
CHAPTER 11

INFORMATION THEORY
AND STATISTICS

We now explore the relationship between information theory and statistics.
We begin by describing the method of types, which is a powerful technique
in large deviation theory. We use the method of types to calculate the
probability of rare events and to show the existence of universal source
codes. We also consider the problem of testing hypotheses and derive the
best possible error exponents for such tests (the Chernoff–Stein lemma).
Finally, we treat the estimation of the parameters of a distribution and
describe the role of Fisher information.

11.1 METHOD OF TYPES

The AEP for discrete random variables (Chapter 3) focuses our attention
on a small subset of typical sequences. The method of types is an even
more powerful procedure in which we consider sequences that have the
same empirical distribution. With this restriction, we can derive strong
bounds on the number of sequences with a particular empirical distribution
and the probability of each sequence in this set. It is then possible to derive
strong error bounds for the channel coding theorem and prove a variety
of rate distortion results. The method of types was fully developed by
Csiszár and Körner [149], who obtained most of their results from this
point of view.

Let X1, X2, . . . , Xn be a sequence of n symbols from an alphabet X =
{a1, a2, . . . , a|X |}. We use the notation xn and xinterchangeably to denote
a sequence x1, x2, . . . , xn.

Definition The type Px (or empirical probability distribution) of a se-
quence x1, x2, . . . , xn is the relative proportion of occurrences of each
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symbol of X (i.e., Px(a) = N(a|x)/n for all a ∈ X, where N(a|x) is the
number of times the symbol a occurs in the sequence x∈ Xn).

The type of a sequence x is denoted as Px. It is a probability mass
function on X. (Note that in this chapter, we will use capital letters to
denote types and distributions. We also loosely use the word distribution
to mean a probability mass function.)

Definition The probability simplex in Rm is the set of points x=
(x1, x2, . . . , xm) ∈ Rm such that xi ≥ 0,

∑m
i=1 xi = 1.

The probability simplex is an (m − 1)-dimensional manifold in
m-dimensional space. When m = 3, the probability simplex is the
set of points {(x1, x2, x3) : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = 1}
(Figure 11.1). Since this is a triangular two-dimensional flat in R3, we
use a triangle to represent the probability simplex in later sections of this
chapter.

Definition Let Pn denote the set of types with denominator n.
For example, if X = {0, 1}, the set of possible types with denominator

n is

Pn =
{
(P (0), P (1)) :

(
0
n
,
n

n

)
,

(
1
n
,
n − 1

n

)
, . . . ,

(
n

n
,

0
n

)}
. (11.1)

Definition If P ∈ Pn, the set of sequences of length n and type P is
called the type class of P , denoted T (P ):

T (P ) = {x∈ Xn : Px = P }. (11.2)

The type class is sometimes called the composition class of P .
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FIGURE 11.1. Probability simplex in R3.
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Example 11.1.1 Let X = {1, 2, 3}, a ternary alphabet. Let x= 11321.
Then the type Px is

Px(1) = 3
5
, Px(2) = 1

5
, Px(3) = 1

5
. (11.3)

The type class of Px is the set of all sequences of length 5 with three 1’s,
one 2, and one 3. There are 20 such sequences, and

T (Px) = {11123, 11132, 11213, . . . , 32111}. (11.4)

The number of elements in T (P ) is

|T (P )| =
(

5
3, 1, 1

)
= 5!

3! 1! 1!
= 20. (11.5)

The essential power of the method of types arises from the following
theorem, which shows that the number of types is at most polynomial
in n.

Theorem 11.1.1

|Pn| ≤ (n + 1)|X |. (11.6)

Proof: There are |X| components in the vector that specifies Px. The
numerator in each component can take on only n + 1 values. So there are
at most (n + 1)|X | choices for the type vector. Of course, these choices
are not independent (e.g., the last choice is fixed by the others). But this
is a sufficiently good upper bound for our needs. !

The crucial point here is that there are only a polynomial number of
types of length n. Since the number of sequences is exponential in n, it
follows that at least one type has exponentially many sequences in its
type class. In fact, the largest type class has essentially the same number
of elements as the entire set of sequences, to first order in the exponent.

Now, we assume that the sequence X1, X2, . . . , Xn is drawn i.i.d.
according to a distribution Q(x). All sequences with the same type have
the same probability, as shown in the following theorem. Let Qn(xn) =∏n

i=1 Q(xi) denote the product distribution associated with Q.

Theorem 11.1.2 If X1, X2, . . . , Xn are drawn i.i.d. according to Q(x),
the probability of xdepends only on its type and is given by

Qn(x) = 2−n(H(Px)+D(Px||Q)). (11.7)
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Proof

Qn(x) =
n∏

i=1

Q(xi) (11.8)

=
∏

a∈X
Q(a)N(a|x) (11.9)

=
∏

a∈X
Q(a)nPx(a) (11.10)

=
∏

a∈X
2nPx(a) log Q(a) (11.11)

=
∏

a∈X
2n(Px(a) log Q(a)−Px(a) log Px(a)+Px(a) log Px(a)) (11.12)

= 2n
∑

a∈X (−Px(a) log Px(a)
Q(a) +Px(a) log Px(a)) (11.13)

= 2n(−D(Px||Q)−H(Px)). ! (11.14)

Corollary If xis in the type class of Q, then

Qn(x) = 2−nH(Q). (11.15)

Proof: If x∈ T (Q), then Px = Q, which can be substituted into (11.14).
!

Example 11.1.2 The probability that a fair die produces a particular
sequence of length n with precisely n/6 occurrences of each face (n is a
multiple of 6) is 2−nH( 1

6 , 1
6 ,..., 1

6 ) = 6−n. This is obvious. However, if the
die has a probability mass function ( 1

3 , 1
3 , 1

6 , 1
12 , 1

12 , 0), the probability of
observing a particular sequence with precisely these frequencies is pre-
cisely 2−nH( 1

3 , 1
3 , 1

6 , 1
12 , 1

12 ,0) for n a multiple of 12. This is more interesting.

We now give an estimate of the size of a type class T (P ).

Theorem 11.1.3 (Size of a type class T (P )) For any type P ∈ Pn,

1
(n + 1)|X | 2

nH(P ) ≤ |T (P )| ≤ 2nH(P ). (11.16)

Proof: The exact size of T (P ) is easy to calculate. It is a simple combi-
natorial problem—the number of ways of arranging nP (a1), nP (a2), . . . ,
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nP (a|X |) objects in a sequence, which is

|T (P )| =
(

n

nP (a1), nP (a2), . . . , nP (a|X |)

)
. (11.17)

This value is hard to manipulate, so we derive simple exponential bounds
on its value.

We suggest two alternative proofs for the exponential bounds. The first
proof uses Stirling’s formula [208] to bound the factorial function, and
after some algebra, we can obtain the bounds of the theorem. We give an
alternative proof. We first prove the upper bound. Since a type class must
have probability ≤ 1, we have

1 ≥ P n(T (P )) (11.18)

=
∑

x∈T (P )

P n(x) (11.19)

=
∑

x∈T (P )

2−nH(P ) (11.20)

= |T (P )|2−nH(P ), (11.21)

using Theorem 11.1.2. Thus,

|T (P )| ≤ 2nH(P ). (11.22)

Now for the lower bound. We first prove that the type class T (P )
has the highest probability among all type classes under the probability
distribution P :

P n(T (P )) ≥ P n(T (P̂ )) for all P̂ ∈ Pn. (11.23)

We lower bound the ratio of probabilities,

P n(T (P ))

P n(T (P̂ ))
=

|T (P )|
∏

a∈X P(a)nP(a)

|T (P̂ )|
∏

a∈X P(a)nP̂ (a)
(11.24)

=

(
n

nP (a1), nP (a2),...,nP (a|X |)

)∏
a∈X P(a)nP(a)

(
n

nP̂ (a1), nP̂ (a2),...,nP̂ (a|X |)

)∏
a∈X P(a)nP̂ (a)

(11.25)

=
∏

a∈X

(nP̂ (a))!
(nP (a))!

P(a)n(P (a)−P̂ (a)). (11.26)
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Now using the simple bound (easy to prove by separately considering the
cases m ≥ n and m < n)

m!
n!

≥ nm−n, (11.27)

we obtain

P n(T (P ))

P n(T (P̂ ))
≥

∏

a∈X
(nP (a))nP̂ (a)−nP (a)P (a)n(P (a)−P̂ (a)) (11.28)

=
∏

a∈X
nn(P̂ (a)−P(a)) (11.29)

= nn(
∑

a∈X P̂ (a)−
∑

a∈X P(a)) (11.30)

= nn(1−1) (11.31)

= 1. (11.32)

Hence, P n(T (P )) ≥ P n(T (P̂ )). The lower bound now follows easily
from this result, since

1 =
∑

Q∈Pn

P n(T (Q)) (11.33)

≤
∑

Q∈Pn

max
Q

P n(T (Q)) (11.34)

=
∑

Q∈Pn

P n(T (P )) (11.35)

≤ (n + 1)|X |P n(T (P )) (11.36)

= (n + 1)|X |
∑

x∈T (P )

P n(x) (11.37)

= (n + 1)|X |
∑

x∈T (P )

2−nH(P ) (11.38)

= (n + 1)|X ||T (P )|2−nH(P ), (11.39)

where (11.36) follows from Theorem 11.1.1 and (11.38) follows from
Theorem 11.1.2. !

We give a slightly better approximation for the binary case.
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Example 11.1.3 (Binary alphabet) In this case, the type is defined
by the number of 1’s in the sequence, and the size of the type class is
therefore

(
n
k

)
. We show that

1
n + 1

2nH
(

k
n

)

≤
(

n

k

)
≤ 2nH

(
k
n

)

. (11.40)

These bounds can be proved using Stirling’s approximation for the fac-
torial function (Lemma 17.5.1). But we provide a more intuitive proof
below.

We first prove the upper bound. From the binomial formula, for any p,

n∑

k=0

(
n

k

)
pk(1 − p)n−k = 1. (11.41)

Since all the terms of the sum are positive for 0 ≤ p ≤ 1, each of the
terms is less than 1. Setting p = k/n and taking the kth term, we get

1 ≥
(

n

k

)(
k

n

)k (
1 − k

n

)n−k

(11.42)

=
(

n

k

)
2k log k

n+(n−k) log n−k
n (11.43)

=
(

n

k

)
2n

(
k
n log k

n+ n−k
n log n−k

n

)

(11.44)

=
(

n

k

)
2−nH

(
k
n

)

. (11.45)

Hence,
(

n

k

)
≤ 2

nH
(

k
n

)

. (11.46)

For the lower bound, let S be a random variable with a binomial
distribution with parameters n and p. The most likely value of S is
S = ⟨np⟩. This can easily be verified from the fact that

P(S = i + 1)

P (S = i)
= n − i

i + 1
p

1 − p
(11.47)

and considering the cases when i < np and when i > np. Then, since
there are n + 1 terms in the binomial sum,
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1 =
n∑

k=0

(
n

k

)
pk(1 − p)n−k ≤ (n + 1) max

k

(
n

k

)
pk(1 − p)n−k (11.48)

= (n + 1)

(
n

⟨np⟩

)
p⟨np⟩(1 − p)n−⟨np⟩. (11.49)

Now let p = k/n. Then we have

1 ≤ (n + 1)

(
n

k

)(
k

n

)k (
1 − k

n

)n−k

, (11.50)

which by the arguments in (11.45) is equivalent to

1
n + 1

≤
(

n

k

)
2−nH

(
k
n

)

, (11.51)

or

(
n

k

)
≥ 2nH

(
k
n

)

n + 1
. (11.52)

Combining the two results, we see that
(

n

k

)
.= 2nH

(
k
n

)

. (11.53)

A more precise bound can be found in theorem 17.5.1 when k ̸= 0 or n.

Theorem 11.1.4 (Probability of type class) for any P ∈ Pn and any
distribution Q, the probability of the type class T (P ) under Qn is 2−nD(P ||Q)

to first order in the exponent. More precisely,

1
(n + 1)|X | 2

−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q). (11.54)

Proof: We have

Qn(T (P )) =
∑

x∈T (P )

Qn(x) (11.55)

=
∑

x∈T (P )

2−n(D(P ||Q)+H(P)) (11.56)

= |T (P )|2−n(D(P ||Q)+H(P)), (11.57)
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by Theorem 11.1.2. Using the bounds on |T (P )| derived in Theorem
11.1.3, we have

1
(n + 1)|X | 2

−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q). ! (11.58)

We can summarize the basic theorems concerning types in four equa-
tions:

|Pn| ≤ (n + 1)|X |, (11.59)

Qn(x) = 2−n(D(Px||Q)+H(Px)), (11.60)

|T (P )| .= 2nH(P ), (11.61)

Qn(T (P ))
.= 2−nD(P ||Q). (11.62)

These equations state that there are only a polynomial number of types
and that there are an exponential number of sequences of each type. We
also have an exact formula for the probability of any sequence of type P
under distribution Q and an approximate formula for the probability of a
type class.

