incorporate regularizers into the stochastic
gradient descent computations. In particular, by linearity of derivatives,

∂E
∂θj

=
1

N

N∑
i=1

∂L(i)

∂θj
+
∂R
∂θj

. (4)

If we derive the SGD update in the case of L2 regularization, we get an
interesting interpretation. Observe that in SGD, the

regularizer derivatives do not need
to be estimated stochastically.

θj ← θj − α
∂E(i)

∂θj
(5)

= θj − α

(
∂L(i)

∂θj
+
∂R
∂θj

)
(6)

= θj − α

(
∂L(i)

∂θj
+ λθj

)
(7)

= (1− αλ)θj − α
∂L(i)

∂θj
. (8)

In each iteration, we shrink the weights by a factor of 1 − αλ. For this
reason, L2 regularization is also known as weight decay.

Regularization is one of the most fundamental concepts in machine learn-
ing, and tons of theoretical justifications have been proposed. Regulariz-
ers are sometimes viewed as penalizing the “complexity” of a network, or
favoring explanations which are “more likely.” One can formalize these
viewpoints in some idealized settings. However, these explanations are very
difficult to make precise in the setting of neural nets, and they don’t explain
a lot of the phenomena we observe in practice. For these reasons, I won’t
attempt to justify weight decay beyond the explanation I just provided.

4.4 Ensembles

Think back to Figure 2. If you average the predictions of multiple networks
trained independently on separate training sets, this reduces the variance of
the predictions, which can lead to lower loss. Of course, we can’t actually
carry out the hypothetical procedure of sampling training sets indepen-
dently (otherwise we’re probably better off combining them into one big
training set). We could try to train a bunch of networks on the same train-
ing set starting from different initializations, but their predictions might be
too similar to get much benefit from averaging. However, we can try to sim-
ulate the effect of independent training sets by somehow injecting variability
into the training procedure. Here some ways of injecting variability:

9

• Train on random subsets of the full training data. This procedure is
known as bagging.

• Train networks with different architectures (e.g. different numbers of
layers or units, or different choice of activation function).

• Use entirely different models or learning algorithms.

The set of trained models whose predictions we’re combining is known as
an ensemble. Ensembles of networks often generalize quite a bit better
than single networks. This benefit is significant enough that the winning
entries for most of the major machine learning competitions (e.g. ImageNet,
Netflix, etc.) used ensembles.

It’s possible to prove that ensembles outperform individual networks in
the case of convex loss functions. In particular, suppose the loss function
L is convex as a function of the outputs y. This isn’t the same as the cost

being convex as a function of θ,
which we saw can’t happen for
MLPs. Lots of loss functions are
convex with respect to y, such as
squared error or cross-entropy.

Then, by the definition of
convexity,

L(λ1y1+· · ·+λNyN , t) ≤ λ1L(y1, t)+· · ·+λNL(yN , t) for λi ≥ 0,
∑
i

λi = 1.

(9)
Hence, the average of the predictions must beat the average losses of the
individual predictions. Note that this is true regardless of where the ys came
from. They could be outputs of different neural networks, or completely
different learning algorithms, or even numbers you pulled out of a hat. This result is closely related to the

Rao-Blackwell theorem from
statistics.

The
guarantee doesn’t hold for non-convex cost functions (such as error rate),
but ensembles still tend to be very effective in practice.

4.5 Data augmentation

Another trick is to artificially augment the training set by introducing dis-
tortions into the inputs, a procedure known as data augmentation. This
is most commonly used in vision applications. Suppose we’re trying to
classify images of objects, or of handwritten digits. Each time we visit a
training example, we can randomly distort it, for instance by shifting it
by a few pixels, adding noise, rotating it slightly, or applying some sort of
warping. This can increase the effective size of the training set, and make it
more likely that any given test example has a closely related training exam-
ple. Note that the class of useful transformations will depend on the task;
for instance, in object recognition, it might be advantageous to flip images
horizontally, whereas this wouldn’t make sense in the case of handwritten
digit classification.

4.6 Stochastic regularization

One of the biggest advances in neural networks in the past few years is the
use of stochasticity to improve generalization. So far, all of the network
architectures we’ve looked at compute functions deterministically. But by
injecting some stochasticity into the computations, we can sometimes pre-
vent certain pathological behaviors and make it hard for the network to
overfit. We tend to call this stochastic regularization, even though it
doesn’t correspond to adding a regularization term to the cost function.

10

The most popular form of stochastic regularization is dropout. The
algorithm itself is simple: we drop out each individual unit with some prob-
ability ρ (usually ρ = 1/2) by setting its activation to zero. We can represent
this in terms of multiplying the activations by a mask variable mi, which
randomly takes the values 0 or 1:

hi = mi · φ(z(i)). (10)

We derive the backprop equations in the usual way:

z(i) = hi ·
dhi

dz(i)
(11)

= hi ·mi · φ′(z(i)) (12)

Why does dropout help? Think back to Figure 5, where we had two
different sets of weights which make the same predictions if inputs x1 and
x2 are always identical. We saw that L2 regularization strongly prefers A
over B. Dropout has the same preference. Suppose we drop out each of the
inputs with 1/2 probability. B’s predictions will vary wildly, causing it to
get much higher error on the training set. Thus, it can achieve some of the
same benefits that L2 regularization is intended to achieve.

One important point: while stochasticity is helpful in preventing over-
fitting, we don’t want to make predictions stochastically at test time. One
näıve approach would be to simply not use dropout at test time. Unfortu-
nately, this would mean that all the units receive twice as many incoming
signals as they do during training time, so their responses will be very dif-
ferent. Therefore, at test time, we compensate for this by multiplying the
values of the weights by 1 − ρ. You’ll see an interesting interpretation of
this in Homework 4.

In a few short years, dropout has become part of the standard tool-
box for neural net training, and can give a significant performance boost,
even if one is already using the other techniques described above. Other
stochastic regularizers have also been proposed; notably batch normaliza-
tion, a method we already mentioned in the context of optimization, but
which has also been shown to have some regularization benefits. It’s also
been observed that the stochasticity in stochastic gradient descent (which
is normally considered a drawback) can itself serve as a regularizer. The
details of stochastic regularization are still poorly understood, but it seems
likely that it will continue to be a useful technique.

11

Lecture 11: Convolutional Networks

Roger Grosse

1 Introduction

So far, all the neural networks we’ve looked at consisted of layers which
computed a linear function followed by a nonlinearity:

h = φ(Wx). (1)

We never gave these layers a name, since they’re the only thing we used.
Now we will. They’re called fully connected layers, because every one of
the input units is connected to every one of the output units. While fully
connected layers are useful, they’re not always what we want. Here are
some reasons:

• They require a lot of connections: if the input layer has M units and
the output layer has N units, then we need MN connections. This
can be quite a lot; for instance, suppose the input layer is an image
consisting of M = 256× 256 = 65563 grayscale pixels, and the output
layer consists of N = 1000 units (modest by today’s standards). A
fully connected layer would require 65 million connections. This causes
two problems:

– Computing the hidden activations requires one add-multiply op-
eration per connection in the network, so large numbers of con-
nections can be expensive.

– Each connection has a separate weight parameter, so we would
need a huge number of training examples in order to avoid over-
fitting.

• If we’re trying to classify an image or an audio waveform, there’s
certain structure we’d like to make use of. For instance, features
(such as edges) which are useful at one image location are likely to be
useful at other locations as well. We would like to share structure
between different parts of the network. Another property we’d like to
make use of is invariance: if the image or waveform is transformed
slightly (e.g. by shifting it a few pixels), the classification shouldn’t
change. Both of these properties should be encoded into the network’s
architecture if possible.

For the next three lectures, we’ll talk about a particular kind of network ar-
chitecture which deals with all these issues: the convolutional network, or
conv net for short. Like the name suggests, the architecture is inspired by
a mathematical operator called convolution (which we’ll explain shortly).

1

Figure 1: Translate-and-scale interpretation of convolution of one-
dimensional signals.

Conv nets revolutionized the field of computer vision in 2012, and by
now, the vast majority of papers published in top computer vision con-
ferences use conv nets in some way. Fortunately, the ideas aren’t terribly
complicated, and by the end of these three lectures, you’ll understand how
these things work. With a relatively small number of lines of code in a
framework like PyTorch or TensorFlow, you can build a computer vision
system more powerful than the state-of-the-art just a few years ago.

2 Convolution

Before we talk about conv nets, let’s introduce convolution. Suppose we
have two signals x and w, which you can think of as arrays, with elements
denoted as x[t] and so on. As you can guess based on the letters, you can
think of x as an input signal (such as a waveform or an image) and w as
a set of weights, which we’ll refer to as a filter or kernel. Normally the
signals we work with are finite in extent, but it is sometimes convenient to
treat them as infinitely large by treating the values as zero everywhere else;
this is known as zero padding.

Let’s start with the one-dimensional case. The convolution of x and
w, denoted x ∗ w, is a signal with entries given by

(x ∗ w)[t] =
∑
τ

x[t− τ]w[τ]. (2)

There are two ways to think about this equation. The first is translate-
and-scale: the signal x ∗w is composed of multiple copies of x, translated
and scaled by various amounts according to the entries of w. An example
of this is shown in Figure 1.

A second way to think about it is flip-and-filter. Here we generate
each of the entries of x ∗ w by flipping w, shifting it, and taking the dot
product with x. An example is shown in Figure 2.

The two-dimensional case is exactly analogous to the one-dimensional
case; we apply the same definition, but with more indices:

(x ∗ w)[s, t] =
∑
σ,τ

x[s− σ, t− τ]w[σ, τ]. (3)

2

Figure 2: Flip-and-filter interpretation of convolution of one-dimensional
signals.

This is shown graphically in Figures 3 and 4.

2.1 Examples

Despite the simplicity of the operation, convolution can do some pretty
interesting things. For instance, we can blur an image:

� 0 1 0
1 4 1

0 1 0
=

We can sharpen it:

� 0 -1 0
-1 8 -1

0 -1 0
=

If we change the values slightly, we get a very different effect. (Why?
What is the difference from the previous example?) This is a center-
surround filter, and it responds only to boundaries.

3

Figure 3: Translate-and-scale interpretation of convolution of two-
dimensional signals.

Figure 4: Flip-and-filter interpretation of convolution of two-dimensional
signals.

4

� 0 -1 0
-1 4 -1

0 -1 0
=

We can detect edges. (That is, edges in the image itself, rather than
edges in the world. Detecting edges in the world is a very hard problem.)
This filter is known as a Sobel filter.

� 1 0 -1
2 0 -2

1 0 -1
=

2.2 Properties of convolution

Now that we’ve seen some examples of convolution, let’s note some useful
properties. First of all, it behaves like multiplication, in that it’s commuta-
tive and associative: It’s a good exercise to verify both

properties from the definition.

u ∗ v = v ∗ u (4)

(u ∗ v) ∗ w = u ∗ (v ∗ w). (5)

While both properties follow easily from the definition, they’re a bit surpris-
ing and counterintuitive when you think about flip-and-filter. For instance,
let’s say you blur the image and then run a horizontal edge filter, rep-
resented as (x ∗ wblur) ∗ whorz. By commutativity and associativity, this
is equivalent to first running the edge filter, and then blurring the result,
i.e. (x ∗ whorz) ∗ wblur. It’s also equivalent to convolving the image with a
single kernel which is obtained by blurring the edge kernel: x∗(whorz∗wblur).

Another useful property of convolution is that it is linear:

(ax+ bx′) ∗ w = ax ∗ w + bx′ ∗ w (6)

x ∗ (aw + bw′) = ax ∗ w + bx ∗ w′. (7)

This is convenient, because linear operations are often easier to deal with.
But it also shows an inherent limit to convolution: if you have a neural net
which computes lots of convolutions in sequence, it can still only compute
linear functions. In order to compute more complex operations, we’ll need
to apply some sort of nonlinear activation function in each layer. (More on
this later.)

One last property of convolution is that it’s equivariant to translation.
This means that if we shift, or translate, x by some amount, then the output
x∗w is shifted by the same amount. This is a useful property in the context
of neural nets, because it means the network’s computations behave in a
well-defined way as we transform the inputs.

5

convolution linear
rectification

convolution layer

Figure 5: Detecting horizontal and vertical edge features.

2.3 Convolutional feature detection

As alluded to above, convolutions are even more powerful when they’re
paired with nonlinearities. A sequence of convolutions can only compute a
linear function, but a sequence of convolutions alternated with nonlinearities
can do fancier things. E.g., consider the following sequence of operations:

1. Convolve the image with a horizontal edge filter

2. Apply the linear rectification nonlinearity

φ(z) =

{
z if z > 0
0 if z ≤ 0

(8)

3. Blur the result.

This sequence of steps, shown in Figure 5, gives a map of horizontalness in
various parts of an image; the same can be done for verticalness. You can
hopefully imagine this being a useful feature for further processing. Because
the resulting output can be thought of as a map of the feature strength over
parts of an image, we refer to it as a feature map.

3 Convolution layers

We just saw that a convolution, followed by a nonlinear activation function,
followed by another convolution, could compute something interesting. This
motivates the convolution layer, a neural net layer which computes convo-
lutions followed by a nonlinear activation function. Since convolution layers
can be thought of as doing feature detection, they’re sometimes referred to
as detection layers. First, let’s see how we can think about convolution
in terms of units and connections.

Confusingly, the way they’re standardly defined, convolution layers don’t
actually compute convolutions, but a closely related operation called filter-
ing:

(x ? w)[t] =
∑
τ

x[t+ τ]w[τ]. (9)

6

y0 y1 y2

x0 x1 x2 x3 x4

w0 w1

w2

Figure 6: A convolution layer, shown in terms of units and connections.

Like the name suggests, filtering is essentially like flip-and-filter, but without
the flipping. (I.e., x ∗ w = x ? flip(w).) The two operations are basically
equivalent — the difference is just a matter of how the filter (or kernel) is
represented.

In the above example, we computed a single feature map, but just as we
normally use more than one hidden unit in fully connected layers, convolu-
tion layers normally compute multiple feature maps z1, . . . , zM . The input
layers also consist of multiple feature maps x1, . . . , xD; these could be differ-
ent color channels of an RGB image, or feature maps computed by another
convolution layer. There is a separate filter wij associated with each pair of
an input and output feature map. The activations are computed as follows:

zi =
∑
j

xj ? wij (10)

hi = φ(zi) (11)

The activation function φ is applied elementwise.
We can think about filtering as a layer of a neural network by think-

ing of the elements of x and x ∗ w as units, and the elements of w as
connection weights. Such an interpretation is visualized in Figure 6 for a
one-dimensional example. Each of the units in this network computes its
activations in the standard way, i.e. by summing up each of the incoming
units multiplied by their connection weights. This shows that a convolution
layer is like a fully connected layer, except with two additional features:

• Sparse connectivity: not every input unit is connected to every
output unit.

• Weight sharing: the network’s weights are each shared between
multiple connections.

Missing connections can be thought of as connections with weight 0. This
highlights an important fact: any function computed by a convolution layer
can be computed by a fully connected layer.

This means convolution layers don’t increase the representational capac-
ity, relative to a fully connected layer with the same number of input and
output units. But they can reduce the numbers of weights and connections.
For instance, suppose we have 32 input feature maps and 16 output feature
maps, all of size 50 × 50, and the filters are of size 5 × 5. (These are all
plausible sizes for a conv net.) The number of weights for the convolution
layer is

5 × 5 × 16 × 32 = 12, 800.

7

The number of connections is approximately

50 × 50 × 5 × 5 × 16 × 32 = 32 million.

By contrast, the number of connections (and hence also the number of
weights) required for a fully connected layer with the same set of units
would be

(32 × 50 × 50) × (16 × 50 × 50) = 3.2 billion.

Hence, using the convolutional structure reduces the number of connections
by a factor of 100 and the number of weights by almost a factor of a million!

4 Pooling layers

In the introduction to this lecture, we observed that a neural network’s clas-
sifications ought to be invariant to small transformations of an image, such
as shifting it by a few pixels. In order to achieve invariance, we introduce
another kind of layer: the pooling layer. Pooling layers summarize (or
compress) the feature maps of the previous layer by computing a simple
function over small regions of the image. Most commonly, this function is
taken to be the maximum, so the operation is known as max-pooling.

Suppose we have input feature maps x1, . . . , xN . Each unit of the output
map computes the maximum over some region (called a pooling group) of
the input map. (Typically, the region could be 3×3.) In order to shrink the
representation, we don’t consider all offsets, but instead we space them by
a stride S along each dimension. This results in the representation being
shrunk by a factor of approximately S along each dimension. (A typical
value for the stride is 2.)

Figure 7 shows an example of how pooling can provide partial invariance
to translations of the input.

Pooling also has the effect of increasing the size of units’ receptive
fields, or the regions of the input image which influence their activations.
For instance, consider the network architecture in Figure 8, which alternates
between convolution and pooling layers. Suppose all the filters are 5 ×
5 and the pooling layer uses a stride of 2. Then each unit in the first
convolution layer has a receptive field of size 5 × 5. But each unit in the
second convolution layer has a receptive field of size approximately 10× 10,
since it does 5 × 5 filtering over a representation which was shrunken by
a factor of 2 along each dimension. A third convolution layer would have
20 × 20 receptive fields. Hence, pooling allows small filters to account for
information over large regions of an image.

8

Figure 7: An example of how pooling can provide partial invariance to
translations of the input. Observe that the first output does not change,
since the maximum value remains within its pooling group.

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer

Figure 8: Schematic of a conv net with convolution and pooling layers.
Pooling layers expand the receptive fields of units in subsequent convolution
layers.

9

Lecture 12: Object Recognition with Conv Nets

Roger Grosse

1 Introduction

Vision feels so easy, since we do it all day long without thinking about it. But
think about just how hard the problem is, and how amazing it is that we can
see. A grayscale image Even talking about “images”

masks a lot of complexity; the
human retina has to deal with 11
orders of magnitude in intensity
variation and uses fancy optics
that let us recover detailed
information in the fovea of our
visual field, for a variety of
wavelengths of light.

is just a two dimensional array of intensity values,
and somehow we can recover from that a three-dimensional understanding of
a scene, including the types of objects and their locations, which particular
people are present, what materials things are made of, and so on. In order
to see, we have to deal with all sorts of “nuisance” factors, such as change
in pose or lighting. It’s amazing that the human visual system does this all
so seamlessly that we don’t even have to think about it.

There is a large and active field of research called computer vision which
tries to get machines to see. The field has made rapid progress in the
past decade, largely because of increasing sophistication of machine learn-
ing techniques and the availability of large image collections. They’ve for-
mulated hundreds of interesting visual “tasks” which encapsulate some of
the hidden complexity we deal with on a daily basis, such as estimating the
calorie content of a plate of food or predicting whether a structure is likely
to fall down. But there’s one task which has received an especially large
amount of attention for the past 30 years and which has driven a lot of the
progress in the field: object recognition, the task of classifying an image
into a set of object categories.

