
CHAPTER 2

ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

In this chapter we introduce most of the basic definitions required for
subsequent development of the theory. It is irresistible to play with their
relationships and interpretations, taking faith in their later utility. After
defining entropy and mutual information, we establish chain rules, the
nonnegativity of mutual information, the data-processing inequality, and
illustrate these definitions by examining sufficient statistics and Fano’s
inequality.

The concept of information is too broad to be captured completely by
a single definition. However, for any probability distribution, we define a
quantity called the entropy, which has many properties that agree with the
intuitive notion of what a measure of information should be. This notion is
extended to define mutual information, which is a measure of the amount
of information one random variable contains about another. Entropy then
becomes the self-information of a random variable. Mutual information is
a special case of a more general quantity called relative entropy, which is
a measure of the distance between two probability distributions. All these
quantities are closely related and share a number of simple properties,
some of which we derive in this chapter.

In later chapters we show how these quantities arise as natural answers
to a number of questions in communication, statistics, complexity, and
gambling. That will be the ultimate test of the value of these definitions.

2.1 ENTROPY

We first introduce the concept of entropy, which is a measure of the
uncertainty of a random variable. Let X be a discrete random variable
with alphabet X and probability mass function p(x) = Pr{X = x}, x ∈ X.
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We denote the probability mass function by p(x) rather than pX(x), for
convenience. Thus, p(x) and p(y) refer to two different random variables
and are in fact different probability mass functions, pX(x) and pY (y),
respectively.

Definition The entropy H(X) of a discrete random variable X is
defined by

H(X) = −
∑

x∈X
p(x) log p(x). (2.1)

We also write H(p) for the above quantity. The log is to the base 2
and entropy is expressed in bits. For example, the entropy of a fair coin
toss is 1 bit. We will use the convention that 0 log 0 = 0, which is easily
justified by continuity since x log x → 0 as x → 0. Adding terms of zero
probability does not change the entropy.

If the base of the logarithm is b, we denote the entropy as Hb(X). If
the base of the logarithm is e, the entropy is measured in nats. Unless
otherwise specified, we will take all logarithms to base 2, and hence all
the entropies will be measured in bits. Note that entropy is a functional
of the distribution of X. It does not depend on the actual values taken by
the random variable X, but only on the probabilities.

We denote expectation by E. Thus, if X ∼ p(x), the expected value of
the random variable g(X) is written

Epg(X) =
∑

x∈X
g(x)p(x), (2.2)

or more simply as Eg(X) when the probability mass function is under-
stood from the context. We shall take a peculiar interest in the eerily
self-referential expectation of g(X) under p(x) when g(X) = log 1

p(X)
.

Remark The entropy of X can also be interpreted as the expected value
of the random variable log 1

p(X)
, where X is drawn according to probability

mass function p(x). Thus,

H(X) = Ep log
1

p(X)
. (2.3)

This definition of entropy is related to the definition of entropy in ther-
modynamics; some of the connections are explored later. It is possible
to derive the definition of entropy axiomatically by defining certain prop-
erties that the entropy of a random variable must satisfy. This approach
is illustrated in Problem 2.46. We do not use the axiomatic approach to
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justify the definition of entropy; instead, we show that it arises as the
answer to a number of natural questions, such as “What is the average
length of the shortest description of the random variable?” First, we derive
some immediate consequences of the definition.

Lemma 2.1.1 H(X) ≥ 0.

Proof: 0 ≤ p(x) ≤ 1 implies that log 1
p(x)

≥ 0. !

Lemma 2.1.2 Hb(X) = (logb a)Ha(X).

Proof: logb p = logb a loga p. !

The second property of entropy enables us to change the base of the
logarithm in the definition. Entropy can be changed from one base to
another by multiplying by the appropriate factor.

Example 2.1.1 Let

X =
{

1 with probability p,
0 with probability 1 − p.

(2.4)

Then
H(X) = −p log p − (1 − p) log(1 − p)

def== H(p). (2.5)

In particular, H(X) = 1 bit when p = 1
2 . The graph of the function H(p)

is shown in Figure 2.1. The figure illustrates some of the basic properties
of entropy: It is a concave function of the distribution and equals 0 when
p = 0 or 1. This makes sense, because when p = 0 or 1, the variable
is not random and there is no uncertainty. Similarly, the uncertainty is
maximum when p = 1

2 , which also corresponds to the maximum value of
the entropy.

Example 2.1.2 Let

X =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a with probability 1
2 ,

b with probability 1
4 ,

c with probability 1
8 ,

d with probability 1
8 .