These equations allow us to calculate the behavior of long sequences
based on the properties of the type of the sequence. For example, for
long sequences drawn i.i.d. according to some distribution, the type of
the sequence is close to the distribution generating the sequence, and we
can use the properties of this distribution to estimate the properties of the
sequence. Some of the applications that will be dealt with in the next few
sections are as follows:

• The law of large numbers
• Universal source coding
• Sanov’s theorem
• The Chernoff–Stein lemma and hypothesis testing
• Conditional probability and limit theorems

11.2 LAW OF LARGE NUMBERS

The concept of type and type classes enables us to give an alternative
statement of the law of large numbers. In fact, it can be used as a proof
of a version of the weak law in the discrete case. The most important
property of types is that there are only a polynomial number of types, and
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an exponential number of sequences of each type. Since the probability
of each type class depends exponentially on the relative entropy distance
between the type P and the distribution Q, type classes that are far from
the true distribution have exponentially smaller probability.

Given an ϵ > 0, we can define a typical set T ϵ
Q of sequences for the

distribution Qn as

T ϵ
Q = {xn : D(Pxn ||Q) ≤ ϵ}. (11.63)

Then the probability that xn is not typical is

1 − Qn(T ϵ
Q) =

∑

P :D(P ||Q)>ϵ

Qn(T (P )) (11.64)

≤
∑

P :D(P ||Q)>ϵ

2−nD(P ||Q) (Theorem 11.1.4) (11.65)

≤
∑

P :D(P ||Q)>ϵ

2−nϵ (11.66)

≤ (n + 1)|X |2−nϵ (Theorem 11.1.1) (11.67)

= 2−n
(
ϵ−|X | log(n+1)

n

)

, (11.68)

which goes to 0 as n → ∞. Hence, the probability of the typical set T ϵ
Q

goes to 1 as n → ∞. This is similar to the AEP proved in Chapter 3,
which is a form of the weak law of large numbers. We now prove that
the empirical distribution PXn converges to P .

Theorem 11.2.1 Let X1, X2, . . . , Xn be i.i.d. ∼P(x). Then

Pr {D(Pxn ||P) > ϵ} ≤ 2−n(ϵ−|X | log(n+1)
n ), (11.69)

and consequently, D(Pxn ||P) → 0 with probability 1.

Proof: The inequality (11.69) was proved in (11.68). Summing over n,
we find that

∞∑

n=1

Pr{D(Pxn ||P) > ϵ} < ∞. (11.70)
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Thus, the expected number of occurrences of the event {D(Pxn ||P) > ϵ}
for all n is finite, which implies that the actual number of such occur-
rences is also finite with probability 1 (Borel–Cantelli lemma). Hence
D(Pxn ||P) → 0 with probability 1. !

We now define a stronger version of typicality than in Chapter 3.

Definition We define the strongly typical set A∗(n)
ϵ to be the set of

sequences in Xn for which the sample frequencies are close to the true
values:

A∗(n)
ϵ =

⎧
⎪⎨

⎪⎩
x∈ Xn :

∣∣∣∣
1
n
N(a|x) − P(a)

∣∣∣∣ <
ϵ

|X |
, if P(a) > 0

N(a|x) = 0 if P(a) = 0

⎫
⎪⎬

⎪⎭
.

(11.71)
Hence, the typical set consists of sequences whose type does not differ
from the true probabilities by more than ϵ/|X| in any component. By the
strong law of large numbers, it follows that the probability of the strongly
typical set goes to 1 as n → ∞. The additional power afforded by strong
typicality is useful in proving stronger results, particularly in universal
coding, rate distortion theory, and large deviation theory.

11.3 UNIVERSAL SOURCE CODING

Huffman coding compresses an i.i.d. source with a known distribution
p(x) to its entropy limit H(X). However, if the code is designed for
some incorrect distribution q(x), a penalty of D(p||q) is incurred. Thus,
Huffman coding is sensitive to the assumed distribution.

What compression can be achieved if the true distribution p(x) is
unknown? Is there a universal code of rate R, say, that suffices to describe
every i.i.d. source with entropy H(X) < R? The surprising answer is yes.
The idea is based on the method of types. There are 2nH(P ) sequences of
type P . Since there are only a polynomial number of types with denom-
inator n, an enumeration of all sequences xn with type Pxn such that
H(Pxn) < R will require roughly nR bits. Thus, by describing all such
sequences, we are prepared to describe any sequence that is likely to arise
from any distribution Q having entropy H(Q) < R. We begin with a
definition.

Definition A fixed-rate block code of rate R for a source X1, X2, . . . ,
Xn which has an unknown distribution Q consists of two mappings: the
encoder,

fn : Xn → {1, 2, . . . , 2nR}, (11.72)
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and the decoder,

φn : {1, 2, . . . , 2nR} → Xn. (11.73)

Here R is called the rate of the code. The probability of error for the
code with respect to the distribution Q is

P (n)
e = Qn(Xn : φn(fn(X

n)) ̸= Xn) (11.74)

Definition A rate R block code for a source will be called universal
if the functions fn and φn do not depend on the distribution Q and if
P

(n)
e → 0 as n → ∞ if R > H(Q).
We now describe one such universal encoding scheme, due to Csiszár

and Körner [149], that is based on the fact that the number of sequences
of type P increases exponentially with the entropy and the fact that there
are only a polynomial number of types.

Theorem 11.3.1 There exists a sequence of (2nR, n) universal source
codes such that P

(n)
e → 0 for every source Q such that H(Q) < R.

Proof: Fix the rate R for the code. Let

Rn = R − |X| log(n + 1)

n
. (11.75)

Consider the set of sequences

A = {x∈ Xn : H(Px) ≤ Rn}. (11.76)

Then

|A| =
∑

P∈Pn:H(P)≤Rn

|T (P )| (11.77)

≤
∑

P∈Pn:H(P)≤Rn

2nH(P ) (11.78)

≤
∑

P∈Pn:H(P)≤Rn

2nRn (11.79)

≤ (n + 1)|X |2nRn (11.80)

= 2n(Rn+|X | log(n+1)
n ) (11.81)

= 2nR. (11.82)
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By indexing the elements of A, we define the encoding function fn as

fn(x) =
{

index of x in A if x ∈ A,
0 otherwise. (11.83)

The decoding function maps each index onto the corresponding element
of A. Hence all the elements of A are recovered correctly, and all the
remaining sequences result in an error. The set of sequences that are
recovered correctly is illustrated in Figure 11.2.

We now show that this encoding scheme is universal. Assume that the
distribution of X1, X2, . . . , Xn is Q and H(Q) < R. Then the probability
of decoding error is given by

P (n)
e = 1 − Qn(A) (11.84)

=
∑

P :H(P)>Rn

Qn(T (P )) (11.85)

≤ (n + 1)|X | max
P :H(P)>Rn

Qn(T (P )) (11.86)

≤ (n + 1)|X |2−n minP :H(P )>Rn D(P ||Q). (11.87)

Since Rn ↑ R and H(Q) < R, there exists n0 such that for all n ≥ n0,
Rn > H(Q). Then for n ≥ n0, minP :H(P)>Rn D(P ||Q) must be greater
than 0, and the probability of error P

(n)
e converges to 0 exponentially fast

as n → ∞.

H(P ) = R

A

FIGURE 11.2. Universal code and the probability simplex. Each sequence with type that
lies outside the circle is encoded by its index. There are fewer than 2nR such sequences.
Sequences with types within the circle are encoded by 0.
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FIGURE 11.3. Error exponent for the universal code.

On the other hand, if the distribution Q is such that the entropy H(Q)
is greater than the rate R, then with high probability the sequence will
have a type outside the set A. Hence, in such cases the probability of
error is close to 1.

The exponent in the probability of error is

D∗
R,Q = min

P :H(P)>R
D(P ||Q), (11.88)

which is illustrated in Figure 11.3. !

The universal coding scheme described here is only one of many such
schemes. It is universal over the set of i.i.d. distributions. There are other
schemes, such as the Lempel–Ziv algorithm, which is a variable-rate uni-
versal code for all ergodic sources. The Lempel–Ziv algorithm, discussed
in Section 13.4, is often used in practice to compress data that cannot be
modeled simply, such as English text or computer source code.

One may wonder why it is ever necessary to use Huffman codes, which
are specific to a probability distribution. What do we lose in using a
universal code? Universal codes need a longer block length to obtain
the same performance as a code designed specifically for the probability
distribution. We pay the penalty for this increase in block length by the
increased complexity of the encoder and decoder. Hence, a distribution
specific code is best if one knows the distribution of the source.

11.4 LARGE DEVIATION THEORY

The subject of large deviation theory can be illustrated by an example.
What is the probability that 1

n

∑
Xi is near 1

3 if X1, X2, . . . , Xn are drawn
i.i.d. Bernoulli( 1

3 )? This is a small deviation (from the expected outcome)
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and the probability is near 1. Now what is the probability that 1
n

∑
Xi

is greater than 3
4 given that X1, X2, . . . , Xn are Bernoulli( 1

3 )? This is
a large deviation, and the probability is exponentially small. We might
estimate the exponent using the central limit theorem, but this is a poor
approximation for more than a few standard deviations. We note that
1
n

∑
Xi = 3

4 is equivalent to Px = ( 1
4 , 3

4). Thus, the probability that Xn is
near 3

4 is the probability that type PX is near (3
4 , 1

4 ). The probability of

this large deviation will turn out to be ≈ 2−nD(( 3
4 , 1

4 )||( 1
3 , 2

3 )). In this section
we estimate the probability of a set of nontypical types.

Let E be a subset of the set of probability mass functions. For example,
E may be the set of probability mass functions with mean µ. With a slight
abuse of notation, we write

Qn(E) = Qn(E ∩ Pn) =
∑

x:Px∈E∩Pn

Qn(x). (11.89)

If E contains a relative entropy neighborhood of Q, then by the weak
law of large numbers (Theorem 11.2.1), Qn(E) → 1. On the other hand,
if E does not contain Q or a neighborhood of Q, then by the weak law
of large numbers, Qn(E) → 0 exponentially fast. We will use the method
of types to calculate the exponent.

Let us first give some examples of the kinds of sets E that we are
considering. For example, assume that by observation we find that the
sample average of g(X) is greater than or equal to α [i.e., 1

n

∑
i g(xi) ≥ α].

This event is equivalent to the event PX ∈ E ∩ Pn, where

E =
{

P :
∑

a∈X
g(a)P (a) ≥ α

}

, (11.90)

because

1
n

n∑

i=1

g(xi) ≥ α ⇔
∑

a∈X
PX(a)g(a) ≥ α (11.91)

⇔ PX ∈ E ∩ Pn. (11.92)

Thus,

Pr

(
1
n

n∑

i=1

g(Xi) ≥ α

)

= Qn(E ∩ Pn) = Qn(E). (11.93)
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P*

Q

E

FIGURE 11.4. Probability simplex and Sanov’s theorem.

Here E is a half space in the space of probability vectors, as illustrated
in Figure 11.4.

Theorem 11.4.1 (Sanov’s theorem) Let X1, X2, . . . , Xn be i.i.d.
∼Q(x). Let E ⊆P be a set of probability distributions. Then

Qn(E) = Qn(E ∩ Pn) ≤ (n + 1)|X |2−nD(P ∗||Q), (11.94)

where

P ∗ = arg min
P∈E

D(P ||Q) (11.95)

is the distribution in E that is closest to Q in relative entropy.
If, in addition, the set E is the closure of its interior, then

1
n

log Qn(E) → −D(P ∗||Q). (11.96)

Proof: We first prove the upper bound:

Qn(E) =
∑

P∈E∩Pn

Qn(T (P )) (11.97)

≤
∑

P∈E∩Pn

2−nD(P ||Q) (11.98)
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≤
∑

P∈E∩Pn

max
P∈E∩Pn

2−nD(P ||Q) (11.99)

=
∑

P∈E∩Pn

2−n minP∈E∩Pn D(P ||Q) (11.100)

≤
∑

P∈E∩Pn

2−n minP∈E D(P ||Q) (11.101)

=
∑

P∈E∩Pn

2−nD(P ∗||Q) (11.102)

≤ (n + 1)|X |2−nD(P ∗||Q), (11.103)

where the last inequality follows from Theorem 11.1.1. Note that P ∗ need
not be a member of Pn. We now come to the lower bound, for which we
need a “nice” set E, so that for all large n, we can find a distribution in
E ∩ Pn that is close to P ∗. If we now assume that E is the closure of its
interior (thus, the interior must be nonempty), then since ∪nPn is dense
in the set of all distributions, it follows that E ∩ Pn is nonempty for all
n ≥ n0 for some n0. We can then find a sequence of distributions Pn such
that Pn ∈ E ∩ Pn and D(Pn||Q) → D(P ∗||Q). For each n ≥ n0,

Qn(E) =
∑

P∈E∩Pn

Qn(T (P )) (11.104)

≥ Qn(T (Pn)) (11.105)

≥ 1
(n + 1)|X | 2

−nD(Pn||Q). (11.106)

Consequently,

lim inf
1
n

log Qn(E) ≥ lim inf
(

− |X| log(n + 1)

n
− D(Pn||Q)

)

= −D(P ∗||Q). (11.107)

Combining this with the upper bound establishes the theorem. !