Object recognition is also a useful example for looking at how conv nets
have changed over the years, since they were a state-of-the-art tool in the
early days, and in the last five years, they have re-emerged as the state-of-
the-art tool for object recognition as well as dozens of other vision tasks.
When conv nets took over the field of computer vision, object recognition
was the first domino to fall. Computers have gotten dramatically faster
during this time, and the networks have gotten correspondingly bigger and
more powerful, but they’re still based on more or less the same design
principles. This lecture will talk about some of those design principles.

2 Object recognition datasets

Recall that object recognition is a kind of supervised learning problem,
which means there’s a particular behavior we would like our system to
achieve (labeling an image with the correct category), and we need to pro-
vide the system with labeled examples of the correct behavior. This means
we need to come up with a dataset, a set of images with their corresponding
labels. This raises questions such as: how do we choose the set of categories?
What sorts of images do we allow, how many do we need, and where do

1

we get them? Do we preprocess them in some way to make life easier for
the algorithm? We’ll look at just a few examples of particularly influential
datasets, but we’ll ignore dozens more, which each have their virtues and
drawbacks.

2.1 USPS and MNIST

Before machine learning algorithms were good enough to recognize objects
in images, researchers’ attention focused on a simpler image classification
problem: handwritten digit recognition. In the 1980s, the US Postal
Service was interested in automatically reading zip codes on envelopes. This
task is a bit harder than handwritten digit recognition, since one also has to
identify the locations and orientations of the individual digits, but clearly
digit recognition would be a useful step towards solving the problem. They
collected a dataset of images of handwritten digits (now called the USPS
Dataset) by hand-segmenting individual digits from handwritten zip codes.
To make things easier for the algorithm, the digits were normalized to be
a consistent size and orientation. Despite this normalization, the dataset
still included a lot of sources of variability: digits were written in a variety
of writing styles and using different kinds of writing instruments. Many of
the digits are ambiguous, even to humans.

Classifying USPS digits became the first practical use of conv nets: in
1989, a group of researchers at Bell Labs introduced a conv net architecture,
which involved several convolution and subsampling layers, followed by a
fully connected layer. This network was able to classify the digits with
91.9% accuracy.

Almost a decade later, researchers created a slightly larger handwrit-
ten digit dataset. They made some modifications to a dataset produced
by the National Institute of Standards and Technology, so the dataset was
called Modified NIST, or MNIST. Similar to the USPS Dataset, MNIST
images were normalized by centering the digits within the image and nor-
malizing them to a standard size. The main difference is that the dataset
is larger: there were 70,000 examples, of which 60,000 are used for training
and 10,000 are used for testing. Yann LeCun LeCun is now one of the leading

researchers in the field, and directs
Facebook AI Research.

and colleagues introduced a
larger conv net architecture called LeNet which was able to classify images
with 98.9% accuracy, and used this network in the context of a larger sys-
tem for automatically reading the numbers on checks. (Because LeNet was
trained on segmented and normalized digit images, this system had to solve
the problems of automatic segmentation and normalization, among other
things.) This was the first automatic check reading system that was accu-
rate enough to be practically useful. This was one of the big success stories
of AI in the 1990s — and interestingly, it happened during the “neural net
winter”, showing that good ideas can still work even when they fall out of
fashion.1

Apart from its initial practical uses, MNIST has served as one of the
most widely used machine learning benchmarks for two decades. Even
though the test errors have long been low enough to be practically meaning-
less, MNIST has driven a lot of progress in neural net research. As recently

1LeCun et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 1998.

2

as 2012, Geoff Hinton and collaborators introduced dropout (a regulariza-
tion method discussed in Lecture 9) on MNIST; this turned out to work
well on a lot of other problems, and has become one of the standard tools
in the neural net toolbox.

2.2 Caltech101 and the perils of dataset design

In 2003, researchers at Caltech released the first major object recognition
dataset which was used to train and benchmark object recognition algo-
rithms. Since their dataset included 101 object categories, they called it
Caltech101.2 Here’s how they approached some of the key questions of
dataset design.

• Which object categories to consider? They chose a set of 101 object
categories by opening a dictionary to random pages and choosing from
the nouns which were associated with images.

• Where do the images come from? They used Google Image Search
to find candidate images, and then filtered by hand which images
actually represented the object category.

• How many images? They didn’t target a particular number of objects
per category, but just collected as many as possible. The numbers of
objects per category were very unbalanced as a result, but in practice,
when the dataset is used for benchmarking, most systems are trained
with a fixed number of images per category (which is usually between
1 and 20).

• How to normalize the images? They normalized the images in a vari-
ety of ways to make things simpler for the learning algorithms. Images
were scaled to be about 300 pixels wide. In order to reduce variabil-
ity in pose, they flipped some of the images so that a given object
was always facing the same direction. More controversially, images of
certain object categories were rotated because the authors’ proposed
method had trouble dealing with vertically oriented objects.

For about 5 years, Caltech101 was widely used as a benchmark dataset
for object recognition, and academic papers showed rapid improvements in
classification accuracy. Unfortunately, the dataset had a number of idiosyn-
crasies, known as dataset biases. E.g., for some reason, objects always
appeared at a consistent location within an image, with the result that if
one averages the raw pixel values, the average image still resembles the ob-
ject category.3 Also, as mentioned above, images of certain categories were
rotated, leading to distinctive rotation artifacts.

Dataset bias results in a kind of overfitting which is different from what
we’ve talked about so far. In our lecture on generalization, we observed
that a training set might happen to have certain accidental regularities
which don’t occur in the test set; algorithms can overfit if they exploit
these regularities. If the training and test images are drawn from the same

2https://www.vision.caltech.edu/Image_Datasets/Caltech101/
3https://www.vision.caltech.edu/Image_Datasets/Caltech101/

averages100objects.jpg

3

https://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://www.vision.caltech.edu/Image_Datasets/Caltech101/averages100objects.jpg
https://www.vision.caltech.edu/Image_Datasets/Caltech101/averages100objects.jpg

distribution, this kind of overfitting can be eliminated if one builds a large
enough training set. Dataset bias is different — it consists of systematic
biases in a dataset resulting from the way in which the data was collected.
These regularities occur in both the training and the test sets, so algorithms
which exploit them appear to generalize well on the test set. However, if
those regularities aren’t present in the situation where one actually wants
to use the classifier (e.g. a robot trying to identify objects), the system
will perform very poorly in practice. (If an image classifier only recognizes
minarets by exploiting rotation artifacts, it’s unlikely to perform very well
in the real world.)

If dataset bias is strong enough, it encourages the troubling practice of
dataset hacking, whereby researchers engineer their learning algorithms to
be able to exploit the dataset biases in order to make their results seem more
impressive. In the case of Caltech101, the dataset biases were strong enough
that dataset hacking became essentially the only way to compete. After
about 5 years, Caltech101 basically stopped being used for computer vision
research. Dozens of other object recognition datasets were created, all using
different methodology intended to attenuate dataset bias; see this paper4 for
an interesting discussion. An interesting tidbit: both human

researchers and learning
algorithms are able to determine
with surprisingly high accuracy
which object recognition dataset a
given image was drawn from.

Despite a lot of clever attempts, creating a fully
realistic dataset is an elusive goal, and dataset bias will probably always
exist to some degree.

2.3 ImageNet

In 2009, taking into account lessons learned from Caltech101 and other com-
puter vision datasets, researchers built ImageNet, a massive object recogni-
tion database consisting of millions of full-resolution images and thousands
of object categories. Based on this dataset, the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) became one of the most important
computer vision benchmarks. Here’s how they approached the same ques-
tions:

• Which object categories to consider? ImageNet was meant to be very
comprehensive. The categories were taken from WordNet, a lexical
database for English constructed by cognitive scientists at Princeton.
WordNet consists of a hierarchy of “synsets”, or sets of synonyms
which all denote the same concept. ImageNet was intended to include
as many synsets as possible; as of 2010, it included almost 22,000
synsets, out of 80,000 noun synsets in WordNet. The categories are
very specific, including hundreds of different types of dogs. Out of
these categories, 1000 were chosen for the ILSVRC.

• How many images? The aim was to come up with hundreds of labeled
images for each synset. The ILSVRC categories all have hundreds of
associated training examples, for a total of 1.2 million images.

• Where do the images come from? Similarly to Caltech101, candidate
images were taken from the results of various image search engines,

4A. Torralba and A. Efros. An unbiased look at dataset bias. Computer Vision and
Pattern Recognition (CVPR), 2011.

4

and then humans manually labeled them. Labeling millions of im-
ages is obviously challenging, so they paid Amazon Mechanical Turk
workers to annotate images. Since some of the categories were highly
specific or unusual, they had to provide the annotators with additional
information (e.g. Wikipedia articles) to help them, and carefully vali-
dated the process by measuring inter-annotator agreement.

• How are the images normalized? In contrast to Caltech101, the im-
ages in the dataset itself are not normalized. (However, the object
recognition systems themselves might perform some sort of prepro-
cessing.)

Because the object categories are so diverse and fine-grained, and images
can contain multiple objects, there might not be a unique right answer for
every image. Therefore, one normally reports top-5 accuracy, whereby
the algorithm is allowed to make 5 different predictions for each image, and
it gets it right if any of the 5 predictions are the correct category.

ImageNet is an extremely challenging dataset to work with because of
its scale and the diversity of object categories. The first algorithms to be ap-
plied were not neural nets, but in 2012, researchers in Toronto entered this
competition using a neural net called AlexNet (in honor of its lead creator,
Alex Krizhevsky). It achieved top-5 error of 28.5%, which was substantially
better than the competitors. This result created a big splash, leading com-
puter vision researchers to switch to using neural nets and prompting some
of the world’s largest software companies to start up research labs focused
on deep learning. Since AlexNet, error rates on ImageNet have fallen dra-
matically, hitting 4.5% error in 2015 (the last year the competition was run),
and all of the leading approaches have been based on conv nets. This even
beat human performance, which was measured at 5.1% error (although this
can vary significantly depending how one measures).

3 LeNet

Let’s look at a particular conv net architecture: LeNet, which was used
to classify MNIST digits in 1998. The inputs are grayscale images of size
32 × 32. One detail I’ve skipped over so far is the sizes of the outputs of
convolution layers. LeNet uses valid convolutions, where the values are
computed for only those locations whose filters lie entirely within the input.
Therefore, if the input is 32×32 and the filters are 5×5, the outputs will be
28 × 28. (The main alternative is same convolution, where the output is
the same size as the input, and the input image is padded with zeros in all
directions.) The LeNet architecture is shown in Figure 1 and summarized
in Table 1.

• Convolution layer C1. This layer has 6 feature maps and filters of size
5 × 5. It has 28 × 28 × 6 = 4704 units, 28 × 28 × 5 × 5 × 6 = 117, 600
connections, and 5 × 5 × 6 = 150 weights and 6 biases, for a total of
156 trainable parameters.

• Subsampling layer S2. In LeNet, the “subsampling layers” are essen-
tially pooling layers, where the pooling function is the mean (rather

5

The!architecture!of!LeNet5!

Figure 1: The LeNet architecture from 1998.

than max). They use a stride of 2, so the image size is shrunk by a
factor of 2 along each dimension.

• Convolution layer C3. This layer has 16 feature maps of size 10 × 10
and filters of size 5 × 5. Therefore, it has 10 × 10 × 16 = 1600 units.
If all the feature maps were connected to all the feature maps, this
layer would have 10 × 10 × 5 × 5 × 6 × 16 = 240, 000 connections and
5 × 5 × 6 × 16 = 2400 weights.5

• Subsampling layer S4. This is another pooling layer with a stride of
2, so it reduces each dimension by another factor of 2, to 5 × 5.

• Fully connected layer F5. This layer has 120 units with a full set of
connections to layer S4. Since S4 has 5×5×16 = 400 units, this layer
has 400 × 120 = 48, 000 connections, and hence the same number of
weights.

• Fully connected layer F6. This layer has 84 units, fully connected to
F5. Therefore, it has 84 × 120 = 10, 080 connections and the same
number of weights.

• Output layer. The original network used something called radial basis
functions, but for simplicity we’ll pretend it’s just a linear function,
followed by a softmax over 10 categories. It has 84 × 10 = 840 con-
nections and weights.

These calculations are all summarized in Table 1. After sitting through
all this tedium, we can draw a number of useful conclusions:

• Most of the units are in the first convolution layer.

• Most of the connections are in the second convolution layer.

• Most of the weights are in the fully connected layers.

These observations correspond to various resource limitations when design-
ing a network architecture. In particular, if we want to make the network
as big as possible, here are some of the limitations we run into:

5Since this would have been a lot of connections by the standards of 1998, they skimped
on connections by connecting only a subset of the feature maps. This brought the number
of connections down to 156,000.

6

Layer Type # units # connections # weights

C1 convolution 4704 117,600 150
S2 subsampling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 subsampling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output fully connected 10 840 840

Table 1: LeNet architecture, with the sizes of layers.

• Running the network to compute predictions (equivalently, the for-
ward pass of backprop) requires approximately one add-multiply oper-
ation per connection in the network. As observed in a previous lecture,
the backwards pass is about as expensive as two forward passes, so the
total computational cost of backprop is proportional to the number
of connections. This means the convolution layers are generally the
most expensive part of the network in terms of running time.

• Memory is another scarce resource. It’s worth distinguishing two sit-
uations: training time, where we train the network using backprop,
and test time, the somewhat misleading name for the setting where
we use an already-trained network.

– Backprop requires storing all of the activations in memory.6 Since
the number of activations is the number of units times the mini-
batch size, the number of units determines the memory footprint
of the activations at training time. The activations don’t need
to be stored at test time.

– The weights also need to be stored in memory, both at training
time and test time.

• The weights constitute the vast majority of trainable parameters of
the model (the number of biases generally being far smaller), so if
you’re worried about overfitting, you could consider cutting down the
number of weights.

LeNet was carefully designed to push the limits of all of these resource
constraints using the computing power of 1998. Try increasing the sizes of various

layers and checking that you’re
substantially increasing the usage
of one or more of these resources.

As we’ll see, conv nets have
grown substantially larger in order to exploit modern computing resources.

4 Modern conv nets

As mentioned above, AlexNet was the conv net architecture which started
a revolution in computer vision by smashing the ILSVRC benchmark. This

6This isn’t quite true, actually. There are tricks for storing activations for only a subset
of the layers, and recomputing the rest of the activations as needed. Indeed, frameworks
like TensorFlow implement this behind the scenes. However, a larger of units generally
implies a higher memory footprint.

7

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

Figure 2: The AlexNet architecture from 2012.

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects

dataset USPS MNIST ImageNet
categories 10 10 1,000

image size 16 × 16 28 × 28 256 × 256 × 3
training examples 7,291 60,000 1.2 million

units 1,256 8,084 658,000
parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million

total operations 11 billion 412 billion 200 quadrillion (est.)

Table 2: Comparison of conv net classification architectures.

architecture is shown in Figure 2. Like LeNet, it consists mostly of convolu-
tion, pooling, and fully connected layers. It additionally has some “response
normalization” layers, which I won’t talk about because they’re not believed
to make a big difference, and have mostly stopped being used.

By most measures, AlexNet is 100 to 1000 times bigger than LeNet,
as shown in Table 2. But qualitatively, the structure is very similar to
LeNet: it consists of alternating convolution and pooling layers, followed
by fully connected layers. Furthermore, like LeNet, most of the units and
connections are in the convolution layers, and most of the weights are in
the fully connected layers.

Computers have improved a lot since LeNet, but the hardware advance
that suddenly made it practical to train large neural nets was graphics
processing units (GPUs). GPUs are a kind of processor geared towards
highly parallel processing involving relatively simple operations. One of
the things they especially excel at is matrix multiplication. Since most
of the running time for a neural net consists of matrix multiplication (even
convolutions are implemented as matrix products beneath the hood), GPUs
gave roughly a 30-fold speedup in practice for training neural nets.

AlexNet set the agenda for object recognition research ever since. In
2013, the ILSVRC winner was based on tweaks to AlexNet. In 2014, the
second place entry was VGGNet, another conv net based on more or less
similar principles.

The winning entry for 2014, GoogLeNet, or Inception, deserves men-
tion. As the name suggests, it was designed by researchers at Google. The

8

architecture is shown in Figure 3. Clearly things have gotten more com-
plicated since the days of LeNet. But the main point of interest is that
they went out of their way to reduce the number of trainable parameters
(weights) from AlexNet’s 60 million, to about 2 million. Why? Partly it was
to reduce overfitting — amazingly, it’s possible to overfit a million images
if you have a big enough network like AlexNet.

The other reason has to do with saving memory at “test time”, i.e. when
the network is being used. Traditionally, networks would be both trained
and run on a single PC, so there wasn’t much reason to draw a distinc-
tion between training and test time. But at Google, the training could be
distributed over lots of machines in a datacenter. (The activations and pa-
rameters could even be divided up between multiple machines, increasing
the amount of available memory at training time.) But the network was also
supposed to be runnable on an Android cell phone, so that images wouldn’t
have to be sent to Google’s servers for classification. On a cell phone, it
would have been extravagant to spend 240MB to store AlexNet’s 60 million
parameters, so it was really important to cut down on parameters to make
it fit in memory.

They achieved this in two ways. First, they eliminated the fully con-
nected layers, which we already saw contain most of the parameters in LeNet
and AlexNet. GoogLeNet is convolutions all the way. It also avoids having
large convolutions by breaking them down into a sequence of convolutions
involving smaller filters. (Two 3 × 3 filters have fewer parameters than a
5 × 5 filter, even though they cover a similar radius of the image.) This is analogous to how linear

bottleneck layers can reduce the
number of parameters.

They
call this layer-within-a-layer architecture “Inception”, after the movie about
dreams-within-dreams.

Performance on ImageNet improved asonishingly fast during the years
the competition was run. Here are the figures: We’ll put off the last item, deep

residual nets (ResNets), until a
Lecture 16 since they depend on
some ideas that we won’t cover
until we talk about RNNs.

Year Model Top-5 error
2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

It’s really unusual for error rates to drop by a factor of 6 over a period
of 5 years, especially on a task like object recognition that hundreds of
researchers had already worked hard on and where performance had seemed
to plateau.

9

Figure 3: The Inception architecture from 2014.

10

Lecture 15: Recurrent Neural Nets

Roger Grosse

1 Introduction

Most of the prediction tasks we’ve looked at have involved pretty simple
kinds of outputs, such as real values or discrete categories. But much of the
time, we’re interested in predicting more complex structures, such as images
or sequences. The next three lectures are about producing sequences; we’ll
get to producing images later in the course. If the inputs and outputs are
both sequences, we refer to this as sequence-to-sequence prediction.
Here are a few examples of sequence prediction tasks:

• As we discussed in Lecture 10, language modeling is the task of mod-
eling the distribution over English text. This isn’t really a prediction
task, since the model receives no input. But the output is a document,
which is a sequence of words or characters.