(2.6)

The entropy of X is

H(X) = −1
2

log
1
2

− 1
4

log
1
4

− 1
8

log
1
8

− 1
8

log
1
8

= 7
4

bits. (2.7)
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FIGURE 2.1. H(p) vs. p.

Suppose that we wish to determine the value of X with the minimum
number of binary questions. An efficient first question is “Is X = a?”
This splits the probability in half. If the answer to the first question is
no, the second question can be “Is X = b?” The third question can be
“Is X = c?” The resulting expected number of binary questions required
is 1.75. This turns out to be the minimum expected number of binary
questions required to determine the value of X. In Chapter 5 we show that
the minimum expected number of binary questions required to determine
X lies between H(X) and H(X) + 1.

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY

We defined the entropy of a single random variable in Section 2.1. We
now extend the definition to a pair of random variables. There is nothing
really new in this definition because (X, Y ) can be considered to be a
single vector-valued random variable.

Definition The joint entropy H(X, Y ) of a pair of discrete random
variables (X, Y ) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log p(x, y), (2.8)
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which can also be expressed as

H(X, Y ) = −E log p(X, Y ). (2.9)

We also define the conditional entropy of a random variable given
another as the expected value of the entropies of the conditional distribu-
tions, averaged over the conditioning random variable.

Definition If (X, Y ) ∼ p(x, y), the conditional entropy H(Y |X) is
defined as

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x) (2.10)

= −
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x) (2.11)

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(y|x) (2.12)

= −E log p(Y |X). (2.13)

The naturalness of the definition of joint entropy and conditional entropy
is exhibited by the fact that the entropy of a pair of random variables is
the entropy of one plus the conditional entropy of the other. This is proved
in the following theorem.

Theorem 2.2.1 (Chain rule)

H(X, Y ) = H(X) + H(Y |X). (2.14)

Proof

H(X, Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log p(x, y) (2.15)

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(x)p(y|x) (2.16)

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(x) −

∑

x∈X

∑

y∈Y
p(x, y) log p(y|x)

(2.17)

= −
∑

x∈X
p(x) log p(x) −

∑

x∈X

∑

y∈Y
p(x, y) log p(y|x) (2.18)

= H(X) + H(Y |X). (2.19)
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Equivalently, we can write

log p(X, Y ) = log p(X) + log p(Y |X) (2.20)

and take the expectation of both sides of the equation to obtain the
theorem. !

Corollary
H(X, Y |Z) = H(X|Z) + H(Y |X, Z). (2.21)

Proof: The proof follows along the same lines as the theorem. !

Example 2.2.1 Let (X, Y ) have the following joint distribution:

The marginal distribution of X is ( 1
2 , 1

4 , 1
8 , 1

8) and the marginal distribution
of Y is ( 1

4 , 1
4 , 1

4 , 1
4), and hence H(X) = 7

4 bits and H(Y) = 2 bits. Also,

H(X|Y) =
4∑

i=1

p(Y = i)H(X|Y = i) (2.22)

= 1
4
H

(
1
2
,

1
4
,

1
8
,

1
8

)
+ 1

4
H

(
1
4
,

1
2
,

1
8
,

1
8

)

+ 1
4
H

(
1
4
,

1
4
,

1
4
,

1
4

)
+ 1

4
H(1, 0, 0, 0) (2.23)

= 1
4

× 7
4

+ 1
4

× 7
4

+ 1
4

× 2 + 1
4

× 0 (2.24)

= 11
8

bits. (2.25)

Similarly, H(Y |X) = 13
8 bits and H(X, Y ) = 27

8 bits.

Remark Note that H(Y |X) ̸= H(X|Y). However, H(X) − H(X|Y) =
H(Y)− H(Y |X), a property that we exploit later.
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2.3 RELATIVE ENTROPY AND MUTUAL INFORMATION

The entropy of a random variable is a measure of the uncertainty of the
random variable; it is a measure of the amount of information required on
the average to describe the random variable. In this section we introduce
two related concepts: relative entropy and mutual information.

The relative entropy is a measure of the distance between two distribu-
tions. In statistics, it arises as an expected logarithm of the likelihood ratio.
The relative entropy D(p||q) is a measure of the inefficiency of assuming
that the distribution is q when the true distribution is p. For example, if
we knew the true distribution p of the random variable, we could con-
struct a code with average description length H(p). If, instead, we used
the code for a distribution q, we would need H(p) + D(p||q) bits on the
average to describe the random variable.