This argument can be extended to continuous distributions using quan-
tization.
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11.5 EXAMPLES OF SANOV’S THEOREM

Suppose that we wish to find Pr{ 1
n

∑n
i=1 gj (Xi) ≥ αj , j = 1, 2, . . . , k}.

Then the set E is defined as

E =
{

P :
∑

a

P (a)gj (a) ≥ αj , j = 1, 2, . . . , k

}

. (11.108)

To find the closest distribution in E to Q, we minimize D(P ||Q) subject
to the constraints in (11.108). Using Lagrange multipliers, we construct
the functional

J (P ) =
∑

x

P (x) log
P(x)

Q(x)
+

∑

i

λi

∑

x

P (x)gi(x) + ν
∑

x

P (x).

(11.109)

We then differentiate and calculate the closest distribution to Q to be of
the form

P ∗(x) = Q(x)e
∑

i λigi (x)

∑
a∈X Q(a)e

∑
i λigi (a)

, (11.110)

where the constants λi are chosen to satisfy the constraints. Note that if
Q is uniform, P ∗ is the maximum entropy distribution. Verification that
P ∗ is indeed the minimum follows from the same kinds of arguments as
given in Chapter 12.

Let us consider some specific examples:

Example 11.5.1 (Dice) Suppose that we toss a fair die n times; what
is the probability that the average of the throws is greater than or equal
to 4? From Sanov’s theorem, it follows that

Qn(E)
.= 2−nD(P ∗||Q), (11.111)

where P ∗ minimizes D(P ||Q) over all distributions P that satisfy

6∑

i=1

iP (i) ≥ 4. (11.112)



11.5 EXAMPLES OF SANOV’S THEOREM 365

From (11.110), it follows that P ∗ has the form

P ∗(x) = 2λx

∑6
i=1 2λi

, (11.113)

with λ chosen so that
∑

iP ∗(i) = 4. Solving numerically, we obtain
λ = 0.2519, P ∗ = (0.1031, 0.1227, 0.1461, 0.1740, 0.2072, 0.2468), and
therefore D(P ∗||Q) = 0.0624 bit. Thus, the probability that the average
of 10000 throws is greater than or equal to 4 is ≈ 2−624.

Example 11.5.2 (C oins) Suppose that we have a fair coin and want
to estimate the probability of observing more than 700 heads in a series
of 1000 tosses. The problem is like Example 11.5.1. The probability is

P(Xn ≥ 0.7)
.= 2−nD(P ∗||Q), (11.114)

where P ∗ is the (0.7, 0.3) distribution and Q is the (0.5, 0.5) distribution.
In this case, D(P ∗||Q) = 1 − H(P ∗) = 1 − H(0.7) = 0.119. Thus, the
probability of 700 or more heads in 1000 trials is approximately 2−119.

Example 11.5.3 (Mutual dependence) Let Q(x, y) be a given joint
distribution and let Q0(x, y) = Q(x)Q(y) be the associated product dis-
tribution formed from the marginals of Q. We wish to know the likelihood
that a sample drawn according to Q0 will “appear” to be jointly dis-
tributed according to Q. Accordingly, let (Xi, Yi) be i.i.d. ∼Q0(x, y) =
Q(x)Q(y). We define joint typicality as we did in Section 7.6; that is,
(xn, yn) is jointly typical with respect to a joint distribution Q(x, y) iff
the sample entropies are close to their true values:

∣∣∣∣−
1
n

log Q(xn) − H(X)

∣∣∣∣ ≤ ϵ, (11.115)

∣∣∣∣−
1
n

log Q(yn) − H(Y)

∣∣∣∣ ≤ ϵ, (11.116)

and
∣∣∣∣−

1
n

log Q(xn, yn) − H(X, Y )

∣∣∣∣ ≤ ϵ. (11.117)

We wish to calculate the probability (under the product distribution) of
seeing a pair (xn, yn) that looks jointly typical of Q [i.e., (xn, yn)
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satisfies (11.115)–(11.117)]. Thus, (xn, yn) are jointly typical with respect
to Q(x, y) if Pxn,yn ∈ E ∩ Pn(X, Y ), where

E = {P (x, y) :

∣∣∣∣∣−
∑

x,y

P (x, y) log Q(x) − H(X)

∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣−
∑

x,y

P (x, y) log Q(y) − H(Y)

∣∣∣∣∣ ≤ ϵ,

∣∣∣∣∣−
∑

x,y

P (x, y) log Q(x, y) − H(X, Y )

∣∣∣∣∣ ≤ ϵ}. (11.118)

Using Sanov’s theorem, the probability is

Qn
0(E)

.= 2−nD(P ∗||Q0), (11.119)

where P ∗ is the distribution satisfying the constraints that is closest to
Q0 in relative entropy. In this case, as ϵ → 0, it can be verified (Prob-
lem 11.10) that P ∗ is the joint distribution Q, and Q0 is the product
distribution, so that the probability is 2−nD(Q(x,y)||Q(x)Q(y)) = 2−nI (X;Y),
which is the same as the result derived in Chapter 7 for the joint AEP.

In the next section we consider the empirical distribution of the sequence
of outcomes given that the type is in a particular set of distributions E. We
will show that not only is the probability of the set E essentially determined
by D(P ∗||Q), the distance of the closest element of E to Q, but also that
the conditional type is essentially P ∗, so that given that we are in set E, the
type is very likely to be close to P ∗.

11.6 CONDITIONAL LIMIT THEOREM

It has been shown that the probability of a set of types under a distribution
Q is determined essentially by the probability of the closest element of
the set to Q; the probability is 2−nD∗

to first order in the exponent, where

D∗ = min
P∈E

D(P ||Q). (11.120)

This follows because the probability of the set of types is the sum of the
probabilities of each type, which is bounded by the largest term times the
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FIGURE 11.5. Pythagorean theorem for relative entropy.

number of terms. Since the number of terms is polynomial in the length
of the sequences, the sum is equal to the largest term to first order in the
exponent.

We now strengthen the argument to show that not only is the proba-
bility of the set E essentially the same as the probability of the closest
type P ∗ but also that the total probability of other types that are far
away from P ∗ is negligible. This implies that with very high probabil-
ity, the type observed is close to P ∗. We call this a conditional limit
theorem.

Before we prove this result, we prove a “Pythagorean” theorem, which
gives some insight into the geometry of D(P ||Q). Since D(P ||Q) is not
a metric, many of the intuitive properties of distance are not valid for
D(P ||Q). The next theorem shows a sense in which D(P ||Q) behaves
like the square of the Euclidean metric (Figure 11.5).

Theorem 11.6.1 For a closed convex set E ⊂ P and distribution Q /∈
E, let P ∗ ∈ E be the distribution that achieves the minimum distance to
Q; that is,

D(P ∗||Q) = min
P∈E

D(P ||Q). (11.121)

Then

D(P ||Q) ≥ D(P ||P ∗) + D(P ∗||Q) (11.122)

for all P ∈ E.
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Note. The main use of this theorem is as follows: Suppose that we have
a sequence Pn ∈ E that yields D(Pn||Q) → D(P ∗||Q). Then from the
Pythagorean theorem, D(Pn||P ∗) → 0 as well.

Proof: Consider any P ∈ E. Let

Pλ = λP + (1 − λ)P ∗. (11.123)

Then Pλ → P ∗ as λ → 0. Also, since E is convex, Pλ ∈ E for 0 ≤ λ ≤ 1.
Since D(P ∗||Q) is the minimum of D(Pλ||Q) along the path P ∗ → P ,
the derivative of D(Pλ||Q) as a function of λ is nonnegative at λ = 0.
Now

Dλ = D(Pλ||Q) =
∑

Pλ(x) log
Pλ(x)

Q(x)
(11.124)

and

dDλ

dλ
=

∑ (
(P (x) − P ∗(x)) log

Pλ(x)

Q(x)
+ (P (x) − P ∗(x))

)
. (11.125)

Setting λ = 0, so that Pλ = P ∗ and using the fact that
∑

P(x) =
∑

P ∗

(x) = 1, we have

0 ≤
(

dDλ

dλ

)

λ=0
(11.126)

=
∑

(P (x) − P ∗(x)) log
P ∗(x)

Q(x)
(11.127)

=
∑

P(x) log
P ∗(x)

Q(x)
−

∑
P ∗(x) log

P ∗(x)

Q(x)
(11.128)

=
∑

P(x) log
P(x)

Q(x)

P ∗(x)

P (x)
−

∑
P ∗(x) log

P ∗(x)

Q(x)
(11.129)

= D(P ||Q) − D(P ||P ∗) − D(P ∗||Q), (11.130)

which proves the theorem. !

Note that the relative entropy D(P ||Q) behaves like the square of the
Euclidean distance. Suppose that we have a convex set E in Rn. Let A
be a point outside the set, B the point in the set closest to A, and C any
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A

B

C

FIGURE 11.6. Triangle inequality for distance squared.

other point in the set. Then the angle between the lines BA and BC must
be obtuse, which implies that l2

AC ≥ l2
AB + l2

BC , which is of the same form
as Theorem 11.6.1. This is illustrated in Figure 11.6.

We now prove a useful lemma which shows that convergence in relative
entropy implies convergence in the L1 norm.

Definition The L1 distance between any two distributions is defined as

||P1 − P2||1 =
∑

a∈X
|P1(a) − P2(a)|. (11.131)

Let A be the set on which P1(x) > P2(x). Then

||P1 − P2||1 =
∑

x∈X
|P1(x) − P2(x)| (11.132)

=
∑

x∈A

(P1(x) − P2(x)) +
∑

x∈Ac

(P2(x) − P1(x)) (11.133)

= P1(A) − P2(A) + P2(A
c) − P1(A

c) (11.134)

= P1(A) − P2(A) + 1 − P2(A) − 1 + P1(A) (11.135)

= 2(P1(A) − P2(A)). (11.136)
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Also note that

max
B⊆X

(P1(B) − P2(B)) = P1(A) − P2(A) = ||P1 − P2||1
2

. (11.137)

The left-hand side of (11.137) is called the variational distance between
P1 and P2.

Lemma 11.6.1

D(P1||P2) ≥ 1
2 ln 2

||P1 − P2||21. (11.138)

Proof: We first prove it for the binary case. Consider two binary distri-
butions with parameters p and q with p ≥ q. We will show that

p log
p

q
+ (1 − p) log

1 − p

1 − q
≥ 4

2 ln 2
(p − q)2. (11.139)

The difference g(p, q) between the two sides is

g(p, q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
− 4

2 ln 2
(p − q)2. (11.140)

Then

dg(p, q)

dq
= − p

q ln 2
+ 1 − p

(1 − q) ln 2
− 4

2 ln 2
2(q − p) (11.141)

= q − p

q(1 − q) ln 2
− 4

ln 2
(q − p) (11.142)

≤ 0 (11.143)

since q(1 − q) ≤ 1
4 and q ≤ p. For q = p, g(p, q) = 0, and hence

g(p, q) ≥ 0 for q ≤ p, which proves the lemma for the binary case.
For the general case, for any two distributions P1 and P2, let

A = {x : P1(x) > P2(x)}. (11.144)

Define a new binary random variable Y = φ(X), the indicator of the set A,
and let P̂1 and P̂2 be the distributions of Y . Thus, P̂1 and P̂2 correspond
to the quantized versions of P1 and P2. Then by the data-processing
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inequality applied to relative entropies (which is proved in the same way
as the data-processing inequality for mutual information), we have

D(P1||P2) ≥ D(P̂1||P̂2) (11.145)

≥ 4
2 ln 2

(P1(A) − P2(A))2 (11.146)

= 1
2 ln 2

||P1 − P2||21, (11.147)

by (11.137), and the lemma is proved. !

We can now begin the proof of the conditional limit theorem. We first
outline the method used. As stated at the beginning of the chapter, the
essential idea is that the probability of a type under Q depends exponen-
tially on the distance of the type from Q, and hence types that are farther
away are exponentially less likely to occur. We divide the set of types in
E into two categories: those at about the same distance from Q as P ∗ and
those a distance 2δ farther away. The second set has exponentially less
probability than the first, and hence the first set has a conditional proba-
bility tending to 1. We then use the Pythagorean theorem to establish that
all the elements in the first set are close to P ∗, which will establish the
theorem.