• In speech-to-text, we’d like take an audio waveform of human speech
and output the text that was spoken. In text-to-speech, we’d like to
do the reverse.

• In caption generation, we get an image as input, and would like to
produce a natural language description of the image.

• Machine translation is an especially important example of sequence-
to-sequence prediction. We receive a sentence in one language (e.g. En-
glish) and would like to produce an equivalent sentence in another
language (e.g. French).

We’ve already seen one architecture which generate sequences: the neu-
ral language model. Recall that we used the chain rule of conditional prob-
ability to decompose the probability of a sentence:

p(w1, . . . , wT) =
T∏
t=1

p(wt |w1, . . . , wt−1), (1)

and then made a Markov assumption so that we could focus on a short time
window:

p(wt |w1, . . . , wt−1) = p(wt |wt−K , . . . , wt−1), (2)

where K is the context length. This means the neural language model is
memoryless: its predictions don’t depend on anything before the context
window. But sometimes long-term dependencies can be important:

Rob Ford told the flabbergasted reporters assembled at the press
conference that .

1

Figure 1: Left: A neural language model with context length of 1. Right:
Turning this into a recurrent neural net by adding connections between the
hidden units. Note that information can pass through the hidden units,
allowing it to model long-distance dependencies.

The fact that the sentence is about Rob Ford gives some clues about what is
coming next. But the neural language model can’t make use of that unless
its context length is at least 13.

Figure 1 shows a neural language model with context length 1 being
used to generate a sentence. For a neural language model, each

set of hidden units would usually
receive connections from the last
K inputs, for K > 1. For RNNs,
usually it only has connections
from the current input. Why?

Let’s say we modify the architecture slightly
by adding connections between the hidden units. This gives it a long-term
memory: information about the first word can flow through the hidden units
to affect the predictions about later words in the sentence. Such an archi-
tecture is called a recurrent neural network (RNN). This seems like a
simple change, but actually it makes the architecture much more powerful.
RNNs are widely used today both in academia and in the technology in-
dustry; the state-of-the-art systems for all of the sequence prediction tasks
listed above use RNNs.

1.1 Learning Goals

• Know what differentiates RNNs from multilayer perceptrons and mem-
oryless models.

• Be able to design RNNs by hand to perform simple computations.

• Know how to compute the loss derivatives for an RNN using backprop
through time.

• Know how RNN architectures can be applied to sequence prediction
problems such as language modeling and machine translation.

2 Recurrent Neural Nets

We’ve already talked about RNNs as a kind of architecture which has a set
of hidden units replicated at each time step, and connections between them.
But we can alternatively look at RNNs as dynamical systems, i.e. systems
which change over time. In this view, there’s just a single set of input units,
hidden units, and output units, and the hidden units feed into themselves.
This means the graph of an RNN may have self-loops; this is in contrast
to the graphs for feed-forward neural nets, which must be directed acyclic
graphs (DAGs). What these self-loops really mean is that the values of the
hidden units at one time step depend on their values at the previous time
step.

We can understand more precisely the computation the RNN is perform-
ing by unrolling the network, i.e. explicitly representing the various units

2

Figure 2: An example of an RNN and its unrolled representation. Note
that each color corresponds to a weight matrix which is replicated at all
time steps.

at all time steps, as well as the connections between them. For a given se-
quence length, the unrolled network is essentially just a feed-forward neural
net, although the weights are shared between all time steps. See Figure 2
for an example.

The trainable parameters for an RNN include the weights and biases for
all of the layers; these are replicated at every time step. In addition, we
need some extra parameters to get the whole thing started, i.e. determine
the values of the hidden units at the first time step. We can do this one of
two ways:

• We can learn a separate set of biases for the hidden units in the first
time step. Really, these two approaches aren’t

very different. The signal from the
t = 0 hiddens to the t = 1 hiddens
is always the same, so we can just
learn a set of biases which do the
same thing.

• We can start with a dummy time step which receives no inputs. We
would then learn the initial values of the hidden units, i.e. their values
during the dummy time step.

Let’s look at some simple examples of RNNs.

Example 1. Figure 3 shows an example of an RNN which sums
its inputs over time. All of the units are linear. Let’s look at
each of the three weights:

• The hidden-to-output weight is 1, which means the output
unit just copies the hidden activation.

• The hidden-to-hidden weight is 1, which means that in the
absence of any input, the hidden unit just remembers its
previous value.

• The input-to-hidden weight is 1, which means the input gets
added to the hidden activation in every time step.

Example 2. Figure 3 shows a slightly different RNN which re-
ceives two inputs at each time step, and which determines which
of the two inputs has a larger sum over time steps. The hidden
unit is linear, and the output unit is logistic. Let’s look at what
it’s doing:

3

2

2

2

w=1

w=1

-0.5

1.5

1.5

w=1

w=1

1

2.5

2.5

w=1

w=1

1

3.5

3.5

w=1

w=1

T=1 T=2 T=3 T=4

w=1 w=1 w=1

input
unit

linear
hidden

unit

linear
output

unit

w=1

w=1

w=1

input
unit
1

linear
hidden

unit

logistic
output

unit

w=5

w=1

w=1

input
unit
2

w= -1

2

4

1.00

-2

T=1

0

0.5

0.92

3.5

T=2

1

-0.7

0.03

2.2

T=3

Figure 3: Top: the RNN for Example 1. Bottom: the RNN for Example 2.

• The output unit is a logistic unit with a weight of 5. Recall
that large weights squash the function, effectively making it
a hard threshold at 0.

• The hidden-to-hidden weight is 1, so by default it remem-
bers its previous value.

• The input-to-hidden weights rae 1 and -1, which means it
adds one of the inputs and subtracts the other.

Example 3. Now let’s consider how to get an RNN to perform a
slightly more complex computation: the parity function. This
function takes in a sequence of binary inputs, and returns 1 if
the number of 1’s is odd, and 0 if it is even. It can be computed
sequentially by computing the parity of the initial subsequences.
In particular, each parity bit is the XOR of the current input
with the previous parity bit:

Input: 0 1 0 1 1 0 1 0 1 1

Parity bits: 0 1 1 0 1 1 −→

This suggests a strategy: the output unit y(t) represents the parity
bit, and it feeds into the computation at the next time step. In
other words, we’d like to achieve the following relationship:

4

Figure 4: RNN which computes the parity function (Example 3).

y(t−1) x(t) y(t)

0 0 0
0 1 1
1 0 1
1 1 0

But remember that a linear model can’t compute XOR, so we’re
going to need hidden units to help us. Just like in Lecture 5, we
can let one hidden unit represent the AND of its inputs and the
other hidden unit represent the OR. This gives us the following
relationship:

y(t−1) x(t) h
(t)
1 h

(t)
2 y(t)

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Based on these computations, the hidden units should receive
connections from the input units and the previous time step’s
output, and the output unit should receive connections from the
hidden units. Such an architecture is shown in Figure 4. This
is a bit unusual, since output units don’t usually feed back into
the hiddens, but it’s perfectly legal.

The activation functions will all be hard thresholds at 0. How would you modify this
solution to use logistics instead of
hard thresholds?

Based
on this table of relationships, we can pick weights and biases
using the same techniques from Lecture 5. This is shown in
Figure 4. For the first time step, the parity

bit should equal the input. This
can be achieved by postulating a
dummy output y(0) = 0.

3 Backprop Through Time

As you can guess, we don’t normally set the weights and biases by hand;
instead, we learn them using backprop. There actually isn’t much new
here. All we need to do is run ordinary backprop on the unrolled graph,
and account for the weight sharing. Despite the conceptual simplicity, the
algorithm gets a special name: backprop through time.

Consider the following RNN:

5

It performs the following computations in the forward pass: All of these equations are basically
like the feed-forward case except
z(t).

z(t) = ux(t) + wh(t−1) (3)

h(t) = φ(z(t)) (4)

r(t) = vh(t) (5)

y(t) = φ(r(t)). (6)

Figure 5 shows the unrolled computation graph. Note the weight shar-
ing. Now we just need to do backprop on this graph, which is hopefully a
completely mechanical procedure by now: Pay attention to the rules for h(t),

u, v, and w.

L = 1 (7)

y(t) = L ∂L
∂y(t)

(8)

r(t) = y(t) φ′(r(t)) (9)

h(t) = r(t) v + z(t+1)w (10)

z(t) = h(t) φ′(z(t)) (11)

u =
T∑
t=1

z(t) x(t) (12)

v =
T∑
t=1

r(t) h(t) (13)

w =
T−1∑
t=1

z(t+1) h(t) (14)

These update rules are basically like the ones for an MLP, except that the
weight updates are summed over all time steps. Why are the bounds different in

the summations over t?

6

Figure 5: The unrolled computation graph.

The vectorized backprop rules are analogous: Remember that for all the
activation matrices, rows
correspond to training examples
and columns corresopnd to units,
and N is the number of data
points (or mini-batch size).

L = 1 (15)

Y(t) = L ∂L
∂Y(t)

(16)

R(t) = Y(t) ◦ φ′(R(t)) (17)

H(t) = R(t)V> + Z(t+1)W> (18)

Z(t) = H(t) ◦ φ′(Z(t)) (19)

U =
1

N

T∑
t=1

Z(t)
>
X(t) (20)

V =
1

N

T∑
t=1

R(t)
>
H(t) (21)

W =
1

N

T−1∑
t=1

Z(t+1)
>
H(t) (22)

When implementing RNNs, we generally do an explicit summation over
time steps, since there’s no easy way to vectorize over time. However, we
still vectorize over training examples and units, just as with MLPs.

That’s all there is to it. Now you know how to compute cost derivatives
for an RNN. The tricky part is how to use these derivatives in optimization.
Unless you design the architecture carefully, the gradient descent updates
will be unstable because the derivatives explode or vanish over time. Dealing
with exploding and vanishing gradients will take us all of next lecture.

7

4 Sequence Modeling

Now let’s look at some ways RNNs can be applied to sequence modeling.

4.1 Language Modeling

We can use RNNs to do language modeling, i.e. model the distribution over
English sentences. Just like with n-gram models and the neural language
model, we’ll use the Chain Rule of Conditional Probability to decompose
the distribution into a sequence of conditional probabilities:

p(w1, . . . , wT) =

T∏
t=1

p(wt |w1, . . . , wt−1), (23)

However, unlike with the other two models, we won’t make a Markov as-
sumption. In other words, the distribution over each word depends on all
the previous words. We’ll make the predictions using an RNN; each of the
conditional distributions will be predicted using the output units at a given
time step. As usual, we’ll use a softmax activation function for the output
units, and cross-entropy loss.

At training time, the words of a training sentence are used as both the
inputs and the targets to the network, as follows:

It may seem funny to use the sentence as both input and output — isn’t it
easy to predict a sentence from itself? But each word appears as a target
before it appears as an input, so there’s no way for information to flow from
the word-as-input to the word-as-target. That means the network can’t
cheat by just copying its input.

To generate from the RNN, we sample each of the words in sequence
from its predictive distribution. This means we compute the output units
for a given time step, sample the word from the corresponding distribution,
and then feed the sampled word back in as an input in the next time step.
We can represent this as follows:

Remember that vocabularies can get very large, especially once you
include proper nouns. As we saw in Lecture 10, it’s computationally dif-
ficult to predict distributions over millions of words. In the context of a

8

neural language model, one has to deal with this by changing the scheme
for predicting the distribution (e.g. using hierarchical softmax or negative
sampling). But RNNs have memory, which gives us another option: we
can model text one character at a time! In addition to the computational
problems of large vocabularies, there are additional advantages to modling
text as sequences of characters:

• Any words that don’t appear in the vocabulary are implicitly assigned
probability 0. But with a character-based language model, there’s only
a finite set of ASCII characters to consider.

• In some languages, it’s hard to define what counts as a word. It’s
not always as simple as “a contiguous sequence of alphabetical sym-
bols.” E.g., in German, words can be built compositionally in terms
of simpler parts, so you can create perfectly meaningful words which
haven’t been said before.

Here’s an example from Geoffrey Hinton’s Coursera course of a para-
graph generated by a character-level RNN which was trained on Wikipedia
back in 2011.1 (Things have improved significantly since then.)

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

The first thing to notice is that the text isn’t globally coherent, so it’s
clearly not just memorized in its entirety from Wikipedia. But the model
produces mostly English words and some grammatical sentences, which is
a nontrivial achievement given that it works at the character level. It even
produces a plausible non-word, “ephemerable”, meaning it has picked up
some morphological structure. The text is also locally coherent, in that it
starts by talking about politics, and then transportation.

4.2 Neural Machine Translation

Machine translation is probably the canonical sequence-to-sequence predic-
tion task. Here, the input is a sentence in one language (e.g. English), and
the output is a sentence in another language (e.g. French). One could try
applying an RNN to this task as follows:

1J. Martens. Generating text with recurrent neural networks. ICML, 2011

9

But this has some clear problems: the sentences might not even be the
same length, and even if they were, the words wouldn’t be perfectly aligned
because different languages have different grammar. There might also be
some ambiguous words early on in the sentence which can only be resolved
using information from later in the sentence.

Another approach, which was done successfully in 20142, is to have the
RNN first read the English sentence, remember as much as it can in its
hidden units, and then generate the French sentence. This is represented as
follows:

The special end-of-sentence token <EOS> marks the end of the input. The
part of the network which reads the English sentence is known as the en-
coder, and the part that reads the French sentence is known as the de-
coder, and they don’t share parameters.

Interestingly, remembering the English sentence is a nontrivial subprob-
lem in itself. We can defined a simplified task called memorization, where
the network gets an English sentence as input, and has to output the same
sentence. Memorization can be a useful testbed for experimenting with
RNN algorithms, just as MNIST is a useful testbed for experimenting with
classification algorithms.

Before RNNs took over, most machine translation was done by algo-
rithms which tried to transform one sentence into another. The RNN ap-
proach described above is pretty different, in that it converts the whole
sentence into an abstract semantic representation, and then uses that to
generate the French sentence. This is a powerful approach, because the en-
coders and decoders can be shared between different languages. Inputs of
any language would be mapped to a common semantic space (which ought
to capture the “meaning”), and then any other langage could be generated
from that semantic representation. This has actually been made to work,
and RNNs are able to perform machine translation on pairs of languages
for which there were no aligned pairs in the training set!

2I. Sutskever. Sequence to sequence learning with neural networks. 2014

10

Learning to Execute

(Maddison & Tarlow, 2014) learned a language model on
parse trees, and (Mou et al., 2014) predicted whether two
programs are equivalent or not. Both of these approaches
require parse trees, while we learn from a program charac-
ter level sequence.

Predicting program output requires that the model deals
with long term dependencies that arise from variable as-
signment. Thus we chose to use Recurrent Neural Net-
works with Long Short Term Memory units (Hochreiter &
Schmidhuber, 1997), although there are many other RNN
variants that perform well on tasks with long term depen-
dencies (Cho et al., 2014; Jaeger et al., 2007; Koutnı́k et al.,
2014; Martens, 2010; Bengio et al., 2013).

Initially, we found it difficult to train LSTMs to accurately
evaluate programs. The compositional nature of computer
programs suggests that the LSTM would learn faster if we
first taught it the individual operators separately and then
taught the LSTM how to combine them. This approach can
be implemented with curriculum learning (Bengio et al.,
2009; Kumar et al., 2010; Lee & Grauman, 2011), which
prescribes gradually increasing the “difficulty level” of the
examples presented to the LSTM, and is partially motivated
by fact that humans and animals learn much faster when
their instruction provides them with hard but manageable
exercises. Unfortunately, we found the naive curriculum
learning strategy of Bengio et al. (2009) to be generally
ineffective and occasionally harmful. One of our key con-
tributions is the formulation of a new curriculum learning
strategy that substantially improves the speed and the qual-
ity of training in every experimental setting that we consid-
ered.

3. Subclass of programs
We train RNNs on class of simple programs that can be
evaluated in O (n) time and constant memory. This re-
striction is dictated by the computational structure of the
RNN itself, at it can only do a single pass over the pro-
gram using a very limited memory. Our programs use the
Python syntax and are based on a small number of oper-
ations and their composition (nesting). We consider the
following operations: addition, subtraction, multiplication,
variable assignment, if-statement, and for-loops, although
we forbid double loops. Every program ends with a single
“print” statement that outputs a number. Several example
programs are shown in Figure 1.

We select our programs from a family of distributions pa-
rameterized by length and nesting. The length parameter is
the number of digits in numbers that appear in the programs
(so the numbers are chosen uniformly from [1, 10length]).
For example, the programs are generated with length = 4
(and nesting = 3) in Figure 1.

Input:
j=8584
for x in range(8):

j+=920
b=(1500+j)
print((b+7567))

Target: 25011.

Input:
i=8827
c=(i-5347)
print((c+8704) if 2641<8500 else

5308)

Target: 1218.

Figure 1. Example programs on which we train the LSTM. The
output of each program is a single number. A “dot” symbol indi-
cates the end of a number and has to be predicted as well.

We are more restrictive with multiplication and the ranges
of for-loop, as these are much more difficult to handle.
We constrain one of the operands of multiplication and the
range of for-loops to be chosen uniformly from the much
smaller range [1, 4 · length]. This choice is dictated by the
limitations of our architecture. Our models are able to per-
form linear-time computation while generic integer mul-
tiplication requires superlinear time. Similar restrictions
apply to for-loops, since nested for-loops can implement
integer multiplication.

The nesting parameter is the number of times we are al-
lowed to combine the operations with each other. Higher
value of nesting results in programs with a deeper parse
tree. Nesting makes the task much harder for our LSTMs,
because they do not have a natural way of dealing with
compositionality, in contrast to Tree Neural Networks. It
is surprising that they are able to deal with nested expres-
sions at all.

It is important to emphasize that the LSTM reads the input
one character at a time and produces the output character
by character. The characters are initially meaningless from
the model’s perspective; for instance, the model does not
know that “+” means addition or that 6 is followed by 7.
Indeed, scrambling the input characters (e.g., replacing “a”
with “q”, “b” with “w”, etc.,) would have no effect on the
model’s ability to solve this problem. We demonstrate the
difficulty of the task by presenting an input-output example
with scrambled characters in Figure 2.

Learning to Execute

Input:
vqppkn
sqdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc

Target: hkhpg

Figure 2. An example program with scrambled characters. It
helps illustrate the difficulty faced by our neural network.

3.1. Memorization Task

In addition to program evaluation, we also investigate the
task of memorizing a random sequence of numbers. Given
an example input 123456789, the LSTM reads it one char-
acter at a time, stores it in memory, and then outputs
123456789 one character at a time. We present and ex-
plore two simple performance enhancing techniques: input
reversing (from Sutskever et al. (2014)) and input doubling.