Definition The relative entropy or Kullback–Leibler distance between
two probability mass functions p(x) and q(x) is defined as

D(p||q) =
∑

x∈X
p(x) log

p(x)

q(x)
(2.26)

= Ep log
p(X)

q(X)
. (2.27)

In the above definition, we use the convention that 0 log 0
0 = 0 and the

convention (based on continuity arguments) that 0 log 0
q

= 0 and p log p
0 =

∞. Thus, if there is any symbol x ∈ X such that p(x) > 0 and q(x) = 0,
then D(p||q) = ∞.

We will soon show that relative entropy is always nonnegative and is
zero if and only if p = q. However, it is not a true distance between
distributions since it is not symmetric and does not satisfy the triangle
inequality. Nonetheless, it is often useful to think of relative entropy as a
“distance” between distributions.

We now introduce mutual information, which is a measure of the
amount of information that one random variable contains about another
random variable. It is the reduction in the uncertainty of one random
variable due to the knowledge of the other.

Definition Consider two random variables X and Y with a joint proba-
bility mass function p(x, y) and marginal probability mass functions p(x)
and p(y). The mutual information I (X;Y) is the relative entropy between
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the joint distribution and the product distribution p(x)p(y):

I (X;Y) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
(2.28)

= D(p(x, y)||p(x)p(y)) (2.29)

= Ep(x,y) log
p(X, Y )

p(X)p(Y )
. (2.30)

In Chapter 8 we generalize this definition to continuous random vari-
ables, and in (8.54) to general random variables that could be a mixture
of discrete and continuous random variables.

Example 2.3.1 Let X = {0, 1} and consider two distributions p and q
on X. Let p(0) = 1 − r , p(1) = r , and let q(0) = 1 − s, q(1) = s. Then

D(p||q) = (1 − r) log
1 − r

1 − s
+ r log

r

s
(2.31)

and
D(q||p) = (1 − s) log

1 − s

1 − r
+ s log

s

r
. (2.32)

If r = s, then D(p||q) = D(q||p) = 0. If r = 1
2 , s = 1

4 , we can calculate

D(p||q) = 1
2

log
1
2
3
4

+ 1
2

log
1
2
1
4

= 1 − 1
2

log 3 = 0.2075 bit, (2.33)

whereas

D(q||p) = 3
4

log
3
4
1
2

+ 1
4

log
1
4
1
2

= 3
4

log 3 − 1 = 0.1887 bit. (2.34)

Note that D(p||q) ̸= D(q||p) in general.

2.4 RELATIONSHIP BETWEEN ENTROPY AND MUTUAL
INFORMATION

We can rewrite the definition of mutual information I (X;Y) as

I (X;Y) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
(2.35)
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=
∑

x,y

p(x, y) log
p(x|y)

p(x)
(2.36)

= −
∑

x,y

p(x, y) log p(x) +
∑

x,y

p(x, y) log p(x|y) (2.37)

= −
∑

x

p(x) log p(x) −
(

−
∑

x,y

p(x, y) log p(x|y)

)

(2.38)

= H(X) − H(X|Y). (2.39)

Thus, the mutual information I (X;Y) is the reduction in the uncertainty
of X due to the knowledge of Y .

By symmetry, it also follows that

I (X;Y) = H(Y) − H(Y |X). (2.40)

Thus, X says as much about Y as Y says about X.
Since H(X, Y ) = H(X) + H(Y |X), as shown in Section 2.2, we have

I (X;Y) = H(X) + H(Y) − H(X, Y ). (2.41)

Finally, we note that

I (X;X) = H(X) − H(X|X) = H(X). (2.42)

Thus, the mutual information of a random variable with itself is the
entropy of the random variable. This is the reason that entropy is some-
times referred to as self-information.

Collecting these results, we have the following theorem.

Theorem 2.4.1 (Mutual information and entropy)

I (X;Y) = H(X) − H(X|Y) (2.43)

I (X;Y) = H(Y) − H(Y |X) (2.44)

I (X;Y) = H(X) + H(Y) − H(X, Y ) (2.45)

I (X;Y) = I (Y ;X) (2.46)

I (X;X) = H(X). (2.47)
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FIGURE 2.2. Relationship between entropy and mutual information.

The relationship between H(X), H(Y ),H(X, Y ),H(X|Y), H(Y |X),
and I (X;Y) is expressed in a Venn diagram (Figure 2.2). Notice that
the mutual information I (X;Y) corresponds to the intersection of the
information in X with the information in Y .

Example 2.4.1 For the joint distribution of Example 2.2.1, it is easy to
calculate the mutual information I (X;Y) = H(X) − H(X|Y) = H(Y) −
H(Y |X) = 0.375 bit.

2.5 CHAIN RULES FOR ENTROPY, RELATIVE ENTROPY,
AND MUTUAL INFORMATION

We now show that the entropy of a collection of random variables is the
sum of the conditional entropies.