The following theorem is an important strengthening of the maximum
entropy principle.

Theorem 11.6.2 (Conditional limit theorem) Let E be a closed con-
vex subset of P and let Q be a distribution not in E. Let X1, X2, . . . , Xn

be discrete random variables drawn i.i.d. ∼Q. Let P ∗ achieve minP∈E

D(P ||Q). Then

Pr(X1 = a|PXn ∈ E) → P ∗(a) (11.148)

in probability as n → ∞, i.e., the conditional distribution of X1, given that
the type of the sequence is in E, is close to P ∗ for large n.

Example 11.6.1 If Xi i.i.d. ∼Q, then

Pr
{
X1 = a

∣∣∣∣
1
n

∑
X2

i ≥ α

}
→ P ∗(a), (11.149)
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where P ∗(a) minimizes D(P ||Q) over P satisfying
∑

P(a)a2 ≥ α. This
minimization results in

P ∗(a) = Q(a)
eλa2

∑
a Q(a)eλa2 , (11.150)

where λ is chosen to satisfy
∑

P ∗(a)a2 = α. Thus, the conditional dis-
tribution on X1 given a constraint on the sum of the squares is a (normal-
ized) product of the original probability mass function and the maximum
entropy probability mass function (which in this case is Gaussian).

Proof of Theorem: Define the sets

St = {P ∈ P : D(P ||Q) ≤ t}. (11.151)

The set St is convex since D(P ||Q) is a convex function of P . Let

D∗ = D(P ∗||Q) = min
P∈E

D(P ||Q). (11.152)

Then P ∗ is unique, since D(P ||Q) is strictly convex in P . Now define
the set

A = SD∗+2δ ∩ E (11.153)

and

B = E − SD∗+2δ ∩ E. (11.154)

Thus, A ∪ B = E. These sets are illustrated in Figure 11.7. Then

Qn(B) =
∑

P∈E∩Pn:D(P ||Q)>D∗+2δ

Qn(T (P )) (11.155)

≤
∑

P∈E∩Pn:D(P ||Q)>D∗+2δ

2−nD(P ||Q) (11.156)

≤
∑

P∈E∩Pn:D(P ||Q)>D∗+2δ

2−n(D∗+2δ) (11.157)

≤ (n + 1)|X |2−n(D∗+2δ) (11.158)
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FIGURE 11.7. Conditional limit theorem.

since there are only a polynomial number of types. On the other hand,

Qn(A) ≥ Qn(SD∗+δ ∩ E) (11.159)

=
∑

P∈E∩Pn:D(P ||Q)≤D∗+δ

Qn(T (P )) (11.160)

≥
∑

P∈E∩Pn:D(P ||Q)≤D∗+δ

1
(n + 1)|X | 2

−nD(P ||Q) (11.161)

≥ 1
(n + 1)|X | 2

−n(D∗+δ) for n sufficiently large, (11.162)

since the sum is greater than one of the terms, and for sufficiently large n,
there exists at least one type in SD∗+δ ∩ E ∩ Pn. Then, for n sufficiently
large,

Pr(PXn ∈ B|PXn ∈ E) = Qn(B ∩ E)

Qn(E)
(11.163)

≤ Qn(B)

Qn(A)
(11.164)

≤ (n + 1)|X |2−n(D∗+2δ)

1
(n+1)|X | 2−n(D∗+δ)

(11.165)

= (n + 1)2|X |2−nδ, (11.166)
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which goes to 0 as n → ∞. Hence the conditional probability of B goes
to 0 as n → ∞, which implies that the conditional probability of A goes
to 1.

We now show that all the members of A are close to P ∗ in relative
entropy. For all members of A,

D(P ||Q) ≤ D∗ + 2δ. (11.167)

Hence by the “Pythagorean” theorem (Theorem 11.6.1),

D(P ||P ∗) + D(P ∗||Q) ≤ D(P ||Q) ≤ D∗ + 2δ, (11.168)

which in turn implies that

D(P ||P ∗) ≤ 2δ, (11.169)

since D(P ∗||Q) = D∗. Thus, Px ∈ A implies that D(Px||Q) ≤ D∗ + 2δ,
and therefore that D(Px||P ∗) ≤ 2δ. Consequently, since Pr{PXn ∈ A|PXn

∈ E} → 1, it follows that

Pr(D(PXn ||P ∗) ≤ 2δ|PXn ∈ E) → 1 (11.170)

as n → ∞. By Lemma 11.6.1, the fact that the relative entropy is small
implies that the L1 distance is small, which in turn implies that maxa∈X
|PXn(a) − P ∗(a)| is small. Thus, Pr(|PXn(a) − P ∗(a)| ≥ ϵ|PXn ∈ E) →
0 as n → ∞. Alternatively, this can be written as

Pr(X1 = a|PXn ∈ E) → P ∗(a) in probability, a ∈ X. (11.171)

In this theorem we have only proved that the marginal distribution goes
to P ∗ as n → ∞. Using a similar argument, we can prove a stronger
version of this theorem:

Pr(X1 = a1,X2 = a2, . . . , Xm

= am|PXn ∈ E) →
m∏

i=1

P ∗(ai) in probability. (11.172)

This holds for fixed m as n → ∞. The result is not true for m = n, since
there are end effects; given that the type of the sequence is in E, the
last elements of the sequence can be determined from the remaining ele-
ments, and the elements are no longer independent. The conditional limit
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theorem states that the first few elements are asymptotically independent
with common distribution P ∗.

Example 11.6.2 As an example of the conditional limit theorem, let us
consider the case when n fair dice are rolled. Suppose that the sum of the
outcomes exceeds 4n. Then by the conditional limit theorem, the proba-
bility that the first die shows a number a ∈ {1, 2, . . . , 6} is approximately
P ∗(a), where P ∗(a) is the distribution in E that is closest to the uni-
form distribution, where E = {P :

∑
P(a)a ≥ 4}. This is the maximum

entropy distribution given by

P ∗(x) = 2λx

∑6
i=1 2λi

, (11.173)

with λ chosen so that
∑

iP ∗(i) = 4 (see Chapter 12). Here P ∗ is the
conditional distribution on the first (or any other) die. Apparently, the
first few dice inspected will behave as if they are drawn independently
according to an exponential distribution.

11.7 HYPOTHESIS TESTING

One of the standard problems in statistics is to decide between two alter-
native explanations for the data observed. For example, in medical testing,
one may wish to test whether or not a new drug is effective. Similarly, a
sequence of coin tosses may reveal whether or not the coin is biased.

These problems are examples of the general hypothesis-testing problem.
In the simplest case, we have to decide between two i.i.d. distributions.
The general problem can be stated as follows:

Problem 11.7.1 Let X1, X2, . . . , Xn be i.i.d. ∼Q(x). We consider two
hypotheses:

• H1: Q = P1.
• H2: Q = P2.

Consider the general decision function g(x1, x2, . . . , xn), where g(x1,
x2, . . . , xn) = 1 means that H1 is accepted and g(x1, x2, . . . , xn) = 2
means that H2 is accepted. Since the function takes on only two val-
ues, the test can also be specified by specifying the set A over which
g(x1, x2, . . . , xn) is 1; the complement of this set is the set where
g(x1, x2, . . . , xn) has the value 2. We define the two probabilities of error:

α = Pr(g(X1, X2, . . . , Xn) = 2|H1 true) = P n
1 (Ac) (11.174)
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and

β = Pr(g(X1, X2, . . . , Xn) = 1|H2 true) = P n
2 (A). (11.175)

In general, we wish to minimize both probabilities, but there is a trade-
off. Thus, we minimize one of the probabilities of error subject to a
constraint on the other probability of error. The best achievable error
exponent in the probability of error for this problem is given by the
Chernoff–Stein lemma.

We first prove the Neyman–Pearson lemma, which derives the form of
the optimum test between two hypotheses. We derive the result for discrete
distributions; the same results can be derived for continuous distributions
as well.

Theorem 11.7.1 (Neyman–Pearson lemma) Let X1, X2, . . . , Xn be
drawn i.i.d. according to probability mass function Q. Consider the deci-
sion problem corresponding to hypotheses Q = P1 vs. Q = P2. For T ≥ 0,
define a region

An(T ) =
{
xn :

P1(x1, x2, . . . , xn)

P2(x1, x2, . . . , xn)
> T

}
. (11.176)

Let

α∗ = P n
1 (Ac

n(T )), β∗ = P n
2 (An(T )) (11.177)

be the corresponding probabilities of error corresponding to decision re-
gion An. Let Bn be any other decision region with associated probabilities
of error α and β. If α ≤ α∗, then β ≥ β∗.

Proof: Let A = An(T ) be the region defined in (11.176) and let B ⊆Xn

be any other acceptance region. Let φA and φB be the indicator func-
tions of the decision regions A and B, respectively. Then for all x=
(x1, x2, . . . , xn) ∈ Xn,

(φA(x) − φB(x))(P1(x) − T P2(x)) ≥ 0. (11.178)

This can be seen by considering separately the cases x∈ A and x /∈ A.
Multiplying out and summing this over the entire space, we obtain

0 ≤
∑

(φAP1 − T φAP2 − P1φB + T P2φB) (11.179)
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=
∑

A

(P1 − T P2) −
∑

B

(P1 − T P2) (11.180)

= (1 − α∗) − Tβ∗ − (1 − α) + Tβ (11.181)

= T (β − β∗) − (α∗ − α). (11.182)

Since T ≥ 0, we have proved the theorem. !
The Neyman–Pearson lemma indicates that the optimum test for two

hypotheses is of the form

P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
> T . (11.183)

This is the likelihood ratio test and the quantity P1(X1,X2,...,Xn)
P2(X1,X2,...,Xn)

is called the
likelihood ratio. For example, in a test between two Gaussian distributions
[i.e., between f1 = N(1, σ 2) and f2 = N(−1, σ 2)], the likelihood ratio
becomes

f1(X1, X2, . . . , Xn)

f2(X1, X2, . . . , Xn)
=

∏n
i=1

1√
2πσ 2 e

− (Xi−1)2

2σ2

∏n
i=1

1√
2πσ 2 e

− (Xi+1)2

2σ2

(11.184)

= e
+

2
∑n

i=1 Xi

σ2 (11.185)

= e
+ 2nXn

σ2 . (11.186)

Hence, the likelihood ratio test consists of comparing the sample mean
Xn with a threshold. If we want the two probabilities of error to be equal,
we should set T = 1. This is illustrated in Figure 11.8.

In Theorem 11.7.1 we have shown that the optimum test is a likelihood
ratio test. We can rewrite the log-likelihood ratio as

L(X1, X2, . . . , Xn) = log
P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
(11.187)

=
n∑

i=1

log
P1(Xi)

P2(Xi)
(11.188)

=
∑

a∈X
nPXn(a) log

P1(a)

P2(a)
(11.189)

=
∑

a∈X
nPXn(a) log

P1(a)

P2(a)

PXn(a)

PXn(a)
(11.190)
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FIGURE 11.8. Testing between two Gaussian distributions.

=
∑

a∈X
nPXn(a) log

PXn(a)

P2(a)

−
∑

a∈X
nPXn(a) log

PXn(a)

P1(a)
(11.191)

= nD(PXn ||P2) − nD(PXn ||P1), (11.192)

the difference between the relative entropy distances of the sample type
to each of the two distributions. Hence, the likelihood ratio test

P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
> T (11.193)

is equivalent to

D(PXn ||P2) − D(PXn ||P1) >
1
n

log T . (11.194)

We can consider the test to be equivalent to specifying a region of the sim-
plex of types that corresponds to choosing hypothesis H1. The optimum
region is of the form (11.194), for which the boundary of the region is the
set of types for which the difference between the distances is a constant.
This boundary is the analog of the perpendicular bisector in Euclidean
geometry. The test is illustrated in Figure 11.9.

We now offer some informal arguments based on Sanov’s theorem to
show how to choose the threshold to obtain different probabilities of error.
Let B denote the set on which hypothesis 1 is accepted. The probability
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FIGURE 11.9. Likelihood ratio test on the probability simplex.

of error of the first kind is

αn = P n
1 (PXn ∈ Bc). (11.195)

Since the set Bc is convex, we can use Sanov’s theorem to show that the
probability of error is determined essentially by the relative entropy of
the closest member of Bc to P1. Therefore,

αn
.= 2−nD(P ∗

1 ||P1), (11.196)

where P ∗
1 is the closest element of Bc to distribution P1. Similarly,

βn
.= 2−nD(P ∗

2 ||P2), (11.197)

where P ∗
2 is the closest element in B to the distribution P2.