The idea of input reversing is to reverse the order of the
input (987654321) while keeping the desired output un-
changed (123456789). It seems to be a neutral operation as
the average distance between each input and its correspond-
ing target did not become shorter. However, input reversing
introduces many short term dependencies that make it eas-
ier for the LSTM to start making correct predictions. This
strategy was first introduced for LSTMs for machine trans-
lation by Sutskever et al. (2014).

The second performance enhancing technique is input dou-
bling, where we present the input sequence twice (so the
example input becomes 123456789; 123456789), while the
output is unchanged (123456789). This method is mean-
ingless from a probabilistic perspective as RNNs approx-
imate the conditional distribution p(y|x), yet here we at-
tempt to learn p(y|x, x). Still, it gives noticeable per-
formance improvements. By processing the input several
times before producing an output, the LSTM is given the
opportunity to correct the mistakes it made in the earlier
passes.

4. Curriculum Learning
Our program generation scheme is parametrized by length
and nesting. These two parameters allow us control the
complexity of the program. When length and nesting are
large enough, the learning problem nearly intractable. This
indicates that in order to learn to evaluate programs of a
given length = a and nesting = b, it may help to first learn
to evaluate programs with length ⌧ a and nesting ⌧ b.
We compare the following curriculum learning strategies:

No curriculum learning (baseline) The baseline approach
does not use curriculum learning. This means that we

generate all the training samples with length = a and
nesting = b. This strategy is most “sound” from statis-
tical perspective, as it is generally recommended to make
the training distribution identical to test distribution.

Naive curriculum strategy (naive)

We begin with length = 1 and nesting = 1. Once learning
stops making progress, we increase length by 1. We repeat
this process until its length reaches a, in which case we
increase nesting by one and reset length to 1.

We can also choose to first increase nesting and then length.
However, it does not make a noticeable difference in per-
formance. We skip this option in the rest of paper, and
increase length first in all our experiments. This strategy is
has been examined in previous work on curriculum learn-
ing (Bengio et al., 2009). However, we show that often it
gives even worse performance than baseline.

Mixed strategy (mix)

To generate a random sample, we first pick a random length
from [1, a] and a random nesting from [1, b] independently
for every sample. The Mixed strategy uses a balanced mix-
ture of easy and difficult examples, so at any time during
training, a sizable fraction of the training samples will have
the appropriate difficulty for the LSTM.

Combining the mixed strategy with naive curriculum
strategy (combined)

This strategy combines the mix strategy with the naive
strategy. In this approach, every training case is obtained
either by the naive strategy or by the mix strategy. As a
result, the combined strategy always exposes the network
at least to some difficult examples, which is the key way in
which it differs from the naive curriculum strategy. We no-
ticed that it reliably outperformed the other strategies in our
experiments. We explain why our new curriculum learning
strategies outperform the naive curriculum strategy in Sec-
tion 7.

We evaluate these four strategies on the program evaluation
task (Section 6.1) and on the memorization task (Section
6.2).

5. RNN with LSTM cells
In this section we briefly describe the deep LSTM (Sec-
tion 5.1). All vectors are n-dimensional unless explicitly
stated otherwise. Let hl

t 2 Rn be a hidden state in layer
l in timestep t. Let Tn,m : Rn ! Rm be a biased lin-
ear mapping (x ! Wx + b for some W and b). We
let � be element-wise multiplication and let h0

t be the in-
put at timestep k. We use the activations at the top layer
L (namely hL

t) to predict yt where L is the depth of our
LSTM.

Figure 6: Left: Example inputs for the “learning to execute” task. Right:
An input with scrambled characters, to highlight the difficulty of the task.

Under review as a conference paper at ICLR 2015

SUPPLEMENTARY MATERIAL

Input: length, nesting
stack = EmptyStack()
Operations = Addition, Subtraction, Multiplication, If-Statement,
For-Loop, Variable Assignment
for i = 1 to nesting do
Operation = a random operation from Operations
Values = List
Code = List
for params in Operation.params do
if not empty stack and Uniform(1) > 0.5 then
value, code = stack.pop()

else
value = random.int(10length)
code = toString(value)

end if
values.append(value)
code.append(code)

end for
new value= Operation.evaluate(values)
new code = Operation.generate code(codes)
stack.push((new value, new code))

end for
final value, final code = stack.pop()
datasets = training, validation, testing
idx = hash(final code) modulo 3
datasets[idx].add((final value, final code))

Algorithm 1: Pseudocode of the algorithm used to generate the distribution over the python pro-
gram. Programs produced by this algorithm are guaranteed to never have dead code. The type of the
sample (train, test, or validation) is determined by its hash modulo 3.

11 ADDITIONAL RESULTS ON THE MEMORIZATION PROBLEM

We present the algorithm for generating the training cases, and present an extensive qualitative evaluation of
the samples and the kinds of predictions made by the trained LSTMs.

We emphasize that these predictions rely on teacher forcing. That is, even if the LSTM made an incorrect
prediction in the i-th output digit, the LSTM will be provided as input the correct i-th output digit for predicting
the i + 1-th digit. While teacher forcing has no effect whenever the LSTM makes no errors at all, a sample that
makes an early error and gets the remainder of the digits correctly needs to be interpreted with care.

12 QUALITATIVE EVALUATION OF THE CURRICULUM STRATEGIES

12.1 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 4, NESTING = 1

Input:
print(6652).

Target: 6652.
”Baseline” prediction: 6652.
”Naive” prediction: 6652.
”Mix” prediction: 6652.
”Combined” prediction: 6652.

Input:

10

Under review as a conference paper at ICLR 2015

Input:
b=9930
for x in range(11):b-=4369
g=b;
print(((g-8043)+9955)).

Target: -36217.
”Baseline” prediction: -37515.
”Naive” prediction: -38609.
”Mix” prediction: -35893.
”Combined” prediction: -35055.

Input:
d=5446
for x in range(8):d+=(2678 if 4803<2829 else 9848)
print((d if 5935<4845 else 3043)).

Target: 3043.
”Baseline” prediction: 3043.
”Naive” prediction: 3043.
”Mix” prediction: 3043.
”Combined” prediction: 3043.

Input:
print((((2578 if 7750<1768 else 8639)-2590)+342)).

Target: 6391.
”Baseline” prediction: -555.
”Naive” prediction: 6329.
”Mix” prediction: 6461.
”Combined” prediction: 6105.

Input:
print((((841 if 2076<7326 else 1869)*10) if 7827<317 else 7192)).

Target: 7192.
”Baseline” prediction: 7192.
”Naive” prediction: 7192.
”Mix” prediction: 7192.
”Combined” prediction: 7192.

Input:
d=8640;
print((7135 if 6710>((d+7080)*14) else 7200)).

Target: 7200.
”Baseline” prediction: 7200.
”Naive” prediction: 7200.
”Mix” prediction: 7200.
”Combined” prediction: 7200.

Input:
b=6968
for x in range(10):b-=(299 if 3389<9977 else 203)
print((12*b)).

15

Under review as a conference paper at ICLR 2015

Figure 8: Prediction accuracy on the memorization task for the four curriculum strategies. The input
length ranges from 5 to 65 digits. Every strategy is evaluated with the following 4 input modification
schemes: no modification; input inversion; input doubling; and input doubling and inversion. The
training time is limited to 20 epochs.

print((5997-738)).

Target: 5259.
”Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.
”Combined” prediction: 5229.

Input:
print((16*3071)).

Target: 49136.
”Baseline” prediction: 49336.
”Naive” prediction: 48676.
”Mix” prediction: 57026.
”Combined” prediction: 49626.

Input:
c=2060;
print((c-4387)).

Target: -2327.
”Baseline” prediction: -2320.
”Naive” prediction: -2201.
”Mix” prediction: -2377.
”Combined” prediction: -2317.

Input:
print((2*5172)).

11

Under review as a conference paper at ICLR 2015

Target: 47736.
”Baseline” prediction: -0666.
”Naive” prediction: 11262.
”Mix” prediction: 48666.
”Combined” prediction: 48766.

Input:
j=(1*5057);
print(((j+1215)+6931)).

Target: 13203.
”Baseline” prediction: 13015.
”Naive” prediction: 12007.
”Mix” prediction: 13379.
”Combined” prediction: 13205.

Input:
print(((1090-3305)+9466)).

Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.
”Combined” prediction: 7699.

Input:
a=8331;
print((a-(15*7082))).

Target: -97899.
”Baseline” prediction: -96991.
”Naive” prediction: -19959.
”Mix” prediction: -95551.
”Combined” prediction: -96397.

12.4 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 6, NESTING = 1

Input:
print((71647-548966)).

Target: -477319.
”Baseline” prediction: -472122.
”Naive” prediction: -477591.
”Mix” prediction: -479705.
”Combined” prediction: -475009.

Input:
print(1508).

Target: 1508.
”Baseline” prediction: 1508.
”Naive” prediction: 1508.
”Mix” prediction: 1508.
”Combined” prediction: 1508.

Input:

16

Figure 7: Examples of outputs of the RNNs from the “Learning to execute”
paper.

4.3 Learning to Execute Programs

A particularly impressive example of the capabilities of RNNs is that they
are able to learn to execute simple programs. This was demonstrated by
Wojciech Zaremba and Ilya Sutskever, then at Google.3 Here, the input to
the RNN was a simple Python program consisting of simple arithmetic and
control flow, and the target was the result of executing the program. Both
the inputs and the targets were fed to the RNN one character at a time.
Examples are shown in Figure 6.

Their RNN architecture was able to learn to do this fairly well. Some
examples of outputs of various versions of their system are shown in Figure 7.
It’s interesting to look at the pattern of mistakes and try to guess what the
networks do or don’t understand. For instance, the networks don’t really
seem to understand carrying: they know that something unusual needs to
be done, but it appears they’re probably just making a guess.

3W. Zaremba and I. Sutskever. Learning to Execute. ICLR, 2015.

11

Lecture 16: Learning Long-Term Dependencies

Roger Grosse

1 Introduction

Last lecture, we introduced RNNs and saw how to derive the gradients using
backprop through time. In principle, this lets us train them using gradient
descent. But in practice, gradient descent doesn’t work very well unless
we’re careful. The problem is that we need to learn dependencies over long
time windows, and the gradients can explode or vanish.

We’ll first look at the problem itself, i.e. why gradients explode or vanish.
Then we’ll look at some techniques for dealing with the problem — most
significantly, changing the architecture to one where the gradients are stable.

1.1 Learning Goals

• Understand why gradients explode or vanish, both

– in terms of the mechanics of computing the gradients

– the functional relationship between the hidden units at different
time steps

• Be able to analyze simple examples of iterated functions, including
identifying fixed points and qualitatively determining the long-term
behavior from a given initialization.

• Know about various methods for dealing with the problem, and why
they help:

– Gradient clipping

– Reversing the input sequence

– Identity initialization

• Be familiar with the long short-term memory (LSTM) architecture

– Reason about how the memory cell behaves for a given setting
of the input, output, and forget gates

– Understand how this architecture helps keep the gradients stable

2 Why Gradients Explode or Vanish

Recall the encoder-decoder architecture for machine translation, shown again
in Figure 1. The encoder-decoder model was

introduced in Section 14.4.2.
It has to read an English sentence, store as much information

as possible in its hidden activations, and output a French sentence. The
information about the first word in the sentence doesn’t get used in the

1

Figure 1: Encoder-decoder model for machine translation (see 14.4.2 for
full description). Note that adjusting the weights based on the first in-
put requires the error signal to travel backwards through the entire path
highlighted in red.

predictions until it starts generating. Since a typical sentence might be
about 20 words long, this means there’s a long temporal gap from when it
sees an input to when it uses that to make a prediction. It can be hard
to learn long-distance dependencies, for reasons we’ll see shortly. In order
to adjust the input-to-hidden weights based on the first input, the error
signal needs to travel backwards through this entire pathway (shown in red
in Figure 1).

2.1 The mechanics of backprop

Now consider a univariate version of the encoder:

Assume we’ve already backpropped through the decoder network, so we
already have the error signal h(T). We then alternate between the following
two backprop rules:1

h(t) = z(t+1)w

z(t) = h(t) φ′(z(t))

If we iterate the rules, we get the following formula:

h(1) = wT−1φ′(z(2)) · · ·φ′(z(T))h(T)

=
∂h(T)

∂h(1)
h(T)

Hence, h(1) is a linear function of h(T). The coefficient is the partial deriva-

tive ∂h(T)

h(1) . If we make the simplifying assumption that the activation func-

1Review Section 14.3 if you’re hazy on backprop through time.

2

tions are linear, we get

∂h(T)

∂h(1)
= wT−1,

which can clearly explode or vanish unless w is very close to 1. For instance,
if w − 1.1 and T = 50, we get ∂h(T)/∂h(1) = 117.4, whereas if w = 0.9
and T = 50, we get ∂h(T)/∂h(1) = 0.00515. In general, with nonlinear
activation functions, there’s nothing special about w = 1; the boundary
between exploding and vanishing will depend on the values h(t).

More generally, in the multivariate case,

∂h(T)

∂h(1)
=

∂h(T)

∂h(T−1) · · ·
∂h(2)

∂h(1)
.

This quantity is called the Jacobian. “Jacobian” is a general
mathematical term for the matrix
of partial derivatives of a
vector-valued function.

It can explode or vanish just like in
the univariate case, but this is slightly more complicated to make precise.
In the case of linear activation functions, ∂h(t+1)/∂h(t) = W, so

∂h(T)

∂h(1)
= WT−1.

This will explode if the largest eigenvalue of W is larger than 1, and vanish
if the largest eigenvalue is smaller than 1.

Contrast this with the behavior of the forward pass. In the forward
pass, the activations at each step are put through a nonlinear activation
function, which typically squashes the values, preventing them from blowing
up. Since the backwards pass is entirely linear, there’s nothing to prevent
the derivatives from blowing up.

2.2 Iterated functions

We just talked about why gradients explode or vanish, in terms of the
mechanics of backprop. But whenever you’re trying to reason about a
phenomenon, don’t go straight to the equations. Instead, try to think
qualitatively about what’s going on. In this case, there’s actually a nice
interpretation of the problem in terms of the function the RNN computes.
In particular, each layer computes a function of the current input and the
previous hidden activations, i.e. h(t) = f(x(t),h(t−1)). If we expand this
recursively, we get:

h(4) = f(f(f(h(1),x(2)),x(3)),x(4)). (1)

This looks a bit like repeatedly applying the function f . Therefore, we can
gain some intuition for how RNNs behave by studying iterated functions,
i.e. functions which we iterate many times.

Iterated functions can be complicated. Consider the innocuous-looking
quadratic function

f(x) = 3.5x (1− x). (2)

If we iterate this function multiple times (i.e. f(f(f(x))), etc.), we get some
complicated behavior, as shown in Figure 2. Another famous example of
the complexity of iterated functions is the Mandelbrot set:

3

Figure 2: Iterations of the function f(x) = 3.5x (1− x).

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

This is defined in terms of a simple mapping over the complex plane:

zn = z2n−1 + c (3)

If you initialize at z0 = 0 and iterate this mapping, it will either stay within
some bounded region or shoot off to infinity, and the behavior depends on
the value of c. The Mandelbrot set is the set of values of c where it stays
bounded; as you can see, this is an incredibly complex fractal.

It’s a bit easier to analyze iterated functions if they’re monotonic. Con-
sider the function

f(x) = x2 + 0.15.

This is monotonic over [0, 1]. We can determine the behavior of repeated
iterations visually:

4

Here, the red line shows the trajectory of the iterates. If the initial value is
x0 = 0.6, start with your pencil at x = y = 0.6, which lies on the dashed line.
Set y = f(x) by moving your pencil vertically to the graph of the function,
and then set x = y by moving it horizontally to the dashed line. Repeat
this procedure, and you should notice a pattern. There are some regions
where the iterates move to the left, and other regions where the move to
the right. Eventually, the iterates either shoot off to infinity or wind up at
a fixed point, i.e. a point where x = f(x). Fixed points are represented
graphically as points where the graph of x intersects the dashed line. Some
fixed points (such as 0.82 in this example) repel the iterates; these are called
sources. Other fixed points (such as 0.17) attract the iterates; these are
called sinks, or attractors. The behavior of the system can be summarized
with a phase plot:

Observe that fixed points with derivatives f ′(x) < 1 are sinks and fixed
points with f ′(x) > 1 are sources.

Even though the computations of an RNN are discrete, we can think of
them as a sort of dynamical system, which has various attractors:

– Geoffrey Hinton, Coursera

This figure is a cartoon of the space of hidden activations. If you start out
in the blue region, you wind up in one attractor, whereas if you start out
in the red region, you wind up in the other attractor. If you evaluate the
Jacobian ∂h(T)/∂h(1) in the interior of one of these regions, it will be close
to 0, since if you change the initial conditions slightly, you still wind up
at exactly the same place. But the Jacobian right on the boundary will be
large, since shifting the initial condition slightly moves us from one attractor
to the other.

To make this story more concrete, consider the following RNN, which
uses the tanh activation function:

Figure 3 shows the function computed at each time step, as well as the
function computed by the network as a whole. Think about how we can derive

the right-hand figure from the
left-hand one using the analysis
given above.

From this figure. you can
see which regions have exploding or vanishing gradients.

5

Figure 3: (left) The function computed by the RNN at each time step,
(right) the function computed by the network.

Figure 4: (left) Loss function for individual training examples, (right) cost
function averaged over 1000 training examples.

This behavior shows up even if we look at the gradients with respect
to parameters of the network. Suppose we define an input distribution and
loss function for this network; we’ll use squared error loss, but the details
aren’t important. Figure 4 shows the loss function for individual training
examples, as well as the cost function averaged over 1000 training examples.
Recall our discussion of features of the optimization landscape (plateaux,
ridges, etc.). This figure shows a new one, namely cliffs. In this case,
cliffs are a problem only for individual training examples; the cost function
averaged over 1000 examples is fairly smooth. Whether or not this happens
depends on the specifics of the problem.

3 Keeping Things Stable

Now that we’ve introduced the problem of exploding and vanishing gradi-
ents, let’s see what we can do about it. We’ll start with some simple tricks,
and then consider a fundamental change to the network architecture.

6

3.1 Gradient Clipping

First, there’s a simple trick which sometimes helps a lot: gradient clip-
ping. Basically, we prevent gradients from blowing up by rescaling them so
that their norm is at most a particular value η. I.e., if ‖g‖ > η, where g is
the gradient, we set

g← ηg

‖g‖
. (4)

This biases the training procedure, since the resulting values won’t actually
be the gradient of the cost function. However, this bias can be worth it if
it keeps things stable. The following figure shows an example with a cliff
and a narrow valley; if you happen to land on the face of the cliff, you
take a huge step which propels you outside the good region. With gradient
clipping, you can stay within the valley.