Theorem 2.5.1 (Chain rule for entropy) Let X1, X2, . . . , Xn be drawn
according to p(x1, x2, . . . , xn). Then

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi |Xi−1, . . . , X1). (2.48)

Proof: By repeated application of the two-variable expansion rule for
entropies, we have

H(X1,X2) = H(X1) + H(X2|X1), (2.49)

H(X1, X2,X3) = H(X1) + H(X2, X3|X1) (2.50)
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= H(X1) + H(X2|X1) + H(X3|X2, X1), (2.51)

...

H(X1, X2, . . . , Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|Xn−1, . . . , X1)

(2.52)

=
n∑

i=1

H(Xi |Xi−1, . . . , X1). ! (2.53)

Alternative Proof: We write p(x1, . . . , xn) =
∏n

i=1 p(xi |xi−1, . . . , x1)
and evaluate

H(X1, X2, . . . , Xn)

= −
∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log p(x1, x2, . . . , xn) (2.54)

= −
∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log
n∏

i=1

p(xi |xi−1, . . . , x1) (2.55)

= −
∑

x1,x2,...,xn

n∑

i=1

p(x1, x2, . . . , xn) log p(xi |xi−1, . . . , x1) (2.56)

= −
n∑

i=1

∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log p(xi |xi−1, . . . , x1) (2.57)

= −
n∑

i=1

∑

x1,x2,...,xi

p(x1, x2, . . . , xi) log p(xi |xi−1, . . . , x1) (2.58)

=
n∑

i=1

H(Xi |Xi−1, . . . , X1). ! (2.59)

We now define the conditional mutual information as the reduction in
the uncertainty of X due to knowledge of Y when Z is given.

Definition The conditional mutual information of random variables X
and Y given Z is defined by

I (X;Y |Z) = H(X|Z) − H(X|Y, Z) (2.60)

= Ep(x,y,z) log
p(X, Y |Z)

p(X|Z)p(Y |Z)
. (2.61)

Mutual information also satisfies a chain rule.
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Theorem 2.5.2 (Chain rule for information)

I (X1, X2, . . . , Xn; Y) =
n∑

i=1

I (Xi; Y |Xi−1, Xi−2, . . . , X1). (2.62)

Proof

I (X1, X2, . . . , Xn; Y)

= H(X1, X2, . . . , Xn) − H(X1, X2, . . . , Xn|Y) (2.63)

=
n∑

i=1

H(Xi |Xi−1, . . . , X1) −
n∑

i=1

H(Xi |Xi−1, . . . , X1, Y )

=
n∑

i=1

I (Xi; Y |X1, X2, . . . , Xi−1). ! (2.64)

We define a conditional version of the relative entropy.

Definition For joint probability mass functions p(x, y) and q(x, y), the
conditional relative entropy D(p(y|x)||q(y|x)) is the average of the rela-
tive entropies between the conditional probability mass functions p(y|x)
and q(y|x) averaged over the probability mass function p(x). More pre-
cisely,

D(p(y|x)||q(y|x)) =
∑

x

p(x)
∑

y

p(y|x) log
p(y|x)

q(y|x)
(2.65)

= Ep(x,y) log
p(Y |X)

q(Y |X)
. (2.66)

The notation for conditional relative entropy is not explicit since it omits
mention of the distribution p(x) of the conditioning random variable.
However, it is normally understood from the context.

The relative entropy between two joint distributions on a pair of ran-
dom variables can be expanded as the sum of a relative entropy and a
conditional relative entropy. The chain rule for relative entropy is used in
Section 4.4 to prove a version of the second law of thermodynamics.

Theorem 2.5.3 (Chain rule for relative entropy)

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)). (2.67)
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Proof

D(p(x, y)||q(x, y))

=
∑

x

∑

y

p(x, y) log
p(x, y)

q(x, y)
(2.68)

=
∑

x

∑

y

p(x, y) log
p(x)p(y|x)

q(x)q(y|x)
(2.69)

=
∑

x

∑

y

p(x, y) log
p(x)

q(x)
+

∑

x

∑

y

p(x, y) log
p(y|x)

q(y|x)
(2.70)

= D(p(x)||q(x)) + D(p(y|x)||q(y|x)). ! (2.71)

2.6 JENSEN’S INEQUALITY AND ITS CONSEQUENCES

In this section we prove some simple properties of the quantities defined
earlier. We begin with the properties of convex functions.

Definition A function f (x) is said to be convex over an interval (a, b)
if for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2). (2.72)

A function f is said to be strictly convex if equality holds only if λ = 0
or λ = 1.