Now minimizing D(P ||P2) subject to the constraint D(P ||P2) −
D(P ||P1) ≥ 1

n
log T will yield the type in B that is closest to P2. Set-

ting up the minimization of D(P ||P2) subject to D(P ||P2) − D(P ||P1) =
1
n

log T using Lagrange multipliers, we have

J (P ) =
∑

P(x) log
P(x)

P2(x)
+ λ

∑
P(x) log

P1(x)

P2(x)
+ ν

∑
P(x).

(11.198)

Differentiating with respect to P(x) and setting to 0, we have

log
P(x)

P2(x)
+ 1 + λ log

P1(x)

P2(x)
+ ν = 0. (11.199)
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Solving this set of equations, we obtain the minimizing P of the form

P ∗
2 = Pλ∗ =

P λ
1 (x)P 1−λ

2 (x)
∑

a∈X P λ
1 (a)P 1−λ

2 (a)
, (11.200)

where λ is chosen so that D(Pλ∗ ||P1) − D(Pλ∗ ||P2) = 1
n

log T .
From the symmetry of expression (11.200), it is clear that P ∗

1 = P ∗
2 and

that the probabilities of error behave exponentially with exponents given
by the relative entropies D(P ∗||P1) and D(P ∗||P2). Also note from the
equation that as λ → 1, Pλ → P1 and as λ → 0, Pλ → P2. The curve
that Pλ traces out as λ varies is a geodesic in the simplex. Here Pλ is a
normalized convex combination, where the combination is in the exponent
(Figure 11.9).

In the next section we calculate the best error exponent when one of
the two types of error goes to zero arbitrarily slowly (the Chernoff–Stein
lemma). We will also minimize the weighted sum of the two probabilities
of error and obtain the Chernoff information bound.

11.8 CHERNOFF–STEIN LEMMA

We consider hypothesis testing in the case when one of the probabili-
ties of error is held fixed and the other is made as small as possible.
We will show that the other probability of error is exponentially small,
with an exponential rate equal to the relative entropy between the two
distributions. The method of proof uses a relative entropy version of the
AEP.

Theorem 11.8.1 (AEP for relative entropy) Let X1, X2, . . . , Xn be
a sequence of random variables drawn i.i.d. according to P1(x), and let
P2(x) be any other distribution on X. Then

1
n

log
P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
→ D(P1||P2) in probability. (11.201)

Proof: This follows directly from the weak law of large numbers.

1
n

log
P1(X1, X2, . . . , Xn)

P2(X1, X2, . . . , Xn)
= 1

n
log

∏n
i=1 P1(Xi)∏n
i=1 P2(Xi)

(11.202)



11.8 CHERNOFF–STEIN LEMMA 381

= 1
n

n∑

i=1

log
P1(Xi)

P2(Xi)
(11.203)

→ EP1 log
P1(X)

P2(X)
in probability (11.204)

= D(P1||P2). ! (11.205)

Just as for the regular AEP, we can define a relative entropy typical
sequence as one for which the empirical relative entropy is close to its
expected value.

Definition For a fixed n and ϵ > 0, a sequence (x1, x2, . . . , xn) ∈ Xn

is said to be relative entropy typical if and only if

D(P1||P2) − ϵ ≤ 1
n

log
P1(x1, x2, . . . , xn)

P2(x1, x2, . . . , xn)
≤ D(P1||P2) + ϵ. (11.206)

The set of relative entropy typical sequences is called the relative entropy
typical set A(n)

ϵ (P1||P2).
As a consequence of the relative entropy AEP, we can show that the

relative entropy typical set satisfies the following properties:

Theorem 11.8.2

1. For (x1, x2, . . . , xn) ∈ A(n)
ϵ (P1||P2),

P1(x1, x2, . . . , xn)2−n(D(P1||P2)+ϵ)

≤ P2(x1, x2, . . . , xn)

≤ P1(x1, x2, . . . , xn)2−n(D(P1||P2)−ϵ). (11.207)

2. P1(A
(n)
ϵ (P1||P2)) > 1 − ϵ, for n sufficiently large.

3. P2(A
(n)
ϵ (P1||P2)) < 2−n(D(P1||P2)−ϵ).

4. P2(A
(n)
ϵ (P1||P2)) > (1 − ϵ)2−n(D(P1||P2)+ϵ), for n sufficiently large.

Proof: The proof follows the same lines as the proof of Theorem 3.1.2,
with the counting measure replaced by probability measure P2. The proof
of property 1 follows directly from the definition of the relative entropy
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typical set. The second property follows from the AEP for relative entropy
(Theorem 11.8.1). To prove the third property, we write

P2(A
(n)
ϵ (P1||P2)) =

∑

xn∈A
(n)
ϵ (P1||P2)

P2(x1, x2, . . . , xn) (11.208)

≤
∑

xn∈A
(n)
ϵ (P1||P2)

P1(x1, x2, . . . , xn)2−n(D(P1||P2)−ϵ) (11.209)

= 2−n(D(P1||P2)−ϵ)
∑

xn∈A
(n)
ϵ (P1||P2)

P1(x1, x2, . . . , xn) (11.210)

= 2−n(D(P1||P2)−ϵ)P1(A
(n)
ϵ (P1||P2)) (11.211)

≤ 2−n(D(P1||P2)−ϵ), (11.212)

where the first inequality follows from property 1, and the second inequal-
ity follows from the fact that the probability of any set under P1 is less
than 1.

To prove the lower bound on the probability of the relative entropy
typical set, we use a parallel argument with a lower bound on the proba-
bility:

P2(A
(n)
ϵ (P1||P2)) =

∑

xn∈A
(n)
ϵ (P1||P2)

P2(x1, x2, . . . , xn) (11.213)

≥
∑

xn∈A
(n)
ϵ (P1||P2)

P1(x1, x2, . . . , xn)2−n(D(P1||P2)+ϵ) (11.214)

= 2−n(D(P1||P2)+ϵ)
∑

xn∈A
(n)
ϵ (P1||P2)

P1(x1, x2, . . . , xn) (11.215)

= 2−n(D(P1||P2)+ϵ)P1(A
(n)
ϵ (P1||P2)) (11.216)

≥ (1 − ϵ)2−n(D(P1||P2)+ϵ), (11.217)

where the second inequality follows from the second property of A(n)
ϵ

(P1||P2). !

With the standard AEP in Chapter 3, we also showed that any set that
has a high probability has a high intersection with the typical set, and
therefore has about 2nH elements. We now prove the corresponding result
for relative entropy.
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Lemma 11.8.1 Let Bn ⊂ Xn be any set of sequences x1, x2, . . . , xn such
that P1(Bn) > 1 − ϵ. Let P2 be any other distribution such that D(P1||P2)
< ∞. Then P2(Bn) > (1 − 2ϵ)2−n(D(P1||P2)+ϵ).

Proof: For simplicity, we will denote A(n)
ϵ (P1||P2) by An. Since P1(Bn)

> 1 − ϵ and P(An) > 1 − ϵ (Theorem 11.8.2), we have, by the union of
events bound, P1(A

c
n ∪ Bc

n) < 2ϵ, or equivalently, P1(An ∩ Bn) > 1 − 2ϵ.
Thus,

P2(Bn) ≥ P2(An ∩ Bn) (11.218)

=
∑

xn∈An∩Bn

P2(x
n) (11.219)

≥
∑

xn∈An∩Bn

P1(x
n)2−n(D(P1||P2)+ϵ) (11.220)

= 2−n(D(P1||P2)+ϵ)
∑

xn∈An∩Bn

P1(x
n) (11.221)

= 2−n(D(P1||P2)+ϵ)P1(An ∩ Bn) (11.222)

≥ 2−n(D(P1||P2)+ϵ)(1 − 2ϵ), (11.223)

where the second inequality follows from the properties of the relative
entropy typical sequences (Theorem 11.8.2) and the last inequality follows
from the union bound above. !

We now consider the problem of testing two hypotheses, P1 vs. P2. We
hold one of the probabilities of error fixed and attempt to minimize the
other probability of error. We show that the relative entropy is the best
exponent in probability of error.

Theorem 11.8.3 (Chernoff–Stein Lemma) Let X1, X2, . . . , Xn be
i.i.d. ∼Q. Consider the hypothesis test between two alternatives, Q = P1
and Q = P2, where D(P1||P2) < ∞. Let An ⊆Xn be an acceptance
region for hypothesis H1. Let the probabilities of error be

αn = P n
1 (Ac

n), βn = P n
2 (An). (11.224)

and for 0 < ϵ < 1
2 , define

βϵ
n = min

An ⊆Xn

αn < ϵ

βn. (11.225)
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Then

lim
n→∞

1
n

log βϵ
n = −D(P1||P2). (11.226)

Proof: We prove this theorem in two parts. In the first part we exhibit
a sequence of sets An for which the probability of error βn goes expo-
nentially to zero as D(P1||P2). In the second part we show that no other
sequence of sets can have a lower exponent in the probability of error.

For the first part, we choose as the sets An = A(n)
ϵ (P1||P2). As proved in

Theorem 11.8.2, this sequence of sets has P1(A
c
n) < ϵ for n large enough.

Also,

lim
n→∞

1
n

log P2(An) ≤ −(D(P1||P2) − ϵ) (11.227)

from property 3 of Theorem 11.8.2. Thus, the relative entropy typical set
satisfies the bounds of the lemma.

To show that no other sequence of sets can to better, consider any
sequence of sets Bn with P1(Bn) > 1 − ϵ. By Lemma 11.8.1, we have
P2(Bn) > (1 − 2ϵ)2−n(D(P1||P2)+ϵ), and therefore

lim
n→∞

1
n

log P2(Bn) > −(D(P1||P2) + ϵ) + lim
n→∞

1
n

log(1 − 2ϵ)

= −(D(P1||P2) + ϵ). (11.228)

Thus, no other sequence of sets has a probability of error exponent better
than D(P1||P2). Thus, the set sequence An = A(n)

ϵ (P1||P2) is asymptoti-
cally optimal in terms of the exponent in the probability. !

Not that the relative entropy typical set, although asymptotically opti-
mal (i.e., achieving the best asymptotic rate), is not the optimal set for
any fixed hypothesis-testing problem. The optimal set that minimizes the
probabilities of error is that given by the Neyman–Pearson lemma.

11.9 CHERNOFF INFORMATION

We have considered the problem of hypothesis testing in the classical
setting, in which we treat the two probabilities of error separately. In the
derivation of the Chernoff–Stein lemma, we set αn ≤ ϵ and achieved
βn

.= 2−nD. But this approach lacks symmetry. Instead, we can fol-
low a Bayesian approach, in which we assign prior probabilities to both
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hypotheses. In this case we wish to minimize the overall probability of
error given by the weighted sum of the individual probabilities of error.
The resulting error exponent is the Chernoff information.

The setup is as follows: X1, X2, . . . , Xn i.i.d. ∼Q. We have two
hypotheses: Q = P1 with prior probability π1 and Q = P2 with prior
probability π2. The overall probability of error is

P (n)
e = π1αn + π2βn. (11.229)

Let

D∗ = lim
n→∞

−1
n

log min
An⊆X n

P (n)
e . (11.230)

Theorem 11.9.1 (Chernoff ) The best achievable exponent in the
Bayesian probability of error is D∗, where

D∗ = D(Pλ∗ ||P1) = D(Pλ∗ ||P2), (11.231)

with

Pλ =
P λ

1 (x)P 1−λ
2 (x)

∑
a∈X P λ

1 (a)P 1−λ
2 (a)

, (11.232)

and λ∗ the value of λ such that

D(Pλ∗ ||P1) = D(Pλ∗ ||P2). (11.233)

Proof: The basic details of the proof were given in Section 11.8. We
have shown that the optimum test is a likelihood ratio test, which can be
considered to be of the form

D(PXn ||P2) − D(PXn ||P1) >
1
n

log T . (11.234)

The test divides the probability simplex into regions corresponding to
hypothesis 1 and hypothesis 2, respectively. This is illustrated in Fig-
ure 11.10.