— Goodfellow et al., Deep Learning

3.2 Input Reversal

Recall that we motivated this whole discussion in terms of the difficulty
of learning long-distance dependencies, such as between the first word of
the input sentence and the first word of the output sentence. What makes
it especially tricky in translation is that all of the dependencies are long;
this happens because for similar languages like English and French, the
corresponding words appear in roughly the same order in both sentences,
so the gaps between input and output are all roughly the sentence length.
We can fix this by reversing the order of the words in the input sentence:

There’s a gap of only one time step between when the first word is read
and when it’s needed. This means that the network can easily learn the
relationships between the first words; this could allow it to learn good word
representations, for instance. Once it’s learned this, it can go on to the
more difficult dependencies between words later in the sentences.

7

3.3 Identity Initialization

In general, iterated functions can have complex and chaotic behavior. But
there’s one particular function you can iterate as many times as you like: the
identity function f(x) = x. If your network computes the identity function,
the gradient computation will be perfectly stable, since the Jacobian is
simply the identity matrix. Of course, the identity function isn’t a very
interesting thing to compute, but it still suggests we can keep things stable
by encouraging the computations to stay close to the identity function.

The identity RNN architecture2 is a kind of RNN where the activation
functions are all ReLU, and the recurrent weights are initialized to the
identity matrix. The ReLU activation function clips the activations to be
nonnegative, but for nonnegative activations, it’s equivalent to the identity
function. This simple initialization trick achieved some neat results; for
instance, it was able to classify MNIST digits which were fed to the network
one pixel at a time, as a length-784 sequence.

3.4 Long-Term Short Term Memory

We’ve just talked about three tricks for training RNNs, and they are all
pretty widely used. But the identity initialization trick actually gets at
something much more fundamental. That is, why is it a good idea for the
RNN to compute something close to the identity function? Think about how
a computer works. It has a very large memory, but each instruction accesses
only a handful of memory locations. All the other memory locations simply
keep their previous value. In other words, if the computer’s entire memory
is represented as one big vector, the mapping from one time step to the next
is very close to the identity function. This behavior is the most basic thing
we’d desire from a memory system: the ability to preserve information over
time until it’s needed.

Unfortunately, the basic RNN architectures we’ve talked about so far
aren’t very good at remembering things. All of the units we’ve covered so
far in the course consist of linear functions followed by a nonlinear activation
function:

y = φ(Wx + b). (5)

For some activation functions, such as logistic or tanh, this can’t even rep-
resent the identity mapping; e.g., in the network shown in Figure 3, each
time step computes a function fairly close to the identity, but after just 5
steps, you get a step function.

The Long-Term Short-Term Memory (LSTM) architecture was
designed to make it easy to remember information over long time periods
until it’s needed. The name refers to the idea that the activations of a
network correspond to short-term memory, while the weights correspond to
long-term memory. If the activations can preserve information over long
distances, that makes them long-term short-term memory.

The basic LSTM unit (called a block) has much more internal structure
than the units we’ve covered so far in this course. The architecture is shown
in Figure 5. Each hidden layer of the RNN will be composed of many
(e.g. hundreds or thousands) of these blocks.

2Le et al., 2015. A simple way to initialize recurrent networks of rectified linear units.

8

• At the center is a memory cell, which is the thing that’s able to
remember information over time. It has a linear activation function,
and a self-loop which is modulated by a forget gate, which takes
values between 0 and 1; this means that the weight of the self-loop is
equal to the value of the forget gate.

• The forget gate is a unit similar to the ones we’ve covered previously;
it computes a linear function of its inputs, followed by a logistic ac-
tivation function (which means its output is between 0 and 1). The
forget gate would probably be better called a “remember gate”, since
if it is on (takes the value 1), the memory cell remembers its previous
value, whereas if the forget gate is off, the cell forgets it.

• The block also receives inputs from other blocks in the network; these
are summed together and passed through a tanh activation function
(which squashes the values to be between -1 and 1). The connection
from the input unit to the memory cell is gated by an input gate,
which has the same functional form as the forget gate (i.e., linear-
then-logistic).

• The block produces an output, which is the value of the memory cell,
passed through a tanh activation function. It may or may not pass
this on to the rest of the network; this connection is modulated by the
output gate, which has the same form as the input and forget gates.

It’s useful to summarize various behaviors the memory cell can achieve
depending on the values of the input and forget gates:

input gate forget gate behavior

0 1 remember the previous value
1 1 add to the previous value
0 0 erase the value
1 0 overwrite the value

If the forget gate is on and the input gate is off, the block simply computes
the identity function, which is a useful default behavior. But the ability to
read and write from it lets it implement more sophisticated computations.
The ability to add to the previous value means these units can simulate a
counter; this can be useful, for instance, when training a language model,
if sentences tend to be of a particular length.

When we implement an LSTM, we have a bunch of vectors at each time
step, representing the values of all the memory cells and each of the gates.
Mathematically, the computations are as follows:

i(t)

f (t)

o(t)

g(t)

 =

σ
σ
σ

tanh

W

(
x(t)

h(t−1)

)
(6)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ g(t) (7)

h(t) = o(t) ◦ tanh(c(t)). (8)

Here, (6) uses a shorthand for applying different activation functions to
different parts of the vector. Observe that the blocks receive signals from

9

Figure 5: The LSTM unit.

10

the current inputs and the previous time step’s hidden units, just like in
standard RNNs. But the network’s input g and the three gates i, o, and f
have independent sets of incoming weights. Then (7) gives the update rule
for the memory cell (think about how this relates to the verbal description
above), and (8) defines the output of the block.

For homework, you are asked to show that if the forget gate is on and
the input and output gates are off, it just passes the memory cell gradients
through unmodified at each time step. Therefore, the LSTM architecture
is resistant to exploding and vanishing gradients, although mathematically
both phenomena are still possible.

If the LSTM architecture sounds complicated, that was the reaction of
machine learning researchers when it was first proposed. It wasn’t used
much until 2013 and 2014, when resesarchers achieved impressive results
on two challenging and important sequence prediction problems: speech-to-
text and machine translation. Since then, they’ve become one of the most
widely used RNN architectures; if someone tells you they’re using an RNN,
there’s a good chance they’re actually using an LSTM. There have been
many attempts to simplify the architecture, and one particular variant called
the gated recurrent unit (GRU) is fairly widely used, but so far nobody has
found anything that’s both simpler and at least as effective across the board.
It appears that most of the complexity is probably required. Fortunately,
you hardly ever have to think about it, since LSTMs are implemented as a
black box in all of the major neural net frameworks.

11

Lecture 17: ResNets and Attention

Roger Grosse

1 Introduction

We have two unrelated agenda items for today. First, we’ll revisit image
classification in light of what we’ve learned about RNNs. In particular, we
saw that one way to make it easier for RNNs to learn long-distance depen-
dencies is to make it easy for each layer to represent the identity function,
which lets them pass information unmodified through many layers. This is
a useful thing for the network to do, and it also helps keep the gradients
from exploding or vanishing. If we want to train image classifiers with a
ridiculously large number of layers, we need to use these sorts of tricks. The
deep residual network (ResNet) is a particularly elegant architecture which
lets information pass directly through; it can be used to train networks with
hundreds, or even thousands of layers, and is the current state-of-the-art for
a variety of computer vision tasks.

Our second agenda item is attention. The problem with the encoder-
decoder architecture for translation is that all the information about the
input sentence needs to be stored in the vector of hidden activations. This
has a fixed dimension (typically on the order of 1000), i.e. it doesn’t grow
with the length of the sentence. It’s pretty neat that summarizing the
meaning of a sentence as a vector works at all, but this strategy hits is
limits once the sentences are about 20 words or so, a fairly typical sentence
length. Attention-based architectures allow the network to refer back to the
input sentence as they produce their output, thereby reducing the pressure
on the hidden units and allowing them to easily handle very long sentences.

2 ResNets

Before 2015, the GoogLeNet (Inception) architecture set the standard for
a deep conv net. It was about 20 layers deep, not counting pooling. In
2015, the new state-of-the-art on ImageNet was the deep residual network
(ResNet), which had the distinction that that it was 150 layers deep. When
we discussed image classification, I promised we’d come back to ResNets
once we covered a key conceptual idea. That idea was exploding and van-
ishing gradients.

Recall that the Jacobian ∂h(T)/∂h(1) for an RNN is the product of the
Jacobians of individual layers:

∂h(T)

∂h(1)
=

∂h(T)

∂h(T−1)
· · · ∂h

(2)

∂h(1)

Multiplying together lots of matrices causes the Jacobian to explode or
vanish unless we’re careful about keeping all of them close to the identity.

1

But notice that this same formula applies to the Jacobian for a feed-forward
network (e.g. MLP or conv net). How come we never talked about exploding
and vanishing gradients until we got to RNNs? The reason is that until
recently, feed-forward nets were at most tens of layers deep, whereas RNNs
would often be unrolled for hundreds of time steps. Hence, we’d be doing
lots more steps of backprop (i.e. multiplying lots of Jacobians together),
making things more likely to explode or vanish. This means if we want to
train feed-forward nets with hundreds of layers, we need to figure out how
to keep the backprop computations stable.

In Homework 3, you derived the backprop equations for the following
architecture, where the inputs get added to the outputs:

z = W(1)x + b(1)

h = φ(z)

y = x + W(2)h

(1)

This is a special case of a more general architectural primitive called the
residual block:

y = x + F(x), (2)

where F is a function called the residual function. In the above example,
F is an MLP with one hidden layer. In general, it’s typically a shallow
neural net, with 1–3 hidden layers. We can represent the residual block
graphically as follows:

Here, ⊕ denotes addition of the values.
We can string together multiple residual blocks in series to get a deep

residual network, or ResNet:

2

(Each layer computes a separate residual function, with separate trainable
parameters.) Last lecture, we noted two architectures that make it easy to
represent the identity function: identity RNNs and LSTMs. The ResNet is a
third such architecture. Observe that if each F returns zero (e.g. because all
the weights are 0), then this architecture simply passes the input x through
unmodified. I.e., it computes the identity function.

We can also see this algebraically in terms of the backprop equation for
a residual block:

x(`) = x(`+1) + x(`+1)
∂F
∂x

= x(`+1)

(
I +

∂F
∂x

) (3)

Hence, if ∂F/∂x = 0, the error signals are simply passed through unmodi-
fied. As long as ∂F/∂x is small, the Jacobian for the residual block will be
close to the identity, and the error signals won’t explode or vanish.

So that’s the one big idea behind ResNets. If people say they are using
ResNets for a vision task, they’re probably referring to particular architec-
tures based on the ones in this paper1. This paper achieved state-of-the-art
on ImageNet in 2015, and since then, the state-of-the-art on many computer
vision tasks has consisted of variants of these ResNet architectures. There’s
one important detail that needs to be mentioned: the input and output to
a residual block clearly need to be the same size, because the output is the
sum of the input and the residual function. But for conv nets, it’s important
to shrink the images (e.g. using pooling) in order to expand the number of
feature maps. ResNets typically achieve this by having a few convolution
layers with a stride of 2, so that the dimension of the image is reduced by
a factor of 2 along each dimension.

The benefit of the ResNet architecture is that it’s possible to train ab-
surdly large numbers of layers. The state-of-the-art ImageNet classifier from
the above paper had 50 residual blocks, and the residual function for each
was a 3-layer conv net, so the network as a whole had about 150 layers.
Hardly anybody had been expecting it to be useful to train 150 layers. On
a smaller object recognition benchmark called CIFAR, they were actually
able to train a ResNet with 1000 layers, though it didn’t work any better
than their 100-layer network.

What on earth are all these layers doing? When we visualized the In-
ception activations, we found pretty good evidence that higher layers were
learning more abstract and high-level features. But the idea that there are
150 meaningfully different levels of abstraction seems pretty fishy. We ac-
tually don’t have a good explanation for why 150 layers works better than
50.

3 Attention

Our second topic for today is attention. Recall the encoder-decoder model
for machine translation from last lecture:

1K. He, X. Zhang, S. Ren, and J. Sun, 2016. Deep residual learning for image recog-
nition

3

All the information the decoder receives about the input sentence is stored
in a single code vector, which is the final hidden state of the encoder. This
means the code vector needs to store all the relevant information about
the input sentence — and since we’re translating the whole sentence, that
effectively means it must have memorized the sentence. It’s a bit surprising
that this is possible, though not implausible: it may require about 1000
bits to store the ASCII characters in a 20-word sentence, so it should be
possible in principle to store the same information in a vector of length 5000
(a typical hidden dimension for this architecture). But still, this is putting
a lot of pressure on the RNN’s memory.

Attention-based modeling fixes this problem by allowing the decoder
to look at the input sentence as it generates text. This removes the need
for the hidden units to store the whole input sentence. Instead, they’ll
just have to remember a little bit of context about things like where it is
in the input sentence and what part of speech it’s looking for next. The
original attention-based translation paper was Bahdanau et al., “Neural
machine translation by jointly learning to align and translate”2, and we’ll
be focusing on their architecture here.

This model has both an encoder and a decoder. Let’s consider both in
sequence. First, the encoder. The encoder’s job is to compute an anno-
tation vector for each word in the sentence; these vectors are what the
decoder will see when it focuses on a word. One seemingly obvious choice
would be to use a lookup table of word representations, just like the neural
language model from Lecture 7. But words can have multiple meanings, and
it often requires information from the rest of the sentence to disambiguate
the meaning. The relevant information could be either earlier or later in the
sentence. So instead, we use an architecture called a bidirectional RNN:

The original bidirectional RNN
uses a kind of architecture called
the gated recurrent unit (GRU),
which is similar to the LSTM. You
could use an LSTM instead if you
want.

This is really just a fancy term for two completely separate RNNs, one of
which processes the words in forward order, and the other of which processes
them in reverse order. The hidden states of the two RNNs are concatenated
at each time step to give the annotation vector.

The decoder architecture is shown in Figure 1. It is very similar to the
RNN language models we’ve looked at, in that it is an RNN which predicts a

2D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning
to align and translate. ICLR, 2015. https://arxiv.org/abs/1409.0473

4

https://arxiv.org/abs/1409.0473

Figure 1: The decoder architecture from Bahdanau et al.’s attention-based
translation model.

distribution over words at each time step, and receives the words as input.
In practice, we don’t actually
sample from the model’s
predictions, since that has too high
a chance of producing a silly
sentence. Instead, we search for
the most probable output sentence
using a technique called beam
search. But this is beyond the
scope of the class.

Like the RNN language models, it’s trained using teacher forcing, so it
receives the words of the actual target sentence as inputs. To sample from
the model at test time, the words are sampled from the model’s predictions
and fed back in as inputs. So far, nothing new.

The difference is that the decoder uses attention to compute a context
vector c(i) for each output time step i. (We’re using i rather than t to
keep separate the time steps of the encoder and decoder.) This is a soft
attention model, which means that it has the ability to spread its attention
across all the input words. Hard attention models only look at

one part of the input at a time,
but we won’t consider those in this
class.

More precisely, it computes a weighted average
of the annotation vectors for all the input words:

c(i) =
∑
j

αijh
(j), (4)

where the attention weights αij are computed as a softmax over all the input
words:

αij =
exp(eij)∑
j′ exp(eij′)

(5)

eij = a(s(i−1),h(j)). (6)

Notice that the logits eij are a function of both the decoder’s previous
hidden state s(i−1) and the annotation vector h(j). The previous hidden
state is clearly needed, since the decoder needs to remember some context
about what it has already generated (such as the part of speech of the
previous word) in order to know where to look. Using the annotation vectors
themselves as inputs to the attention weights is an interesting approach,
as it lets the attention mechanism implement content-based addressing,
which looks up words according to their semantics rather than their position
in the sentence. For instance, if the decoder has just produced an adjective,

5

Figure 2: Visualizations of where the attention model is looking as it gener-
ates each output word. Each row corresponds to the attention vector (the
αij ’s) for one word in the output (French) sentence. Figure from Bahdanau
et al.

then it may want to attend to nouns next. Of course, it is likely to use
positional information as well. This isn’t specified explicitly as part of the
attention mechanism, but it can do it implicitly because it’s pretty easy
for the encoder RNN to count the position in the sentence as part of the
annotation vectors.

Even though the soft attention mechansim has the ability to spread the
attention over the entire sentence, in practice it usually chooses to look
only at one input word or a handful of input words. Figure 2 shows some
visualizations of where an English-to-French translation model is attending
to as it generates each output word. For the most part, it marches in order
through the input, looking at one word at a time. But it’s able to reorder
words as appropriate, such as when it translates “the European Economic
Area” to “la zone économique européenne.”

6

Lecture 18: Learning probabilistic models

Roger Grosse

1 Overview

In the first half of the course, we introduced backpropagation, a technique we used to
train neural nets to minimize a variety of cost functions. One of the cost functions we
discussed was cross-entropy, which encourages the network to learn to predict a probability
distribution over the targets. This was our first glimpse into probabilistic modeling. But
probabilistic modeling is so important that we’re going to spend almost the last third of
the course on it. This lecture introduces some of the key principles.

This lecture and the next one aren’t about neural nets. Instead, they’ll introduce the
principles of probabilistic modeling in as simple a setting as possible. Then, starting next
week, we’re going to apply these principles in the context of neural nets, and this will result
in some very powerful models.

1.1 Learning goals

• Know some terminology for probabilistic models: likelihood, prior distribution, poste-
rior distribution, posterior predictive distribution, i.i.d. assumption, sufficient statis-
tics, conjugate prior

• Be able to learn the parameters of a probabilistic model using maximum likelihood,
the full Bayesian method, and the maximum a-posteriori approximation.

• Understand how these methods are related to each other. Understand why they tend
to agree in the large data regime, but can often make very different predictions in
the small data regime.

2 Maximum likelihood

The first method we’ll cover for fitting probabilistic models is maximum likelihood. In
addition to being a useful method in its own right, it will also be a stepping stone towards
Bayesian modeling.

Let’s begin with a simple example: we have flipped a particular coin 100 times, and it
landed heads NH = 55 times and tails NT = 45 times. We want to know the probability
that it will come up heads if we flip it again. We formulate the probabilistic model:

1

The behavior of the coin is summarized with a parameter θ, the probability
that a flip lands heads (H). The flips D =

(
x(1), . . . , x(100)

)
are independent

Bernoulli random variables with parameter θ.

(In general, we will use D as a shorthand for all the observed data.) We say that the indi-
vidual flips are independent and identically distributed (i.i.d.); they are independent
because one outcome does not influence any of the other outcomes, and they are identically
distributed because they all follow the same distribution (i.e. a Bernoulli distribution with
parameter θ).

We now define the likelihood function L(θ), which is the probability of the observed
data, as a function of θ. In the coin example, the likelihood is the probability of the
particular sequence of H’s and T’s being generated:

L(θ) = p(D) = θNH (1− θ)NT . (1)

Note that L is a function of the model parameters (in this case, θ), not the observed data.
This likelihood function will generally take on extremely small values; for instance,

L(0.5) = 0.5100 ≈ 7.9 × 10−31. Therefore, in practice we almost always work with the
log-likelihood function,

`(θ) = logL(θ) = NH log θ +NT log(1− θ). (2)

For our coin example, `(0.5) = log 0.5100 = 100 log 0.5 = −69.31. This is a much easier
value to work with.

In general, we would expect good choices of θ to assign high likelihood to the observed
data. This suggests the maximum likelihood criterion: choose the parameter θ which
maximizes `(θ). If we’re lucky, we can do this analytically by computing the derivative and
setting it to zero. (More precisely, we find critical points by setting the derivative to zero.
We check which of the critical points, or boundary points, has the largest value.) Let’s try
this for the coin example:

d`

dθ
=

d

dθ
(NH log θ +NT log(1− θ))

=
NH

θ
− NT

1− θ
(3)

Setting this to zero, we find the maximum likelihood estimate

θ̂ML =
NH

NH +NT
, (4)

i.e. the maximum likelihood estimate is simply the fraction of flips that came up heads.
(We put a hat over the parameter to emphasize that it’s an estimate.) Hopefully this seems
like a sensible guess for θ. Now let’s look at some more examples.

2

Example 1. Suppose we are interested in modeling the distribution of temper-
atures in Toronto in March. Here are the high temperatures, in Celsius, from
the first week of March 2014:

-2.5 -9.9 -12.1 -8.9 -6.0 -4.8 2.4

Call these observations x(1), . . . , x(N), where N = 7. In order to formulate a
probabilistic model, we first choose a parametric form for the distribution over
temperatures. Often we choose a Gaussian distribution, not because we believe
it’s an especially good model, but because it makes the computations easy.
So let’s assume the temperatures are drawn from a Gaussian distribution with
unknown mean µ and known standard deviation σ = 5. Our likelihood function
is given by:

`(µ) = log

N∏
i=1

[
1√

2π · σ
exp

(
−(x(i) − µ)2

2σ2

)]

=
N∑
i=1

log

[
1√

2π · σ
exp

(
−(x(i) − µ)2

2σ2

)]

=
N∑
i=1

−1

2
log 2π − log σ − (x(i) − µ)2

2σ2
(5)

Since µ can take any possible real value, the maximum must occur at a critical
point, so let’s look for critical points. Setting the derivative to 0,

0 =
d`

dµ
=

1

2σ2

N∑
i=1

d

dµ
(x(i) − µ)2

= − 1

σ2

N∑
i=1

x(i) − µ (6)

Therefore,
∑N

i=1 x
(i) − µ = 0, and solving for µ, we get µ = 1

N

∑N
i=1 x

(i). The
maximum likelihood estimate of the mean of a normal distribution is simply
the mean of the observed values, or the empirical mean. Plugging in our
temperature data, we get µ̂ML = −5.97.

Example 2. In the last example, we pulled the standard deviation σ = 5
out of a hat. Really we’d like to learn it from data as well. Let’s add it as a
parameter to the model. The likelihood function is the same as before, except
now it’s a function of both µ and σ, rather than just µ. To maximize a function

3

of two variables, we find critical points by setting the partial derivatives to 0.
In this case,

0 =
∂`

∂µ
= − 1

σ2

N∑
i=1

x(i) − µ (7)

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−1

2
log 2π − log σ − 1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−1

2

∂

∂σ
log 2π − ∂

∂σ
log σ − ∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑
i=1

0− 1

σ
+

1

σ3
(x(i) − µ)2

= −N
σ

+
1

σ3

N∑
i=1

(x(i) − µ)2 (8)

From the first equality, we find that µ̂ML = 1
N

∑N
i=1 x

(i) is the empirical mean,

just as before. From the second inequality, we find σ̂ML =
√

1
N

∑N
i=1(x

(i) − µ)2.
In other words, σ̂ML is simply the empirical standard deviation. In the case of
the Toronto temperatures, we get µ̂ML = −5.97 (as before) and σ̂ML = 4.55.

Example 3. We’ve just seen two examples where we could obtain the exact
maximum likelihood solution analytically. Unfortunately, this situation is the
exception rather than the rule. Let’s consider how to compute the maximum
likelihood estimate of the parameters of the gamma distribution, whose PDF
is defined as

p(x) =
ba

Γ(a)
xa−1e−bx, (9)

where Γ(a) is the gamma function, which is a generalization of the factorial
function to continuous values.1 The model parameters are a and b, both of
which must take positive values. The log-likelihood, therefore, is

`(a, b) =
N∑
i=1

a log b− log Γ(a) + (a− 1) log x(i) − bx(i)

= Na log b−N log Γ(a) + (a− 1)

N∑
i=1

log x(i) − b
N∑
i=1

x(i). (10)

1The definition is Γ(t) =
∫∞
0
xt−1e−x dx, but we’re never going to use the definition in this class.

4

Most scientific computing environments provide a function which computes
log Γ(a). In SciPy, for instance, it is scipy.special.gammaln.

To maximize the log-likelihood, we’re going to use gradient ascent, which is just
like gradient descent, except we move uphill rather than downhill. To derive
the update rules, we need the partial derivatives:

∂`

∂a
= N log b−N d

da
log Γ(a) +

N∑
i=1

log x(i) (11)

∂`

∂b
= N

a

b
−

N∑
i=1

x(i). (12)

Our implementation of gradient ascent, therefore, consists of computing these
derivatives, and then updating a ← a + α ∂`

∂a and b ← b + α∂`∂b , where α is the
learning rate. Most scientific computing environments provide a function to
compute d

da log Γ(a); for instance, it is scipy.special.digamma in SciPy.

Here are some observations about these examples:

• In each of these examples, the log-likelihood function ` decomposed as a sum of terms,
one for each training example. This results from our independence assumption. Be-
cause different observations are independent, the likelihood decomposes as a product
over training examples, so the log-likelihood decomposes as a sum.

• The derivatives worked out nicely because we were dealing with log-likelihoods. Try
taking derivatives of the likelihood function L(θ), and you’ll see that they’re much
messier.

• All of the log-likelihood functions we looked at wound up being expressible in terms
of certain sufficient statistics of the dataset, such as

∑N
i=1 x

(i),
∑N

i=1[x
(i)]2, or∑N

i=1 log x(i). When we’re fitting the maximum likelihood solution, we can forget the
data itself and just remember the sufficient statistics. This doesn’t happen for all
of our models; for instance, it didn’t happen when we fit the neural language model
in Assignment 1. However, it does happen for many of the distributions commonly
used in practice.2

• We made a lot of questionable assumptions in formulating these models. E.g., we
assumed that temperatures on different days were independent; in practice, the tem-
perature tomorrow is likely to be similar to the temperature today. This is also true
of models we fit previously; e.g., the Markov assumption we used to justify our neural

2If you’re interested in learning more, the families of distributions whose likelihoods can be written in
terms of sufficient statistics are known as exponential families.

5

language model is clearly bogus. If this were a statistics class, we’d talk about ways
to test your modeling assumptions. But because this is a machine learning class,
we’ll throw caution to the wind and fit models that we know are wrong. Hopefully
they’ll still be good enough that they can make sensible predictions (in the supervised
setting) or reveal interesting structure (in the unsupervised setting).

2.1 Beware of data sparsity

Maximum likelihood is a very powerful technique, but it has a pitfall: if you have too
little training data, it can seriously overfit. The most severe pathology is when it assigns
probability 0 to things that were never seen in the training set, but which still might
actually happen. For instance, suppose we flip a coin twice, and it lands H both times.
The maximum likelihood estimate of θ, the probability of H, would be 1. But this is pretty
extreme — effectively we’re considering it impossible that the coin will ever come up T!
This problem is known as data sparsity.

This problem isn’t so different in principle from examples of overfitting which we dis-
cussed for other loss functions. We would like our model to generalize well to data it
hasn’t seen before, i.e. assign the new data high likelihood. We can measure the general-
ization performance by holding out a separate test set, and measuring the log-likelihood
on this test set at the very end. (As before, if we want to choose model hyperparamters,
we’d hold out a separate validation set.) In our coin example, if we choose θ = 1 and the
coin comes up T even a single time in the test set, this will give us a test log-likelihood of
−∞. Clearly it’s a bad idea to assign any outcome probability 0 if it might ever occur.

Last week, we talked about regularization as a way to attenuate overfitting. Would that
work here? One naive approach would be to add an L2 penalty, −1

2θ
2, to the objective

function. (We subtract the penalty since we’re maximizing.) But this isn’t quite what
we want: it would allow (in fact, encourage) the degenerate solution θ = 0. Instead, let’s
look at Bayesian techniques for parameter estimation. These techniques will turn out to
be closely related to regularization.

3 Bayesian parameter estimation

In the maximum likelihood approach, the observations (i.e. the xi’s) were treated as random
variables, but the model parameters were not. In the Bayesian approach, we treat the
parameters as random variables as well. We define a model for the joint distribution
p(θ,D) over parameters θ and data D. (In our coin example, θ would be the probability
of H, and D would be the sequence of 100 flips that we observed.) Then we can perform
the usual operations on this joint distribution, such as marginalization and conditioning.

In order to define this joint distribution, we need two things:

• A distribution p(θ), known as the prior distribution. It’s called the prior because

6

it’s supposed to encode your “prior beliefs,” i.e. everything you believed about the
parameters before looking at the data. In practice, we normally choose priors to be
computationally convenient, rather than based on any sort of statistical principle.
More on this later.

• The likelihood p(D |θ), the probability of the observations given the parameters,
just like in maximum likelihood.

Bayesians are primarily interested in computing two things:

• The posterior distribution p(θ | D). This corresponds to our beliefs about the
parameters after observing the data. In general, the posterior distribution can be
computed using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫
p(θ′)p(D |θ′) dθ′

. (13)

However, we don’t normally compute the denominator directly. Instead we work with
unnormalized distributions as long as possible, and normalize only when we need to.
Bayes’ Rule can therefore be written in a more succinct form, using the symbol ∝ to
denote “proportional to”:

p(θ | D) ∝ p(θ)p(D |θ). (14)

• The posterior predictive distribution p(D′ | D), which is the distribution over
future observables given past observations. For instance, given that we’ve observed
55 H’s and 45 T’s, what’s the probability that the next flip will land H? We can
compute the posterior predictive distribution by computing the posterior over θ and
then marginalizing out θ:

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ. (15)

3.1 The full Bayesian approach

Let’s figure out the posterior distribution and posterior predictive distribution for our
coin example. We’ve already specified the likelihood, so it remains to specify the prior.
One option is to use an uninformative prior, which assumes as little as possible about
the problem. In the case of the coin, this might correspond to the uniform distribution
p(θ) = 1. (There is no single recipe for choosing an uninformative prior; statisticians have
a few different recipes which often, but not always, agree with each other.)

Alternatively, we can draw upon our lifetime of experience flipping coins. Most coins
tend to be fair, i.e. the come up heads around 50% of the time. So perhaps our prior
should make θ = 0.5 more likely. There are a lot of distributions which can do this, but a

7

Figure 1: The PDF of the beta distribution for various values of the parameters a and b.
Observe that the distribution becomes more peaked as a and b become large, and the peak
is near a/(a+ b).

particularly useful one is the beta distribution, parameterized by a, b > 0, and defined
as:

p(θ; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1. (16)

This distribution is visualized in Figure 1. Why did we choose the beta distribution, of all
things? Once we work through the example, we’ll see that it’s actually pretty convenient.
Observe that the first term (with all the Γ’s) is just a normalizing constant, so it doesn’t
depend on θ. In most of our computations, we’ll only need to work with unnormalized dis-
tributions (i.e. ones which don’t necessarily integrate to 1), so we can drop the cumbersome
normalizing constant and write

p(θ; a, b) ∝ θa−1(1− θ)b−1. (17)

A few values are plotted in Figure 1. From these plots, we observe a few things:

• The distribution appears to be centered around a/(a + b). In fact, it’s possible to
show that if θ ∼ Beta(a, b), then E[θ] = a/(a+ b).

• The distribution becomes more peaked for larger values of a and b.

• The values a = b = 1 correspond to the uniform distribution. Therefore, we can
simply treat the uniform prior as a special case of the beta prior.

8

Figure 2: Plots of the prior, likelihood, and posterior for the coin flip example, with the
prior Beta(2, 2). (Left) Small data setting, NH = 2, NT = 0. (Right) Large data
setting, NH = 55, NT = 45. In this case, the data overwhelm the prior, so the posterior is
determined by the likelihood. Note: for visualization purposes, the likelihood function is
normalized to integrate to 1, since otherwise it would be too small to see.

Now let’s compute the posterior and posterior predictive distributions. When we plug
in our prior and likelihood terms for the coin example, we get:

p(θ | D) ∝ p(θ)p(D |θ) (18)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
(19)

= θa−1+NH (1− θ)b−1+NT . (20)

But this is just a beta distribution with parameters NH + a and NT + b. Let’s stop and
check if our answer makes sense. As we observe more flips, NH and NT both get larger,
and the distribution becomes more peaked around a particular value. Furthermore, the
peak of the distribution will be near NH/(NH + NT), our maximum likelihood solution.
This reflects the fact that the more data we observe, the less uncertainty there is about
the parameter, and the more the likelihood comes to dominate. We say that the data
overwhelm the prior.

9

We now compute the posterior predictive distribution over the next flip x′:

θpred = Pr(x′ = H | D)

=

∫
p(θ | D)Pr(x′ = H | θ) dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH +NT + a+ b
, (21)

where the last line follows from the formula for the expectation of a beta random variable.
Again, let’s check if this is reasonable. If NH and NT are large, this is approximately
NH/(NH+NT), so our predictions are similar to the ones we get using maximum likelihood.
However, if NH and NT are relatively small, then the predictive distribution is smoothed,
i.e. less extreme than the maximum likelihood one. The value θpred is somewhere in between
the prior and the maximum likelihood estimate.

OK, back to an earlier question. Where did our choice of prior come from? The key
thing to notice is Eqn 20, where the posterior wound up belonging to the same family of
distributions as the prior. Why did this happen? Let’s compare the formulas for the beta
distribution and the likelihood:

p(θ) = Beta(θ; a, b) ∝ θa−1(1− θ)b−1 (22)

p(D | θ) ∝ θNH (1− θ)NT (23)

In other words, the prior was chosen to have the same functional form as the likelihood.3

Since we multiply these expressions together to get the (unnormalized) posterior, the pos-
terior will also have this functional form. A prior chosen in this way is called a conjugate
prior. In this case, the parameters of the prior distribution simply got added to the
observed counts, so they are sometimes referred to as pseudo-counts.

Let’s look at some more examples.

Example 4. Let’s return to our problem of estimating the mean temperature
in Toronto, where our model assumes a Gaussian with unknown mean µ and
known standard deviation σ = 5. The first task is to choose a conjugate prior.
In order to do this, let’s look at the PMF of a single data point:

p(x |µ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(24)

3The ∝ notation obscures the fact that the normalizing constants in these two expressions may be
completely different, since p(θ) is a distribution over parameters, while p(D | θ) is a distribution over observed
data. In this example, the latter normalizing constant happens to be 1, but that won’t always be the case.

10

If we look at this as a function of µ (rather than x), we see that it’s still a
Gaussian! This should lead us to conjecture that the conjugate prior for a
Gaussian is a Gaussian. Let’s try it and see if it works.

Our prior distribution will be a Gaussian distribution with mean µpri and stan-
dard deviation σpri. The posterior is then given by:

p(µ | D) ∝ p(µ)p(D |µ)

=

[
1√

2πσpri
exp

(
−(µ− µpri)2

2σ2pri

)][
N∏
i=1

1√
2πσ

exp

(
− 1

2σ2
(x(i) − µ)2

)]

∝ exp

(
−(µ− µpri)2

2σ2pri
− 1

2σ2

N∑
i=1

(x(i) − µ)2

)

∝ exp

(
− µ2

2σ2pri
+
µpriµ

σ2pri
−

µ2pri
2σ2pri

− 1

2σ2

N∑
i=1

[x(i)]2 +
1

σ2

N∑
i=1

x(i)µ− N

2σ2
µ2

)

= exp

(
−
µ2pri
2σ2pri

− 1

2σ2

N∑
i=1

[x(i)]2 +

[
µpri
σ2pri
−
∑N

i=1 x
(i)

σ2

]
µ− 1

2

[
1

σ2pri
+
N

σ2

]
µ2

)

∝ exp

(
−(µ− µpost)2

σ2post

)
,

where

σpost =
1√

1
σ2
pri

+ N
σ2

(25)

µpost =

1
σ2
pri
µpri + N

σ2
1
N

∑N
i=1 x

(i)

1
σ2
pri

+ N
σ2

. (26)

The last step uses a technique called completing the square. You’ve probably
done this before in a probability theory class. So the posterior distribution is a
Gaussian with mean µpost and standard deviation σpost.

The formulas are rather complicated, so let’s break them apart. First look how
σpost changes if we vary the prior or the data.

• As we increase the number of observations N , the denominator gets larger,
so σpost gets smaller. This should be intuitive: as we observe more data,
the posterior gets more peaked, which corresponds to the posterior stan-
dard deviation decreasing.

11

• What if we increase the prior standard deviation σpri or the observation
standard deviation σ? Then the denominator gets smaller, which means
σpost gets larger. This should be intuitive, because increasing the uncer-
tainty in either the prior or the likelihood should increase the uncertainty
in the posterior.

Now let’s look at the formula for µpost. It takes the form of a weighted

average of the prior mean µpri and the maximum likelihood mean 1
N

∑N
i=1 x

(i).
By weighted average, I mean something of the form

ar + bs

a+ b
.

where the weights a and b are both positive. This is a weighted average of r
and s; if a is larger, it is closer to r, while if b is larger, it is closer to s. For
µpost, the weights for the prior mean and maximum likelihood mean are 1/σ2pri
and N/σ2, respectively. Let’s see what happens if we change the problem.

• As the number of observationsN gets larger, the weighted average becomes
closer and closer to the maximum likelihood estimate. This should make
sense: as we get more information, our prior beliefs become less relevant.

• If we increase the prior standard deviation σpri, then 1/σ2pri gets smaller,
so there is less weight on the prior. On the other hand, if we increase
the standard deviation σ of the observations, then N/σ2 gets smaller, and
there is less weight on the maximum likelihood solution. In other words,
whichever of the two terms we are more confident about should count for
more.

Observe that
∑N

i=1 x
(i) is a sufficient statistic, since it is the only thing we need

to remember about the data in order to compute the posterior.