Let A be the set of types associated with hypothesis 1. From the dis-
cussion preceding (11.200), it follows that the closest point in the set Ac

to P1 is on the boundary of A and is of the form given by (11.232). Then
from the discussion in Section 11.8, it is clear that Pλ is the distribution
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P1

P2

Pl

FIGURE 11.10. Probability simplex and Chernoff information.

in A that is closest to P2; it is also the distribution in Ac that is closest
to P1. By Sanov’s theorem, we can calculate the associated probabilities
of error,

αn = P n
1 (Ac)

.= 2−nD(Pλ∗ ||P1) (11.235)

and

βn = P n
2 (A)

.= 2−nD(Pλ∗ ||P2). (11.236)

In the Bayesian case, the overall probability of error is the weighted sum
of the two probabilities of error,

Pe
.= π12−nD(Pλ||P1) + π22−nD(Pλ||P2) .= 2−n min{D(Pλ||P1),D(Pλ||P2)},

(11.237)

since the exponential rate is determined by the worst exponent. Since
D(Pλ||P1) increases with λ and D(Pλ||P2) decreases with λ, the maxi-
mum value of the minimum of {D(Pλ||P1),D(Pλ||P2)} is attained when
they are equal. This is illustrated in Figure 11.11. Hence, we choose λ so
that

D(Pλ||P1) = D(Pλ||P2). (11.238)

Thus, C(P1, P2) is the highest achievable exponent for the probability of
error and is called the Chernoff information. !
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FIGURE 11.11. Relative entropy D(Pλ||P1) and D(Pλ||P2) as a function of λ.

The definition D∗ = D(Pλ∗ ||P1) = D(Pλ∗ ||P2) is equivalent to the
standard definition of Chernoff information,

C(P1, P2)
△= − min

0≤λ≤1
log

(
∑

x

P λ
1 (x)P 1−λ

2 (x)

)

. (11.239)

It is left as an exercise to the reader to show the equivalence of (11.231)
and (11.239).

We outline briefly the usual derivation of the Chernoff information
bound. The maximum a posteriori probability decision rule minimizes the
Bayesian probability of error. The decision region A for hypothesis H1
for the maximum a posteriori rule is

A =
{

x:
π1P1(x)

π2P2(x)
> 1

}
, (11.240)

the set of outcomes where the a posteriori probability of hypothesis H1 is
greater than the a posteriori probability of hypothesis H2. The probability
of error for this rule is

Pe = π1αn + π2βn (11.241)

=
∑

Ac

π1P1 +
∑

A

π2P2 (11.242)

=
∑

min{π1P1, π2P2}. (11.243)
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Now for any two positive numbers a and b, we have

min{a, b} ≤ aλb1−λ for all 0 ≤ λ ≤ 1. (11.244)

Using this to continue the chain, we have

Pe =
∑

min{π1P1, π2P2} (11.245)

≤
∑

(π1P1)
λ(π2P2)

1−λ (11.246)

≤
∑

P λ
1 P 1−λ

2 . (11.247)

For a sequence of i.i.d. observations, Pk(x) =
∏n

i=1 Pk(xi), and

P (n)
e ≤

∑
πλ

1 π1−λ
2

∏

i

P λ
1 (xi)P

1−λ
2 (xi) (11.248)

= πλ
1 π1−λ

2

∏

i

∑
P λ

1 (xi)P
1−λ
2 (xi) (11.249)

≤
∏

xi

∑
P λ

1 P 1−λ
2 (11.250)

=
(

∑

x

P λ
1 P 1−λ

2

)n

, (11.251)

where (11.250) follows since π1 ≤ 1, π2 ≤ 1. Hence, we have

1
n

log P (n)
e ≤ log

∑
P λ

1 (x)P 1−λ
2 (x). (11.252)

Since this is true for all λ, we can take the minimum over 0 ≤ λ ≤ 1,
resulting in the Chernoff information bound. This proves that the exponent
is no better than C(P1, P2). Achievability follows from Theorem 11.9.1.

Note that the Bayesian error exponent does not depend on the actual
value of π1 and π2, as long as they are nonzero. Essentially, the effect of
the prior is washed out for large sample sizes. The optimum decision rule
is to choose the hypothesis with the maximum a posteriori probability,
which corresponds to the test

π1P1(X1, X2, . . . , Xn)

π2P2(X1, X2, . . . , Xn)

>
< 1. (11.253)
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Taking the log and dividing by n, this test can be rewritten as

1
n

log
π1

π2
+ 1

n

∑

i

log
P1(Xi)

P2(Xi)

<
> 0, (11.254)

where the second term tends to D(P1||P2) or −D(P2||P1) accordingly as
P1 or P2 is the true distribution. The first term tends to 0, and the effect
of the prior distribution washes out.

Finally, to round off our discussion of large deviation theory and hypoth-
esis testing, we consider an example of the conditional limit theorem.

Example 11.9.1 Suppose that major league baseball players have a bat-
ting average of 260 with a standard deviation of 15 and suppose that
minor league ballplayers have a batting average of 240 with a standard
deviation of 15. A group of 100 ballplayers from one of the leagues (the
league is chosen at random) are found to have a group batting average
greater than 250 and are therefore judged to be major leaguers. We are
now told that we are mistaken; these players are minor leaguers. What
can we say about the distribution of batting averages among these 100
players? The conditional limit theorem can be used to show that the dis-
tribution of batting averages among these players will have a mean of 250
and a standard deviation of 15. To see this, we abstract the problem as
follows.

Let us consider an example of testing between two Gaussian distribu-
tions, f1 = N(1, σ 2) and f2 = N(−1, σ 2), with different means and the
same variance. As discussed in Section 11.8, the likelihood ratio test in
this case is equivalent to comparing the sample mean with a threshold.
The Bayes test is “Accept the hypothesis f = f1 if 1

n

∑n
i=1 Xi > 0.” Now

assume that we make an error of the first kind (we say that f = f1 when
indeed f = f2) in this test. What is the conditional distribution of the
samples given that we have made an error?

We might guess at various possibilities:

• The sample will look like a ( 1
2 , 1

2) mix of the two normal distributions.
Plausible as this is, it is incorrect.

• Xi ≈ 0 for all i. This is quite clearly very unlikely, although it is
conditionally likely that Xn is close to 0.

• The correct answer is given by the conditional limit theorem. If the
true distribution is f2 and the sample type is in the set A, the condi-
tional distribution is close to f ∗, the distribution in A that is closest to
f2. By symmetry, this corresponds to λ = 1

2 in (11.232). Calculating
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the distribution, we get

f ∗(x) =

(
1√

2πσ 2 e
− (x−1)2

2σ2

) 1
2
(

1√
2πσ 2 e

− (x+1)2

2σ2

) 1
2

∫ (
1√

2πσ 2 e
− (x−1)2

2σ2

) 1
2
(

1√
2πσ 2 e

− (x+1)2

2σ2

) 1
2

dx

(11.255)

=
1√

2πσ 2 e
− (x2+1)

2σ2

∫ 1√
2πσ 2 e

− (x2+1)

2σ2 dx

(11.256)

= 1√
2πσ 2

e
− x2

2σ2 (11.257)

= N (0, σ 2). (11.258)

It is interesting to note that the conditional distribution is normal with
mean 0 and with the same variance as the original distributions. This
is strange but true; if we mistake a normal population for another, the
“shape” of this population still looks normal with the same variance
and a different mean. Apparently, this rare event does not result from
bizarre-looking data.

Example 11.9.2 (Large deviation theory and football ) Consider a very
simple version of football in which the score is directly related to the
number of yards gained. Assume that the coach has a choice between two
strategies: running or passing. Associated with each strategy is a distri-
bution on the number of yards gained. For example, in general, running
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FIGURE 11.12. Distribution of yards gained in a run or a pass play.
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results in a gain of a few yards with very high probability, whereas passing
results in huge gains with low probability. Examples of the distributions
are illustrated in Figure 11.12.

At the beginning of the game, the coach uses the strategy that promises
the greatest expected gain. Now assume that we are in the closing min-
utes of the game and one of the teams is leading by a large margin.
(Let us ignore first downs and adaptable defenses.) So the trailing team
will win only if it is very lucky. If luck is required to win, we might
as well assume that we will be lucky and play accordingly. What is the
appropriate strategy?

Assume that the team has only n plays left and it must gain l yards,
where l is much larger than n times the expected gain under each play. The
probability that the team succeeds in achieving l yards is exponentially
small; hence, we can use the large deviation results and Sanov’s theorem to
calculate the probability of this event. To be precise, we wish to calculate
the probability that

∑n
i=1 Zi ≥ nα, where Zi are independent random

variables and Zi has a distribution corresponding to the strategy chosen.
The situation is illustrated in Figure 11.13. Let E be the set of types

corresponding to the constraint,

E =
{

P :
∑

a∈X
P(a)a ≥ α

}

. (11.259)

If P1 is the distribution corresponding to passing all the time, the proba-
bility of winning is the probability that the sample type is in E, which by
Sanov’s theorem is 2−nD(P ∗

1 ||P1), where P ∗
1 is the distribution in E that is

closest to P1. Similarly, if the coach uses the running game all the time,

E

P1

P2

FIGURE 11.13. Probability simplex for a football game.
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the probability of winning is 2−nD(P ∗
2 ||P2). What if he uses a mixture of

strategies? Is it possible that 2−nD(P ∗
λ ||Pλ), the probability of winning with

a mixed strategy, Pλ = λP1 + (1 − λ)P2, is better than the probability of
winning with either pure passing or pure running? The somewhat surpris-
ing answer is yes, as can be shown by example. This provides a reason
to use a mixed strategy other than the fact that it confuses the defense.

We end this section with another inequality due to Chernoff, which
is a special version of Markov’s inequality. This inequality is called the
Chernoff bound.

Lemma 11.9.1 Let Y be any random variable and let ψ(s) be the
moment generating function of Y ,

ψ(s) = EesY . (11.260)

Then for all s ≥ 0,

Pr(Y ≥ a) ≤ e−saψ(s), (11.261)

and thus

Pr(Y ≥ a) ≤ min
s≥0

e−saψ(s). (11.262)

Proof: Apply Markov’s inequality to the nonnegative random variable
esY . !

11.10 FISHER INFORMATION AND THE CRAMÉR–RAO
INEQUALITY

A standard problem in statistical estimation is to determine the parameters
of a distribution from a sample of data drawn from that distribution.
For example, let X1, X2, . . . , Xn be drawn i.i.d. ∼N(θ, 1). Suppose that
we wish to estimate θ from a sample of size n. There are a number of
functions of the data that we can use to estimate θ . For example, we can
use the first sample X1. Although the expected value of X1 is θ , it is clear
that we can do better by using more of the data. We guess that the best
estimate of θ is the sample mean Xn = 1

n

∑
Xi . Indeed, it can be shown

that Xn is the minimum mean-squared-error unbiased estimator.
We begin with a few definitions. Let {f (x; θ)}, θ ∈ ,, denote an

indexed family of densities, f (x; θ) ≥ 0,
∫

f (x; θ) dx = 1 for all θ ∈ ,.
Here , is called the parameter set.

Definition An estimator for θ for sample size n is a function T :
Xn → ,.
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An estimator is meant to approximate the value of the parameter. It
is therefore desirable to have some idea of the goodness of the approxi-
mation. We will call the difference T − θ the error of the estimator. The
error is a random variable.

Definition The bias of an estimator T (X1, X2, . . . , Xn) for the param-
eter θ is the expected value of the error of the estimator [i.e., the bias is
EθT (x1, x2, . . . , xn) − θ ]. The subscript θ means that the expectation is
with respect to the density f (·; θ). The estimator is said to be unbiased
if the bias is zero for all θ ∈ , (i.e., the expected value of the estimator
is equal to the parameter).

Example 11.10.1 Let X1, X2, . . . , Xn drawn i.i.d. ∼f (x) = (1/λ)
e−x/λ, x ≥ 0 be a sequence of exponentially distributed random variables.
Estimators of λ include X1 and Xn. Both estimators are unbiased.

The bias is the expected value of the error, and the fact that it is
zero does not guarantee that the error is low with high probability. We
need to look at some loss function of the error; the most commonly
chosen loss function is the expected square of the error. A good estima-
tor should have a low expected squared error and should have an error
that approaches 0 as the sample size goes to infinity. This motivates the
following definition:

Definition An estimator T (X1, X2, . . . , Xn) for θ is said to be consis-
tent in probability if
T (X1, X2, . . . , Xn) → θ in probability as n → ∞.

Consistency is a desirable asymptotic property, but we are interested in
the behavior for small sample sizes as well. We can then rank estimators
on the basis of their mean-squared error.

Definition An estimator T1(X1, X2, . . . , Xn) is said to dominate
another estimator T2(X1, X2, . . . , Xn) if, for all θ ,

E (T1(X1, X2, . . . , Xn) − θ)2 ≤ E (T2(X1, X2, . . . , Xn) − θ)2 .
(11.263)

This raises a natural question: Is there a best estimator of θ that dom-
inates every other estimator? To answer this question, we derive the
Cramér–Rao lower bound on the mean-squared error of any estimator.
We first define the score function of the distribution f (x; θ). We then use
the Cauchy–Schwarz inequality to prove the Cramér–Rao lower bound
on the variance of all unbiased estimators.
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Definition The score V is a random variable defined by

V = ∂

∂θ
ln f (X; θ) =

∂
∂θ

f (X; θ)

f (X; θ)
, (11.264)

where X ∼f (x; θ).
The mean value of the score is

EV =
∫ ∂

∂θ
f (x; θ)

f (x; θ)
f (x; θ) dx (11.265)

=
∫

∂

∂θ
f (x; θ) dx (11.266)

= ∂

∂θ

∫
f (x; θ) dx (11.267)

= ∂

∂θ
1 (11.268)

= 0, (11.269)

and therefore EV 2 = var(V ). The variance of the score has a special
significance.