Finally, let’s take a look at the posterior predictive distribution. We compute
this as

p(x′ | D) =

∫
p(µ | D)p(x′ |µ) dµ

=

∫
Gaussian(µ;µpost, σpost)Gaussian(x′;µ, σ) dµ

= Gaussian(x′;µpost,
√
σ2post + σ2) (27)

The last step uses the formula for the convolution of two Gaussian distributions.
Now let’s see how it behaves.

12

Figure 3: The prior, posterior, and posterior predictive distributions for the Toronto tem-
peratures example.

• When there are no observations (i.e. N = 0), then µpost and σpost are the
prior mean and standard deviation. The predictive distribution is centered
at µpost, but more spread out than the prior.

• When N is very large, the mean of the predictive distribution is close to
the maximum likelihood mean, and the standard deviation is very close to
σ. In other words, it makes almost the same predictions as the maximum
likelihood estimate.

The prior, posterior, and posterior predictive distributions are all shown in
Figure 3.

For both the coin and Gaussian examples, the posterior predictive distribution had
the same parametric form as the model. (I.e., it was a Bernoulli distribution for the coin
model, and a Gaussian distribution for the Gaussian model.) This does not happen in
general; often the posterior predictive distribution doesn’t have a convenient form, which
is part of what makes the full Bayesian approach difficult to apply.

3.2 The difficulty of the full Bayesian approach

We’ve seen two different ways to learn the parameters of a probabilistic model. Maximum
likelihood is based on optimization, while the full Bayesian approach is based on computing
integrals. In either case, for some of the commonly used distributions, we can derive a
closed-form solution. However, for many important models (such as multilayer neural
nets), there’s no closed-form solution. As we saw in Example 3, if we can’t find a closed
form, we can still maximize the log-likelihood using gradient ascent.

13

But for the Bayesian approach, we need to compute an integral in order to marginalize
out the model parameters. If we only have a few parameters, we can do this using nu-
merical quadrature methods. Unfortunately, these methods are exponential in the number
of variables being integrated out. If we’re trying to fit a neural net with thousands (or
even millions) of parameters, this is completely impractical. There are other methods for
integration which perform well in high dimensional spaces; we’ll discuss one such set of
techniques, called Markov chain Monte Carlo, later in the course. However, integration
still tends to be a much more difficult problem than optimization, so if possible we would
like to formulate our learning algorithms in terms of optimization. Let’s now look at the
maximum a-posteriori (MAP) approximation, a way of converting the integration problem
into an optimization problem.

3.3 Maximum a-posteriori (MAP) approximation

We worked through two examples of the full Bayesian approach: Bernoulli and Gaussian
models. In both cases, we saw that as more data is observed, the posterior distribution
becomes more and more peaked around a single value. This suggests that maybe we can
get away with summarizing the posterior with a single point estimate. The maximum a-
posteriori (MAP) approximation chooses the parameters which are most likely under
the posterior, i.e.

θ̂MAP = arg max
θ

p(θ | D) (28)

= arg max
θ

p(θ,D) (29)

= arg max
θ

p(θ) p(D |θ) (30)

= arg max
θ

log p(θ) + log p(D |θ) (31)

Observe that maximizing log p(D |θ) is equivalent to maximum likelihood estimation, so
the only difference between MAP and ML is the addition of the prior term log p(θ). The
prior is therefore somewhat analogous to a regularizer. In fact, if p(θ) is a Gaussian
distribution centered at 0, you get L2 regularization!

Example 5. Let’s return to our coin flip example. The joint probability is
given by:

log p(θ,D) = log p(θ) + log p(D | θ)
= const + (a− 1) log θ + (b− 1) log(1− θ) +NH log θ +NT log(1− θ)
= const + (NH + a− 1) log θ + (NT + b− 1) log(1− θ) (32)

14

(Here, const is a shorthand for terms which don’t depend on θ.) Let’s maximize
this by finding a critical point:

d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b− 1

1− θ
(33)

Setting this to zero, we get

θ̂MAP =
NH + a− 1

NH +NT + a+ b− 2
(34)

We can summarize the results of the three different methods in the following
table, for a = b = 2.

Formula NH = 2, NT = 0 NH = 55, NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

θpred
NH+a

NH+NT+a+b
4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

When we have 100 observations, all three methods agree quite closely with each
other. However, with only 2 observations, they are quite different. θ̂ML = 1,
which as we noted above, is dangerous because it assigns no probability to T,
and it will have a test log-likelihood of −∞ if there is a single T in the test
set. The other methods smooth the estimates considerably. MAP behaves
somewhere in between ML and FB; this happens pretty often, as MAP is a sort
of compromise between the two methods.

Example 6. Let’s return to our Gaussian example. Let’s maximize the joint
probability:

log p(µ,D) = const− 1

2σ2pri
(µ− µpri)2 −

1

2σ2

N∑
i=1

(x(i) − µ)2 (35)

d

dµ
log p(µ,D) = − 1

σ2pri
(µ− µpri) +

1

σ2

N∑
i=1

(x(i) − µ) (36)

When we set this to 0, we get exactly the same formula for µ̂MAP as we derived
earlier for µpost. This doesn’t mean the two methods make the same predictions,
though. The two predictive distributions have the same mean, but the MAP

one has standard deviation σ̂MAP = σ, compared with σpred =
√
σ2post + σ2 for

15

Figure 4: Comparison of the predictions made by the ML, FB, and MAP methods about
future temperatures. (Left) After observing one training case. (Right) After observing
7 training cases, i.e. one week.

the full Bayesian approach. In other words, the full Bayesian approach smooths
the predictions, while MAP does not. Therefore, the full Bayesian approach
tends to make more sensible predictions in the small data setting. A comparison
of the three methods is shown in Figure 4.

3.4 Is MAP a good approximation?

In both of the examples we looked at, ML, FB, and MAP all made very similar predictions
in the large data regime, but very different ones in the small data regime. Which setting
is more typical in practice?

On one hand, we typically use a lot more data than we did in these toy examples.
In typical neural net applications, we’d have thousands or millions of training cases. On
the other hand, we’d also have a lot more parameters: typically thousands or millions.
Depending on the precise dataset and model architecture, there might or might not be a
big difference between the methods.

3.5 Can the full Bayesian method overfit?

We motivated the Bayesian approach as a way to prevent overfitting. It’s sometimes
claimed that you can’t overfit if you use the full Bayesian approach. Is this true? In a
sense, it is. If your prior and likelihood model are both accurate, then Bayesian inference
will average the predictions over all parameter values that are consistent with the data.
Either there’s enough data to accurately pinpoint the correct values, or the predictions will
be averaged over a broad posterior which probably includes values close to the true one.

16

Figure 5: The full Bayesian posterior predictive distribution given the temperatures for
the first week, and a histogram of temperatures for the remainder of the month. Observe
that the predictions are poor because of model misspecification.

However, in the presence of model misspecification, the full Bayesian approach can
still overfit. This term is unfortunate because it makes it sound like misspecification only
happens when we do something wrong. But pretty much all the models we use in machine
learning are vast oversimplifications of reality, so we can’t rely on the theoretical guarantees
of the Bayesian approach (which rely on the model being correctly specified). We can
see this in our Toronto temperatures example. Figure 5 shows the posterior predictive
distribution given the first week of March, as well as a histogram of temperature values for
the rest of the month. A lot of the temperature values are outside the range predicted by
the model! There are at least two problems here, both of which result from the erroneous
i.i.d. assumption:

• The data are not identically distributed: the observed data are for the start of the
month, and temperatures may be higher later in the month.

• The data are not independent: temperatures in subsequent days are correlated, so
treating each observation as a new independent sample results in a more confident
posterior distribution than is actually justified.

Unfortunately, the data are rarely independent in practice, and there are often systematic
differences between the datasets we train on and the settings where we’ll need to apply the
learned models in practice. Therefore, overfitting remains a real possibility even with the
full Bayesian approach.

17

4 Summary

We’ve introduced three different methods for learning probabilistic models:

• Maximum likelihood (ML), where we choose the parameters which maximize the
likelihood:

θ̂ML = arg max
θ

`(θ) = arg max
θ

log p(D |θ) (37)

Sometimes we can compute the optimum analytically by setting partial derivatives
to 0. Otherwise, we need to optimize it using an iterative method such as SGD.

• The full Bayesian (FB) approach, where we make predictions using the posterior
predictive distribution. To do this, we condition on the data and integrate out the
parameters:

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ. (38)

Sometimes there’s a closed-form solution to the integral, but otherwise we need to
solve a difficult high-dimensional integration problem. This is what makes FB so
difficult to apply in practice.

• Maximum a-posteriori (MAP), a compromise between ML and FB. We approximate
the posterior distribution with a single value θMAP, which maximizes the posterior
probability

θ̂MAP = arg max
θ

log p(θ | D) = arg max
θ

log p(θ) + log p(D |θ). (39)

This is similar to ML in that it’s an optimization problem, and the prior term log p(θ)
is analogous to a regularization term.

All three approaches behave similarly in the setting where there are many more data points
than parameters. However, in settings where there isn’t enough data to accurately fit the
parameters, the Bayesian methods have a smoothing effect, which can result in much more
sensible predictions. Later in this course, we’ll see models where each of these methods is
useful.

18

Lecture 19: Generative Adversarial Networks

Roger Grosse

1 Introduction

Generative modeling is a type of machine learning where the aim is to
model the distribution that a given set of data (e.g. images, audio) came
from. Normally this is an unsupervised problem, in the sense that the
models are trained on a large collection of data. Generative models are sometimes

used for supervised learning, but
we won’t consider that here. See
Gaussian discriminant analysis or
naive Bayes in CSC411.

For instance, recall that
the MNIST dataset was obtained by scanning handwritten zip code digits
from envelopes. So consider the distribution of all the digits people ever
write in zip codes. The MNIST training examples can be viewed as samples
from this distribution. If we fit a generative model to MNIST, we’re trying
to learn about the distribution from the training samples. Notice that this
formulation doesn’t use the labels, so it’s an unsupervised learning problem.

Figure 1(a) shows a random subset of the MNIST training examples,
and Figure 1(b) shows some samples from a generative model (called a
Deep Boltzmann Machine) trained on MNIST1; this was considered an im-
pressive result back in 2009. The model’s samples are visually hard to dis-
tinguish from the training examples, suggesting that the model has learned
to match the distribution fairly closely. (We’ll see later why this can be
misleading.) But generative modeling has come a long way since then, and
in fact has made astounding progress over the past 4 years. Figure 1(c)
shows some samples from a Generative Adversarial Network (GAN) trained
on the “dog” category from the CIFAR-10 object recognition dataset in
20152; this was considered an impressive result at the time. Fast forward
two years, and GANs are now able to produce convincing high-resolution
images3, as exemplified in Figure 1(d).

Why train a generative model?

• Most straightforwardly, we may want to generate realistic samples,
e.g. for graphics applications. (Unfortunately, there are more nefarious
uses as well, such as producing realistic fake videos of politicians.)

• We may wish to model the data distribution in order to tell which
of several candidate outputs is more likely; e.g., see Lecture 7, which
used speech recognition as a motivation for language modeling.

• We may want to train a generative model in order to learn useful
high-level features which can be applied to other tasks. This got a

1Salakhutdinov and Hinton, 2009. Deep Boltzmann machines.
2Denton et al., 2015. Deep generative image models using a Laplacian pyramid of

adversarial networks.
3Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and

variation.

1

(a) (b)

(c) (d)

Figure 1: (a) Training images from the MNIST dataset. (b) Samples from a
Deep Boltzmann Machine (Salakhutdinov and Hinton, 2009). (c) Samples
from a GAN trained on the “dog” category of CIFAR-10 (Denton et al.,
2015) (d) Samples from a GAN trained on images of celebrities (Karras et
al., 2017).

2

lot of attention about 10 years ago, with the motivation that there’s
a lot more unlabeled data than labeled data, and having more data
ought to let us learn better features. This motivation has declined
in importance due to the availability of large labeled datasets such
as ImageNet, and to the surprising success of supervised features at
transferring to other tasks.

Last time, we saw very simple examples of learning distributions, i.e. fit-
ting Gaussian and Bernoulli distributions using maximum likelihood. This
lecture and the next one are about deep generative models, where we use
neural nets to learn powerful generative models of complex datasets. There
are four kinds of deep generative models in widespread use today:

• Generative adversarial networks (the topic of today’s lecture)

• Reversible architectures (Lecture 20)

• Autoregressive models (Lectures 7, 15–17, and 20)

• Variational autoencoders (beyond the scope of this class) You can learn about variational
autoencoders in csc412.

Three of these four kinds of generative models are typically trained with
maximum likelihood. But Generative Adversarial Networks (GANs)
are based on a very different idea: we’d like the model to produce samples
which are indistinguishable from the real data, as judged by a discriminator
network whose job it is to tell real from fake. GANs are probably the current
state-of-the-art generative model, as judged by the quality of the samples.

2 Implicit Generative Models

GANs are a kind of implicit generative model, which means we train a
neural net to produce samples; this implicitly defines a probability distri-
bution, namely the distribution of samples that the network generates. When does it suffice to train an

implicit generative model, and
when would you like an explicit
one?

But
the model doesn’t explicitly represent the distribution, in the sense that it
can’t answer other queries, such as the probability assigned to a particular
observation.

The architecture of an implicit generative model, or density network,
is as follows: we first sample a code vector z from a simple, fixed distribu-
tion such as a uniform distribution or a standard Gaussian N (0, I). Note
that this distribution is fixed, i.e. not learned. This code vector is then
passed as input to a deterministic generator network G, which produces
an output sample x = G(z). Schematically:

3

Figure 2: A 1-dimensional generator network.

Implicit generative models are pretty hard to think about, since the relation-
ship between the network weights and the density is complicated. Figure 2
shows an example of a generator network which encodes a univariate dis-
tribution with two different modes. Try to understand why it produces the
density shown.

When we train an implicit generative model of images, we’re aiming to
learn the following:

This probably seems preposterous at first; how can you encode something as
complex as a probability distribution over images in terms of a deterministic
mapping from a spherical Gaussian distribution? But amazingly, it works.

3 Generative Adversarial Networks

Recall that implicit generative models don’t let us query the probability
of an observation, so clearly we can’t train them using maximum likeli-

4

hood. Generative adversarial networks use an elegant training criterion
that doesn’t require computing the likelihood. In particular, if the genera-
tor is doing a good job of modeling the data distribution, then the generated
samples should be indistinguishable from the true data. So the idea behind
GANs is to train a discriminator network whose job it is to classify
whether an observation (e.g. an image) is from the training set or whether
it was produced by the generator. The generator is evaluated based on the
discriminator’s inability to tell its samples from data.

To rephrase this, we simultaneously train two different networks:

• The generator network G, defined as in Section 2, which tries to gen-
erate realistic samples

• The discriminator network D, which is a binary classification network
which tries to classify real vs. fake samples. It takes an input x and
computes D(x), the probability it assigns to x being real.

The two networks are trained competitively: the generator is trying to fool
the discriminator, and the discriminator is trying not to be fooled by the
generator. This is shown schematically as follows:

The discriminator is trained just like a logistic regression classifier. Its
cost function is the cross-entropy for classifying real vs. fake: The cost function is written as an

expectation, but we estimate it
using samples (training images or
samples from the generator) in
order to update the weights with
SGD. This is known as Monte
Carlo estimation.

JD = Ex∼D[− logD(x)] + Ez[− log(1−D(G(z)))] (1)

Here, x ∼ D denotes sampling from the training set. If the discriminator has
low cross entropy, that means it can easily distinguish real from fake; if it has
high cross-entropy, that means it can’t. Therefore, the most straightforward
criterion for the generator is to maximize the discriminator’s cross-entropy.
This is equivalent to making the generator’s cost function the negative cross-
entropy:

JG = −JD
= const + Ez[log(1−D(G(z)))]

(2)

5

(a) (b)

Figure 3: (a) Updating the discriminator. (b) Updating the generator.

Note that the generator has no control over the first term in Eqn. 1, which
is why we simply write it as constant.

Consider the cost function from the perspective of the generator. Given
a fixed generator, the discriminator will learn to minimize its cross-entropy.
The generator knows this, so it wants to maximize the minimum cross-
entropy achievable by any discriminator. Mathematically, it’s trying to
compute

arg max
G

min
D
JD. (3)

This this cost function involves a min inside a max, it’s called the minimax
formulation. It’s an example of a perfectly competitive game, or zero-
sum game, since the generator and discriminator have exactly opposing
objectives.

The generator and discriminator are trained jointly, so they can adapt
to each other. Unfortunately, not having a unified

cost function for training both
networks makes the training
dynamics much more complicated
compared with the optimization
setting, as we assumed in the rest
of this course. This means GAN
training can be pretty finnicky.

Both networks are trained using backprop on their cost func-
tions. This is handled automatically by autodiff packages, but conceptually
we can understand it as shown in Figure 3. In practice, we don’t actually do
separate updates for the generator and discriminator; rather, both networks
are updated in a single backprop step. Figure 4 shows a cartoon example
of a GAN being trained on a 1-dimensional toy dataset.

3.1 A Better Cost Function

The minimax formulation is one way of training GANs, but it has a prob-
lem: saturation. Recall from Lecture 4 that if you use a logistic activation
function and squared error loss to do classifiation, the cost function satu-
rates when the predictions are very wrong. I.e., the cost function flattens
out, resulting in small updates to the weights. We saw that this is prob-
lematic for optimization, since if the prediction is very wrong, we ought to
make a large update. Our solution was to switch to the cross-entropy loss,
which treats a prediction of 0.001 for the correct category as much worse
than a prediction of 0.01. Hence, there would be a strong gradient signal

6

Figure 4: Cartoon of training a GAN to model a 1-dimensional distribution.
Black: the data density. Blue: the discriminator function. Green: the
generator distribution. Arrows: the generator function. First the discrim-
inator is updated, then the generator, and so on. Figure from Goodfellow
et al., 2014, “Generative adversarial nets”.

pushing the network to assign probability 0.01 rather than 0.001, and then
0.1 rather than 0.01, and so on.

The same reasoning applies to GANs. Observe what happens if the
discriminator is doing very well, or equivalently, the generator is doing very
badly. This means D(G(z)) is very close to 0, and hence JG is close to 0
(the worst possible value). If we were to change the generator’s weights just
a little bit, then JG would still be close to 0. This means we’re in a plateau
of the minimax cost function, i.e. the generator’s gradient is close to 0, and
it will hardly get updated.

We can apply a fix that’s roughly analogous to when we switched from
logistic-least-squares to logistic-cross-entropy in Lecture 4. In particular, we
modify the generator’s cost function to magnify small differences in D(G(z))
when it is close to 0. Mathematically, we replace the generator cost from
Eqn. 2 with the modifed cost:

JG = Ez[− logD(G(z))] (4)

This cost function is really unhappy when the discriminator is able to con-
fidently recognize one of its samples as fake, so the generator gets a strong
gradient signal pushing it to make the discriminator less confident. Even-
tually, it should be able to produce samples which actually fool the dis-
criminator. The relationship between the two generator costs is shown in
Figure 5. The modified generator cost is typically much more effective than
the minimax formulation, and is what’s nearly always used in practice.

4 Style Transfer with CycleGAN

GANs by themselves are pretty impressive, judged by their ability to pro-
duce convincing samples. But we can also use GANs as components of a
bigger architecture, which lets us do some pretty neat things. One of the
most surprising recent examples is the cycle consistent GAN, or Cycle-
GAN, an architecture for doing style transfer of images. Recall that the
style transfer task is to take an image in one style (such as a photograph)

7

Figure 5: Comparison of the minimax generator cost to the modified one.

and transform it to be a different style (such as a van Gogh painting) while
preserving the content of the image (e.g. objects and their locations).

It’s unlikely that we have lots of pairs of images in both styles (e.g. a
photograph and a van Gogh painting that matches it). So let’s assume we
have unpaired data, i.e. collections of unrelated images in the two styles.

We’d like to train two generators: one to go from Style A to Style B,
and one to go from Style B to Style A. Think how many layers of

abstraction we have here. The
CycleGAN is composed of multiple
neural nets, which are composed of
layers, which are composed of
units and connections, which
compute simple arithmetic
operations. Moving between layers
of abstraction is part of being a
good computer scientist.

From how we stated the problem,
we have two desiderata:

• we’d like the generator to produce outputs which are plausible images
of the target style, and

• we’d like it to preserve the structure of the original image.

We satisfy the first criterion using the GAN generator objective, which in
this context is termed the discriminator cost. I.e., we train a discrimina-
tor network to distinguish between outputs of the first generator and train-
ing images from Style B, and then another discriminator to do the same for
Style A. In order to satisfy the second criterion, we impose a cycle con-
sistency cost, or reconstruction cost. Observe that if both generators
preserve the structure, and you run both in sequence, you should get back
the original image. The reconstruction cost penalizes the squared error in
reconstructing the original image, i.e. ‖x−G2(G1(x))‖2. This architecture
is shown in Figure 6.

You’ll get a chance to implement this architecture for Assignment 4.
You can find lots cool examples of style transfer here:

https://github.com/junyanz/CycleGAN

8

https://github.com/junyanz/CycleGAN

Figure 6: The CycleGAN architecture.

9

Lecture 20: Reversible and Autoregressive Models

Roger Grosse

As we saw last time, GANs are very good at producing convincing
samples for complex data distributions. But they’re an implicit generative
model, which means they don’t explicitly represent the density, i.e. we can’t
evaluate the probability of an observation. This means we can’t measure
the likelihood, which has two implications:

• We can’t train the model using maximum likelihood.

• Without measuring likelihoods, it’s hard to tell if the network is re-
ally modeling the distribution well. E.g., it could be memorizing the
training data, or ignoring part of the distribution. If we could compute
likelihoods, we could, e.g., measure if there’s a big difference between
likelihoods on the training and test sets.

In this lecture, we’ll cover two kinds deep generative model architec-
tures for which we can measure the likelihood, and hence can train them
using maximum likelihood. The first kind is reversible architectures, where
the network’s computations can be inverted in order to recover the input
which maps to a given output. We’ll see that this makes the likelihood
computation tractable.

The second kind of architecture is autoregressive models. This isn’t new:
we’ve already covered neural language models and RNN language models,
both of which are examples of autoregressive models. In this lecture, we’ll
introduce two tricks for making them much more scalable, so that we can
apply them to high-dimensional data modalities like high-resolution images
and audio waveforms.

1 Reversible Models

Recall the GAN generator architecture from last lecture: we would first
sample a code vector from a fixed, simple distribution such as uniform or
spherical Gaussian. The generator (which is a deterministic feed-forward
network) maps the code vector to the observation space. Hopefully, the dis-
tribution of the network’s outputs should approximate the data distribution.
We noted that this was an implicit generative model, since it’s intractable
to determine the density p(x) for any observation x. But if we modify the
generator architecture to be reversible, then it’s possible to compute the
density.

Mathematically, this is based on the change-of-variables formula for
probability density functions. Suppose we have a bijective, differentiable
mapping f : Z → X . (“Bijective” means the mapping must be 1–1 and
cover all of X .) Since f is bijective, we can think of it as representing a

1

change-of-variables transformation. For instance, x = f(z) = 12z could
represent a conversion of units from feet to inches. If we have a density
pZ(z), the change-of-variables formula gives us the density pX(x):

pX(x) = pZ(z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1 , (1)

where z = f−1(x). Let’s unpack this. First, ∂x/∂z is the Jacobian of
f , which is the linearization of f around z. Then we take the absolute
value of the matrix determinant. Recall that the absolute value of the
determinant of a matrix gives the factor by which the associated linear
transformation expands or contracts the volume of a set. If we consider the linear

transformation x 7→ Ax for some
matrix A, and apply it to a set
with volume V , we’ll get a set with
volume V |detA|.

So the determinant
of the Jacobian determines how much f is expanding or contracting the
volume locally around z. We then take the inverse of the determinant,
which means if f expands the volume, then the density pX(x) shrinks, and
vice versa. Heuristically, this is justified by the following picture:

Now suppose the mapping f is the function computed by a generator
network (i.e. its outputs as a function of its inputs). It’s tempting to apply
the change-of-variables formula in order to compute pX(x). But in order
for this to work, three things need to be true:

1. The mapping f needs to be differentiable, so that the Jacobian ∂x/∂z
is defined.

2. We need to be able to compute z = f−1(x), which means f needs to
be invertible, with an easy-to-compute inverse.

3. We need to be able to compute the (log) determinant of the Jacobian.

With regards to (1), networks with ReLU nonlinearities technically aren’t
differentiable because ReLU is nondifferentiable at 0. In practice, we can ig-
nore this issue because the inputs to the activation function are very unlikely
to be exactly zero, so with high probability, the Jacobian will be defined. Or,
if we’re still worried, we could just pick a differentiable activation function.
But the other two points are much harder to deal with.

Fortunately, there’s a simple and elegant kind of network architecture
called a reversible architecture which is efficiently invertible and for
which we can compute the log determinant efficiently. (In fact, the de-
terminant turns out to be 1.) This architecture is based on the reversible
block, which is very similar to the residual block from Lecture 17. Recall
that residual blocks implement the following equation:

y = x + F(x), (2)

2

(a) (b) (c)

Figure 1: (a) A residual block. (b) A reversible block. (c) A composition
of two reversible blocks.

where F is some function, such as a shallow network. Reversible blocks
are similar, except that we divide the units into two groups; the residual
function for the first group depends only on the other group, and the second
group is left unchanged. Mathematically,

y1 = x1 + F(x2)

y2 = x2
(3)

This is shown schematically in Figure 1. The reversible block is easily
inverted, i.e. if we’re given y1 and y2, we can recover x1 and x2:

x2 = y2

x1 = y1 −F(x2)
(4)

Here’s what happens when we compose two residual blocks, with the
roles of x1 and x2 swapped:

y1 = x1 + F(x2)

y2 = x2 + G(y1)
(5)

This is shown schematically in Figure 1. To invert the composition of two
blocks:

x2 = y2 − G(y1)

x1 = y1 −F(x2)
(6)

So we’ve shown how to invert a reversible block. What about the de-
terminant of the Jacobian? Here is the formula for the Jacobian, which we
get by differentiating Eqn. 3 and putting the result into the form of a block
matrix:

∂y

∂x
=

(
I ∂F

∂x2

0 I

)
(Recall that I denotes the identity matrix.) Here’s the pattern of nonzero
entries of this matrix:

3

This is an upper triangular matrix. Think back to linear algebra class:
the determinant of an upper triangular matrix is simply the product of
the diagonal entries. In this case, the diagonal entries are all 1’s, so the
determinant is 1. How convenient! Since the determinant is 1, the mapping
is volume preserving, i.e. it maps any given set to another set of the same
volume. In our context, this just means the determinant term disappears
from the change-of-variables formula (Eqn. 1).

All this analysis so far was for a single reversible block. What if we build
a reversible network by chaining together lots of reversible blocks?

Fortunately, inversion of the whole network is still easy, since we just invert
each block from top to bottom. Mathematically,

f−1 = f−11 ◦ · · · ◦ f−1k . (7)

For the determinant, we can apply the chain rule for derivatives, followed
by the product rule for determinants:∣∣∣∣∂xk

∂z

∣∣∣∣ =
∣∣ ∂xk

∂xk−1
· · · ∂x2

∂x1

∂x1

∂z

∣∣
=
∣∣ ∂xk

∂xk−1

∣∣ · · · ∣∣∂x2

∂x1

∣∣∣∣∂x1

∂z

∣∣
= 1 · 1 · · · 1
= 1

(8)

Hence, the full reversible network is also volume preserving.
Because we can compute inverses and determinants, we can train a re-

versible generative model using maximum likelihood using the change-of-
variables formula. This is the idea behind nonlinear independent com-
ponents estimation (NICE)1. (This paper introduced the idea of training

1Dinh et al., 2014. NICE: Non-linear independent components estimation.

4

reversible architectures with maximum likelihood.) The change-of-variables
formula gives us:

pX(x) = pZ(z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1
= pZ(z)

(9)

Hence, the maximum likelihood objective over the whole dataset is:

N∏
i=1

pX(x(i)) =

N∏
i=1

pZ(f−1(x(i))) (10)

Remember, pZ is a simple, fixed distribution (e.g. independent Gaussians),
so pZ(z) is easy to evaluate. Note that this objective only makes sense
because of the volume constraint. If f weren’t constrained to be

volume preserving, then f−1 could
map every training example very
close to 0, and hence pZ(f

−1(x(i)))
would be large for every training
example. The volume preservation
constraint prevents this trivial
solution.

2 Autoregressive Models

Autoregressive models are another kind of deep generative model with
tractable likelihoods. We’ve already seen two examples in this course: the
neural language model (Lecture 7) and RNNs (Lectures 15-17). Here, the
observations were given as sequences (x(1), . . . ,x(T)), and we decomposed
the likelihood into a product of conditional distributions:

p(x(1), . . . ,x(t)) =
T∏
t=1

p(x(t) |x(1), . . . ,x(t−1)). (11)

So the maximum likelihood objective decomposes as a sequence of prediction
problems for each term in the sequence given the previous terms. Assuming
the observations were discrete (as they are in all the autoregressive models
considered in this course), the prediction at each time step can be made
using a neural network which outputs a probability distribution using a
softmax activation function.

So far, we’ve mostly considered using short sequences or short context
lengths. The neural language model from Assignment 1 used context win-
dows of length 3, though the architecture could work better with contexts of
length 10 or so. Machine translation at the word level involves outputting
sequences of length 20 or so (the typical number of words in a sentence).

But what if accurately modeling the distribution requires much longer
term dependencies? One example is autoregressive models of images. A
grayscale image is typically represented with pixel values which are integers
from 0 to 255 (i.e. one byte each). We can treat this as a sequence using
the raster scan order (Figure 2). But even a fairly small image would corre-
spond to a very long sequence, e.g. a 100× 100 image would correspond to
a sequence of length 10,000. Clearly, images have a lot of global structure,
so the predictions would need to take into account all of the pixels which
were already generated. As another example, consider learning a genera-
tive model of audio waveforms. An audio waveform is stored as a sequence
of integer-valued samples, with a sampling rate of at least 16,000 Hz (cy-
cles/second) in order to have reasonably good sound quality. This means

5

Figure 2: Examples of sequence modeling tasks with very long contexts.
Left: Modeling images as sequences using raster scan order. Right: Mod-
eling an audio waveform (e.g. speech signal).

that to predict the next term in the sequence, if we want to account for
even 1 second of context, this requires a context of length 16,000.

One way to account for such a long context is to use an RNN, which
(through its hidden units) accounts for the entire sequence that was gener-
ated so far. The problem is that computing the hidden units for each time
step depends on the hidden units from the previous time step, so the for-
ward pass of backprop requires a for-loop over time steps. (The backward
pass requires a for-loop as well.) With thousands of time steps, this can
get very expensive. But think about the neural language model architecture
from Lecture 7. At training time, the predictions at each time step are done
independently of each other, so all the time steps can be processed simulta-
neously with vectorized computations. This implies that training with very
long sequences could be done much more efficiently if we could somehow
get rid of the recurrent connections.

Causal convolution is an elegant solution to this problem. Observe
that, in order to apply the chain rule for conditional probability (Eqn. 11),
it’s important that information never leak backwards in time, i.e. that each
prediction be made only using observations from earlier in the sequence.
A model with this property is called causal. We can design convolutional
neural nets (CNNs) to have a causal structure by masking their connections,
i.e. constraining certain of their weights to be zero, as shown in Figure 3. At
training time, the predictions can be computed for the entire sequence with
a single forward pass through the CNN. Causal convolution is a particularly
elegant architecture in that it allows computations to be shared between the
predictions for different time steps, e.g. a given unit in the first layer will
affect the predictions at multiple different time steps.

It’s interesting to contrast a causal convolution architecture with an
RNN. We could turn the causal CNN into an RNN by adding recurrent
connections between the hidden units. This would have the advantage that,
because of its memory, the model could use information from all previous
time steps to make its predictions. But training would be very slow, since
it would require a for-loop over time steps. A very influential recent pa-
per2 showed that both strategies are actually highly effective for modeling
images. Take a moment to look at the examples in that paper.

2van den Oord et al., 2016, “Pixel recurrent neural networks”. https://arxiv.org/

abs/1601.06759

6

https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1601.06759

Figure 3: Top: a causal CNN applied to sequential data (such as an audio
waveform). Source: van den Oord et al., 2016, “WaveNet: a generative
model for raw audio”. Bottom: applying causal convolution to model-
ing images. Source: van den Oord et al., 2016, “Pixel recurrent neural
networks”.

7

Figure 4: The dilated convolution architecture used in WaveNet. Source:
van den Oord et al., 2016, “WaveNet: a generative model for raw audio”.

The problem with a straightforward CNN architecture is that the pre-
dictions are made using a relatively short context because the output units
have a small receptive field. Fortunately, there’s a clever fix for this prob-
lem, which you’ve already seen in Programming Assignment 2: dilated
convolution. Recall that this means that each unit receives connections
from units in the previous layer with a spacing larger than 1. Figure 4 shows
part of the dilated convolution architecture for WaveNet3, an autoregres-
sive model for audio. The first layer has a dilation of 1, so each unit has a
receptive field of size 1. The next layer has a dilation of 2, so each unit has
a receptive field of size 2. The dilation factors are spaced by factors of 2,
i.e., {1, 2, . . . , 512}, so that the 10th layer has receptive fields of size 1024.
Hence, it gets exponentially large receptive fields with only a linear number
of connections. This 10-layer architecture is repeated 5 times, so that the
receptive fields are approximately of size 5000, or about 300 milliseconds.
This is a large enough context to generate impressively good audio. You
can find some neat examples here:

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Compared with other autoregressive models, causal, dilated CNNs are
quite efficient at training time, despite their large context. However, all
autoregressive models, including both CNNs and RNNs, share a common
disadvantage: they are very slow to generate from, since the model’s own
samples need to be fed in as inputs, which means it requires a for-loop over
time steps. So if efficiency of generation is a big concern, then GANs or
reversible models would be much preferred. Learning a generative model of
audio which is of similar quality to WaveNet, yet also efficient to generate
from, is an active area of research.

3van den Oord et al., 2016, “WaveNet: a generative model for raw audio”. https:

//arxiv.org/abs/1609.03499

8

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499

	Motivation
	Why machine learning?
	How is machine learning different from statistics?
	Why a course on neural networks?

	Types of machine learning
	Supervised learning
	Reinforcement Learning
	Unsupervised Learning

	Neural nets and the brain
	Software
	Introduction
	Learning goals

	Problem setup
	Solving the optimization problem
	Direct solution
	Gradient descent

	Vectorization
	Feature mappings
	Generalization
	Introduction
	Learning goals

	Binary linear classifiers
	Thresholds and biases
	Some examples

	The geometric picture
	Data space
	Weight space

	The perceptron learning rule
	The limits of linear classifiers
	Convex sets
	Showing that functions aren't linearly separable
	Circumventing this problem by using feature representations

	Introduction
	Learning Goals

	Choosing a cost function
	Attempt 1: 0-1 loss
	Attempt 2: linear regression
	Attempt 3: logistic nonlinearity
	Final touch: cross-entropy loss
	Logistic-cross-entropy function
	Another alternative: hinge loss

	Multiclass classification
	Convex Functions
	Gradient Checking with Finite Differences
	Introduction
	Learning Goals

	Multilayer Perceptrons
	Feature Learning
	Expressive Power
	Linear networks
	Universality
	Soft thresholds
	The power of depth

	Introduction
	Learning Goals
	Background

	The Chain Rule revisited
	How you would have done it in calculus class
	Multivariable chain rule: the easy case
	An alternative notation
	Using the computation graph

	Backprop on a multilayer net
	Appendix: why the weird notation?
	Introduction
	Motivation: Language Modeling
	Autoregressive Models
	n-Gram Language Models
	Distributed Representations

	Neural Probabilistic Language Model
	Introduction
	Learning goals

	Visualizing gradient descent
	Stochastic gradient descent
	Problems, diagnostics, and workarounds
	Incorrect gradient computations
	Local optima
	Symmetries
	Slow progress
	Instability and oscillations
	Fluctuations
	Dead and saturated units
	Badly conditioned curvature
	Recap

	Introduction
	Learning Goals

	Measuring generalization
	Reasoning about generalization
	Bias and variance

	Reducing overfitting
	Reducing capacity
	Early stopping
	Regularization and weight decay
	Ensembles
	Data augmentation
	Stochastic regularization

	Introduction
	Convolution
	Examples
	Properties of convolution
	Convolutional feature detection

	Convolution layers
	Pooling layers
	Introduction
	Object recognition datasets
	USPS and MNIST
	Caltech101 and the perils of dataset design
	ImageNet

	LeNet
	Modern conv nets
	Introduction
	Learning Goals

	Recurrent Neural Nets
	Backprop Through Time
	Sequence Modeling
	Language Modeling
	Neural Machine Translation
	Learning to Execute Programs

	Introduction
	Learning Goals

	Why Gradients Explode or Vanish
	The mechanics of backprop
	Iterated functions

	Keeping Things Stable
	Gradient Clipping
	Input Reversal
	Identity Initialization
	Long-Term Short Term Memory

	Introduction
	ResNets
	Attention
	Introduction
	Implicit Generative Models
	Generative Adversarial Networks
	A Better Cost Function

	Style Transfer with CycleGAN
	Reversible Models
	Autoregressive Models