Definition The Fisher information J (θ) is the variance of the score:

J (θ) = Eθ

[
∂

∂θ
ln f (X; θ)

]2

. (11.270)

If we consider a sample of n random variables X1, X2, . . . , Xn drawn
i.i.d. ∼f (x; θ), we have

f (x1, x2, . . . , xn; θ) =
n∏

i=1

f (xi; θ), (11.271)

and the score function is the sum of the individual score functions,

V (X1, X2, . . . , Xn) = ∂

∂θ
ln f (X1,X2, . . . , Xn; θ) (11.272)

=
n∑

i=1

∂

∂θ
ln f (Xi; θ) (11.273)

=
n∑

i=1

V (Xi), (11.274)
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where the V (Xi) are independent, identically distributed with zero mean.
Hence, the n-sample Fisher information is

Jn(θ) = Eθ

[
∂

∂θ
ln f (X1, X2, . . . , Xn; θ)

]2

(11.275)

= EθV
2(X1, X2, . . . , Xn) (11.276)

= Eθ

(
n∑

i=1

V (Xi)

)2

(11.277)

=
n∑

i=1

EθV
2(Xi) (11.278)

= nJ (θ). (11.279)

Consequently, the Fisher information for n i.i.d. samples is n times the
individual Fisher information. The significance of the Fisher information
is shown in the following theorem.

Theorem 11.10.1 (Cramér–Rao inequality) The mean-squared error
of any unbiased estimator T (X) of the parameter θ is lower bounded by
the reciprocal of the Fisher information:

var(T ) ≥ 1
J (θ)

. (11.280)

Proof: Let V be the score function and T be the estimator. By the
Cauchy–Schwarz inequality, we have

(Eθ [(V − EθV )(T − EθT )])2 ≤ Eθ (V − EθV )2Eθ (T − EθT )2.
(11.281)

Since T is unbiased, EθT = θ for all θ . By (11.269), EθV = 0 and hence
Eθ (V − EθV )(T − EθT ) = Eθ (V T ). Also, by definition, var(V ) = J (θ).
Substituting these conditions in (11.281), we have

[Eθ (V T )]2 ≤ J (θ)var(T ). (11.282)

Now,

Eθ (V T ) =
∫ ∂

∂θ
f (x; θ)

f (x; θ)
T (x)f (x; θ) dx (11.283)
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=
∫

∂

∂θ
f (x; θ)T (x) dx (11.284)

= ∂

∂θ

∫
f (x; θ)T (x) dx (11.285)

= ∂

∂θ
EθT (11.286)

= ∂

∂θ
θ (11.287)

= 1, (11.288)

where the interchange of differentiation and integration in (11.285) can be
justified using the bounded convergence theorem for appropriately well
behaved f (x; θ), and (11.287) follows from the fact that the estimator T
is unbiased. Substituting this in (11.282), we obtain

var(T ) ≥ 1
J (θ)

, (11.289)

which is the Cramér–Rao inequality for unbiased estimators. !

By essentially the same arguments, we can show that for any estimator

E(T − θ)2 ≥
(1 + b′

T (θ))2

J (θ)
+ b2

T (θ), (11.290)

where bT (θ) = EθT − θ and b′
T (θ) is the derivative of bT (θ) with respect

to θ . The proof of this is left as a problem at the end of the chapter.

Example 11.10.2 Let X1, X2, . . . , Xn be i.i.d. ∼N(θ, σ 2), σ 2 known.
Here J (θ) = n/σ 2. Let T (X1, X2, . . . , Xn) = Xn = 1

n

∑
Xi . Then

Eθ (Xn − θ)2 = σ 2/n = 1/J (θ). Thus, Xn is the minimum variance unbi-
ased estimator of θ , since it achieves the Cramér–Rao lower bound.

The Cramér–Rao inequality gives us a lower bound on the variance
for all unbiased estimators. When this bound is achieved, we call the
estimator efficient.

Definition An unbiased estimator T is said to be efficient if it meets
the Cramér–Rao bound with equality [i.e., if var(T ) = 1

J (θ)
].
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The Fisher information is therefore a measure of the amount of “infor-
mation” about θ that is present in the data. It gives a lower bound on the
error in estimating θ from the data. However, it is possible that there does
not exist an estimator meeting this lower bound.

We can generalize the concept of Fisher information to the multipa-
rameter case, in which case we define the Fisher information matrix J (θ)
with elements

Jij (θ) =
∫

f (x; θ)
∂

∂θi
ln f (x; θ)

∂

∂θj
ln f (x; θ) dx. (11.291)

The Cramér–Rao inequality becomes the matrix inequality

. ≥ J−1(θ), (11.292)

where . is the covariance matrix of a set of unbiased estimators for the
parameters θ and . ≥ J−1(θ) in the sense that the difference . − J−1 is
a nonnegative definite matrix. We will not go into the details of the proof
for multiple parameters; the basic ideas are similar.

Is there a relationship between the Fisher information J (θ) and quanti-
ties such as entropy defined earlier? Note that Fisher information is defined
with respect to a family of parametric distributions, unlike entropy, which
is defined for all distributions. But we can parametrize any distribution
f (x) by a location parameter θ and define Fisher information with respect
to the family of densities f (x − θ) under translation. We explore the
relationship in greater detail in Section 17.8, where we show that while
entropy is related to the volume of the typical set, the Fisher information
is related to the surface area of the typical set. Further relationships of
Fisher information to relative entropy are developed in the problems.

SUMMARY

Basic identities

Qn(x) = 2−n(D(Px||Q)+H(Px)), (11.293)

|Pn| ≤ (n + 1)|X |, (11.294)

|T (P )| .= 2nH(P ), (11.295)

Qn(T (P ))
.= 2−nD(P ||Q). (11.296)
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Universal data compression

P (n)
e ≤ 2−nD(P ∗

R ||Q) for all Q, (11.297)

where

D(P ∗
R||Q) = min

P :H(P)≥R
D(P ||Q). (11.298)

Large deviations (Sanov’s theorem)

Qn(E) = Qn(E ∩ Pn) ≤ (n + 1)|X |2−nD(P ∗||Q), (11.299)

D(P ∗||Q) = min
P∈E

D(P ||Q). (11.300)

If E is the closure of its interior, then

Qn(E)
.= 2−nD(P ∗||Q). (11.301)

L1 bound on relative entropy

D(P1||P2) ≥ 1
2 ln 2

||P1 − P2||21. (11.302)

Pythagorean theorem. If E is a convex set of types, distribution Q /∈
E, and P ∗ achieves D(P ∗||Q) = minP∈E D(P ||Q), we have

D(P ||Q) ≥ D(P ||P ∗) + D(P ∗||Q) (11.303)

for all P ∈ E.

Conditional limit theorem. If X1, X2, . . . , Xn i.i.d. ∼Q, then

Pr(X1 = a|PXn ∈ E) → P ∗(a) in probability, (11.304)

where P ∗ minimizes D(P ||Q) over P ∈ E. In particular,

Pr

{

X1 = a

∣∣∣∣∣
1
n

n∑

i=1

Xi ≥ α

}

→ Q(a)eλa

∑
x Q(x)eλx

. (11.305)

Neyman–Pearson lemma. The optimum test between two densities
P1 and P2 has a decision region of the form “accept P = P1 if
P1(x1,x2,...,xn)
P2(x1,x2,...,xn)

> T .”
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Chernoff–Stein lemma. The best achievable error exponent βϵ
n if

αn ≤ ϵ:

βϵ
n = min

An ⊆Xn

αn < ϵ

βn, (11.306)

lim
n→∞

1
n

log βϵ
n = −D(P1||P2). (11.307)

Chernoff information. The best achievable exponent for a Bayesian
probability of error is

D∗ = D(Pλ∗ ||P1) = D(Pλ∗ ||P2), (11.308)

where

Pλ =
P λ

1 (x)P 1−λ
2 (x)

∑
a∈X P λ

1 (a)P 1−λ
2 (a)

(11.309)

with λ = λ∗ chosen so that

D(Pλ||P1) = D(Pλ||P2). (11.310)

Fisher information

J (θ) = Eθ

[
∂

∂θ
ln f (x; θ)

]2

. (11.311)

Cramér–Rao inequality. For any unbiased estimator T of θ ,

Eθ (T (X) − θ)2 = var(T ) ≥ 1
J (θ)

. (11.312)

PROBLEMS

11.1 Chernoff–Stein lemma. Consider the two-hypothesis test

H1 : f = f1 vs. H2 : f = f2.

Find D(f1 ∥ f2) if
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(a) fi(x) = N(0, σ 2
i ), i = 1, 2.

(b) fi(x) = λie
−λix, x ≥ 0, i = 1, 2.

(c) f1(x) is the uniform density over the interval [0, 1] and f2(x)
is the uniform density over [a, a + 1]. Assume that 0 < a < 1.

(d) f1 corresponds to a fair coin and f2 corresponds to a two-
headed coin.

11.2 Relation between D(P ∥ Q) and chi-square. Show that the χ2

statistic

χ2 = .x
(P (x) − Q(x))2

Q(x)

is (twice) the first term in the Taylor series expansion of D(P ∥
Q) about Q. Thus, D(P ∥ Q) = 1

2χ2 + · · · . [Suggestion: Write
P
Q

= 1 + P−Q
Q

and expand the log.]

11.3 Error exponent for universal codes . A universal source code of
rate R achieves a probability of error P

(n)
e

.= e−nD(P ∗∥Q), where
Q is the true distribution and P ∗ achieves min D(P ∥ Q) over all
P such that H(P ) ≥ R.
(a) Find P ∗ in terms of Q and R.

(b) Now let X be binary. Find the region of source probabili-
ties Q(x), x ∈ {0, 1}, for which rate R is sufficient for the
universal source code to achieve P

(n)
e → 0.

11.4 Sequential projection. We wish to show that projecting Q onto
P1 and then projecting the projection Q̂ onto P1

⋂
P2 is the same

as projecting Q directly onto P1
⋂

P2. Let P1 be the set of prob-
ability mass functions on X satisfying

∑

x

p(x) = 1, (11.313)

∑

x

p(x)hi(x) ≥ αi , i = 1, 2, . . . , r. (11.314)

Let P2 be the set of probability mass functions on X satisfying
∑

x

p(x) = 1, (11.315)

∑

x

p(x)gj (x) ≥ βj , j = 1, 2, . . . , s. (11.316)
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Suppose that Q ̸∈ P1
⋃

P2. Let P ∗ minimize D(P ∥ Q) over all
P ∈ P1. Let R∗ minimize D(R ∥ Q) over all R ∈ P1

⋂
P2. Argue

that R∗ minimizes D(R ∥ P ∗) over all R ∈ P1
⋂

P2.

11.5 Counting . Let X = {1, 2, . . . , m}. Show that the number of se-
quences xn ∈ Xn satisfying 1

n

∑n
i=1 g(xi) ≥ α is approximately

equal to 2nH ∗
, to first order in the exponent, for n sufficiently large,

where

H ∗ = max
P :

∑m
i=1 P(i)g(i)≥α

H(P ). (11.317)

11.6 Biased estimates may be better . Consider the problem of esti-
mating µ and σ 2 from n samples of data drawn i.i.d. from a
N(µ, σ 2) distribution.
(a) Show that Xn is an unbiased estimator of µ.
(b) Show that the estimator

S2
n = 1

n

n∑

i=1

(Xi − Xn)
2 (11.318)

is a biased estimator of σ 2 and the estimator

S2
n−1 = 1

n − 1

n∑

i=1

(Xi − Xn)
2 (11.319)

is unbiased.
(c) Show that S2

n has a lower mean-squared error than that of
S2

n−1. This illustrates the idea that a biased estimator may be
“better” than an unbiased estimator.

11.7 Fisher information and relative entropy . Show for a parametric
family {pθ (x)} that

lim
θ ′→θ

1
(θ − θ ′)2 D(pθ ||pθ ′) = 1

ln 4
J (θ). (11.320)

11.8 Examples of Fisher information. The Fisher information J (,)
for the family fθ (x), θ ∈ R is defined by

J (θ) = Eθ

(
∂fθ (X)/∂θ

fθ (X)

)2

=
∫

(f
′
θ )

2

fθ
.

Find the Fisher information for the following families:
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(a) fθ (x) = N(0, θ) = 1√
2πθ

e− x2
2θ

(b) fθ (x) = θe−θx, x ≥ 0
(c) What is the Cramèr–Rao lower bound on Eθ (θ̂(X) − θ)2,

where θ̂(X) is an unbiased estimator of θ for parts (a) and
(b)?

11.9 Two conditionally independent looks double the Fisher informa-
tion. Let gθ (x1, x2) = fθ (x1)fθ (x2). Show that Jg(θ) = 2Jf (θ).

11.10 Joint distributions and product distributions. Consider a joint
distribution Q(x, y) with marginals Q(x) and Q(y). Let E be
the set of types that look jointly typical with respect to Q:

E = {P (x, y) : −
∑

x,y

P (x, y) log Q(x) − H(X) = 0,

−
∑

x,y

P (x, y) log Q(y) − H(Y) = 0,

−
∑

x,y

P (x, y) log Q(x, y)

−H(X, Y ) = 0}. (11.321)

(a) Let Q0(x, y) be another distribution on X × Y. Argue
that the distribution P ∗ in E that is closest to Q0 is of the
form

P ∗(x, y) = Q0(x, y)eλ0+λ1 log Q(x)+λ2 log Q(y)+λ3 log Q(x,y),
(11.322)

where λ0, λ1, λ2, and λ3 are chosen to satisfy the constraints.
Argue that this distribution is unique.

(b) Now let Q0(x, y) = Q(x)Q(y). Verify that Q(x, y) is of the
form (11.322) and satisfies the constraints. Thus, P ∗(x, y) =
Q(x, y) (i.e., the distribution in E closest to the product dis-
tribution is the joint distribution).

11.11 Cramér–Rao inequality with a bias term . Let X ∼f (x; θ) and
let T (X) be an estimator for θ . Let bT (θ) = EθT − θ be the bias
of the estimator. Show that

E(T − θ)2 ≥ [1 + b′
T (θ)]2

J (θ)
+ b2

T (θ). (11.323)
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11.12 Hypothesis testing . Let X1, X2, . . . , Xn be i.i.d. ∼p(x). Con-
sider the hypothesis test H1 : p = p1 vs. H2 : p = p2 . Let

p1(x) =

⎧
⎪⎨

⎪⎩

1
2 , x = −1
1
4 , x = 0
1
4 , x = 1

and

p2(x) =

⎧
⎪⎨

⎪⎩

1
4 , x = −1
1
4 , x = 0
1
2 , x = 1.

Find the error exponent for Pr{Decide H2|H1 true} in the best
hypothesis test of H1 vs. H2 subject to Pr{Decide H1|H2 true}
≤ 1

2 .

11.13 Sanov’s theorem . Prove a simple version of Sanov’s theorem for
Bernoulli(q) random variables.
Let the proportion of 1’s in the sequence X1, X2, . . . , Xn be

Xn = 1
n

n∑

i=1

Xi. (11.324)

By the law of large numbers, we would expect Xn to be close
to q for large n. Sanov’s theorem deals with the probability that
pXn is far away from q. In particular, for concreteness, if we take
p > q > 1

2 , Sanov’s theorem states that

− 1
n

log Pr
{
(X1, X2, . . . , Xn) : Xn ≥ p

}

→ p log
p

q
+ (1 − p) log

1 − p

1 − q

= D((p, 1 − p)||(q, 1 − q)). (11.325)

Justify the following steps:

• Pr
{
(X1, X2, . . . , Xn) : Xn ≥ p

}
≤

n∑

i=⌊np⌋

(
n

i

)
qi(1 − q)n−i .

(11.326)
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• Argue that the term corresponding to i = ⌊np⌋ is the largest
term in the sum on the right-hand side of the last equation.

• Show that this term is approximately 2−nD.
• Prove an upper bound on the probability in Sanov’s theorem

using the steps above. Use similar arguments to prove a lower
bound and complete the proof of Sanov’s theorem.

11.14 Sanov . Let Xi be i.i.d. ∼N(0, σ 2).

(a) Find the exponent in the behavior of Pr{ 1
n

∑n
i=1 X2

i ≥ α2}.
This can be done from first principles (since the normal dis-
tribution is nice) or by using Sanov’s theorem.

(b) What do the data look like if 1
n

∑n
i=1 X2

i ≥ α? That is, what
is the P ∗ that minimizes D(P ∥ Q)?

11.15 Counting states . Suppose that an atom is equally likely to be in
each of six states, X ∈ {s1, s2, s3, . . . , s6}. One observes n atoms
X1, X2, . . . , Xn independently drawn according to this uniform
distribution. It is observed that the frequency of occurrence of
state s1 is twice the frequency of occurrence of state s2.
(a) To first order in the exponent, what is the probability of

observing this event?
(b) Assuming n large, find the conditional distribution of the state

of the first atom X1, given this observation.

11.16 Hypothesis testing . Let {Xi} be i.i.d. ∼p(x), x ∈ {1, 2, . . .}.
Consider two hypotheses, H0 : p(x) = p0(x) vs. H1 : p(x) =
p1(x), where p0(x) =

(1
2

)x
and p1(x) = qpx−1, x = 1, 2, 3, . . . .

(a) Find D(p0 ∥ p1).
(b) Let Pr{H0} = 1

2 . Find the minimal probability of error test for
H0 vs. H1 given data X1, X2, . . . , Xn ∼p(x).

11.17 Maximum likelihood estimation. Let {fθ (x)} denote a parametric
family of densities with parameter θϵR. Let X1, X2, . . . , Xn be
i.i.d. ∼fθ (x). The function

lθ (x
n) = ln

(
n∏

i=1

fθ (xi)

)

is known as the log likelihood function. Let θ0 denote the true
parameter value.
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(a) Let the expected log likelihood be

Eθ0 lθ (X
n) =

∫ (

ln
n∏

i=1

fθ (xi)

)
n∏

i=1

fθ0(xi)dxn,

and show that

Eθ0(l(X
n)) = (−h(fθ0) − D(fθ0 ||fθ ))n.

(b) Show that the maximum over θ of the expected log likelihood
is achieved by θ = θ0.

11.18 Large deviations . Let X1, X2, . . . be i.i.d. random variables
drawn according to the geometric distribution

Pr{X = k} = pk−1(1 − p), k = 1, 2, . . . .

Find good estimates (to first order in the exponent) of:
(a) Pr{ 1

n

∑n
i=1 Xi ≥ α}.

(b) Pr{X1 = k| 1
n

∑n
i=1 Xi ≥ α}.

(c) Evaluate parts (a) and (b) for p = 1
2 , α = 4.

11.19 Another expression for Fisher information . Use integration by
parts to show that

J (θ) = −E
∂2 ln fθ (x)

∂θ2 .

11.20 Stirling’s approximation. Derive a weak form of Stirling’s
approximation for factorials; that is, show that

(n

e

)n

≤ n! ≤ n
(n

e

)n

(11.327)

using the approximation of integrals by sums. Justify the following
steps:

ln(n!) =
n−1∑

i=2

ln(i) + ln(n) ≤
∫ n−1

2
ln x dx + ln n = · · ·

(11.328)
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and

ln(n!) =
n∑

i=1

ln(i) ≥
∫ n

0
ln x dx = · · · . (11.329)

11.21 Asymptotic value of
(

n

k

)
. Use the simple approximation of Prob-

lem 11.20 to show that if 0 ≤ p ≤ 1, and k = ⌊np⌋ (i.e., k is the
largest integer less than or equal to np), then

lim
n→∞

1
n

log
(

n

k

)
= −p log p − (1 − p) log(1 − p) = H(p).

(11.330)
Now let pi , i = 1, . . . , m be a probability distribution on m sym-
bols (i.e., pi ≥ 0 and

∑
i pi = 1). What is the limiting value of

1
n

log
(

n

⌊np1⌋ ⌊np2⌋ . . . ⌊npm−1⌋ n −
∑m−1

j=0 ⌊npj⌋

)

= 1
n

log
n!

⌊np1⌋! ⌊np2⌋! . . . ⌊npm−1⌋! (n −
∑m−1

j=0 ⌊npj⌋)!
?

(11.331)

11.22 Running difference. Let X1, X2, . . . , Xn be i.i.d. ∼Q1(x), and
Y1, Y2, . . . , Yn be i.i.d. ∼Q2(y). Let Xn and Yn be independent.
Find an expression for Pr{

∑n
i=1 Xi −

∑n
i=1 Yi ≥ nt} good to first

order in the exponent. Again, this answer can be left in parametric
form.

11.23 Large likelihoods . Let X1, X2, . . . be i.i.d. ∼Q(x), x ∈ {1, 2,
. . . ,m}. Let P(x) be some other probability mass function. We
form the log likelihood ratio

1
n

log
P n(X1, X2, . . . , Xn)

Qn(X1, X2, . . . , Xn)
= 1

n

n∑

i=1

log
P(Xi)

Q(Xi)

of the sequence Xn and ask for the probability that it exceeds a
certain threshold. Specifically, find (to first order in the exponent)

Qn

(
1
n

log
P(X1, X2, . . . , Xn)

Q(X1, X2, . . . , Xn)
> 0

)
.

There may be an undetermined parameter in the answer.
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11.24 Fisher information for mixtures . Let f1(x) and f0(x) be two
given probability densities. Let Z be Bernoulli(θ ), where θ is
unknown. Let X ∼f1(x) if Z = 1 and X ∼f0(x) if Z = 0.
(a) Find the density fθ (x) of the observed X.
(b) Find the Fisher information J (θ).
(c) What is the Cramér–Rao lower bound on the mean-squared

error of an unbiased estimate of θ?
(d) Can you exhibit an unbiased estimator of θ?

11.25 Bent coins . Let {Xi} be iid ∼Q, where

Q(k) = Pr(Xi = k) =
(

m

k

)
qk(1 − q)m−k for k = 0, 1, 2, . . . , m.

Thus, the Xi’s are iid ∼Binomial(m, q). Show that as n → ∞,

Pr

(

X1 = k

∣∣∣∣
1
n

n∑

i=1

Xi ≥ α

)

→ P ∗(k),

where P ∗ is Binomial(m, λ) (i.e., P ∗(k) =
(

m

k

)
λk(1 − λ)m−k for

some λ ∈ [0, 1]). Find λ.

11.26 Conditional limiting distribution
(a) Find the exact value of

Pr

{

X1 = 1
∣∣∣∣
1
n

n∑

i=1

Xi = 1
4

}

(11.332)

if X1, X2, . . . , are Bernoulli( 2
3 ) and n is a multiple of 4.

(b) Now let Xiϵ{−1, 0, 1} and let X1, X2 . . . be i.i.d. uniform
over {−1, 0, +1}. Find the limit of

Pr

{

X1 = +1
∣∣∣∣
1
n

n∑

i=1

X2
i = 1

2

}

(11.333)

for n = 2k, k → ∞.
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11.27 Variational inequality . Verify for positive random variables X
that

log EP (X) = sup
Q

[
EQ(log X) − D(Q||P)

]
, (11.334)

where EP (X) =
∑

x xP (x) and D(Q||P) =
∑

x Q(x) log Q(x)
P (x)

and the supremum is over all Q(x) ≥ 0,
∑

Q(x) = 1.
It is enough to extremize J (Q) = EQ ln X − D(Q||P) +
λ(

∑
Q(x) − 1).

11.28 Type constraints
(a) Find constraints on the type PXn such that the sample variance

X2
n − (Xn)

2 ≤ α, where X2
n = 1

n

∑n
i=1 X2

i and
Xn = 1

n

∑n
i=1 Xi .

(b) Find the exponent in the probability Qn(X2
n − (Xn)

2 ≤ α).
You can leave the answer in parametric form.

11.29 Uniform distribution on the simplex . Which of these methods
will generate a sample from the uniform distribution on the sim-
plex {x ∈ Rn : xi ≥ 0,

∑n
i=1 xi = 1}?

(a) Let Yi be i.i.d. uniform [0, 1] with Xi = Yi/
∑n

j=1 Yj .

(b) Let Yi be i.i.d. exponentially distributed ∼λe−λy , y ≥ 0, with
Xi = Yi/

∑n
j=1 Yj .

(c) (Break stick into n parts) Let Y1, Y2, . . . , Yn−1 be i.i.d. uni-
form [0, 1], and let Xi be the length of the ith interval.

HISTORICAL NOTES

The method of types evolved from notions of strong typicality; some
of the ideas were used by Wolfowitz [566] to prove channel capacity
theorems. The method was fully developed by Csiszár and Körner [149],
who derived the main theorems of information theory from this viewpoint.
The method of types described in Section 11.1 follows the development
in Csiszár and Körner. The L1 lower bound on relative entropy is due to
Csiszár [138], Kullback [336], and Kemperman [309]. Sanov’s theorem
[455] was generalized by Csiszár [141] using the method of types.