Definition A function f is concave if −f is convex. A function is
convex if it always lies below any chord. A function is concave if it
always lies above any chord.

Examples of convex functions include x2, |x|, ex , x log x (for x ≥
0), and so on. Examples of concave functions include log x and

√
x for

x ≥ 0. Figure 2.3 shows some examples of convex and concave functions.
Note that linear functions ax + b are both convex and concave. Convexity
underlies many of the basic properties of information-theoretic quantities
such as entropy and mutual information. Before we prove some of these
properties, we derive some simple results for convex functions.

Theorem 2.6.1 If the function f has a second derivative that is non-
negative (positive) over an interval, the function is convex (strictly convex)
over that interval.
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(a)

(b)

FIGURE 2.3. Examples of (a) convex and (b) concave functions.

Proof: We use the Taylor series expansion of the function around x0:

f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(x∗)

2
(x − x0)

2, (2.73)

where x∗ lies between x0 and x. By hypothesis, f ′′(x∗) ≥ 0, and thus
the last term is nonnegative for all x.

We let x0 = λx1 + (1 − λ)x2 and take x = x1, to obtain

f (x1) ≥ f (x0) + f ′(x0)((1 − λ)(x1 − x2)). (2.74)

Similarly, taking x = x2, we obtain

f (x2) ≥ f (x0) + f ′(x0)(λ(x2 − x1)). (2.75)

Multiplying (2.74) by λ and (2.75) by 1 − λ and adding, we obtain (2.72).
The proof for strict convexity proceeds along the same lines. !

Theorem 2.6.1 allows us immediately to verify the strict convexity of
x2, ex , and x log x for x ≥ 0, and the strict concavity of log x and

√
x for

x ≥ 0.
Let E denote expectation. Thus, EX =

∑
x∈X p(x)x in the discrete

case and EX =
∫

xf (x) dx in the continuous case.
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The next inequality is one of the most widely used in mathematics and
one that underlies many of the basic results in information theory.

Theorem 2.6.2 (Jensen’s inequality) If f is a convex function and
X is a random variable,

Ef (X) ≥ f (EX). (2.76)

Moreover, if f is strictly convex, the equality in (2.76) implies that
X = EX with probability 1 (i.e., X is a constant).

Proof: We prove this for discrete distributions by induction on the num-
ber of mass points. The proof of conditions for equality when f is strictly
convex is left to the reader.

For a two-mass-point distribution, the inequality becomes

p1f (x1) + p2f (x2) ≥ f (p1x1 + p2x2), (2.77)

which follows directly from the definition of convex functions. Suppose
that the theorem is true for distributions with k − 1 mass points. Then
writing p′

i = pi/(1 − pk) for i = 1, 2, . . . , k − 1, we have

k∑

i=1

pif (xi) = pkf (xk) + (1 − pk)

k−1∑

i=1

p′
if (xi) (2.78)

≥ pkf (xk) + (1 − pk)f

(
k−1∑

i=1

p′
ixi

)

(2.79)

≥ f

(

pkxk + (1 − pk)

k−1∑

i=1

p′
ixi

)

(2.80)

= f

(
k∑

i=1

pixi

)

, (2.81)

where the first inequality follows from the induction hypothesis and the
second follows from the definition of convexity.

The proof can be extended to continuous distributions by continuity
arguments. !

We now use these results to prove some of the properties of entropy and
relative entropy. The following theorem is of fundamental importance.
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Theorem 2.6.3 (Information inequality) Let p(x), q(x), x ∈ X, be
two probability mass functions. Then

D(p||q) ≥ 0 (2.82)

with equality if and only if p(x) = q(x) for all x.

Proof: Let A = {x : p(x) > 0} be the support set of p(x). Then

−D(p||q) = −
∑

x∈A

p(x) log
p(x)

q(x)
(2.83)

=
∑

x∈A

p(x) log
q(x)

p(x)
(2.84)

≤ log
∑

x∈A

p(x)
q(x)

p(x)
(2.85)

= log
∑

x∈A

q(x) (2.86)

≤ log
∑

x∈X
q(x) (2.87)

= log 1 (2.88)

= 0, (2.89)

where (2.85) follows from Jensen’s inequality. Since log t is a strictly
concave function of t , we have equality in (2.85) if and only if q(x)/p(x)
is constant everywhere [i.e., q(x) = cp(x) for all x]. Thus,

∑
x∈A q(x) =

c
∑

x∈A p(x) = c. We have equality in (2.87) only if
∑

x∈A q(x) =
∑

x∈X
q(x) = 1, which implies that c = 1. Hence, we have D(p||q) = 0 if and
only if p(x) = q(x) for all x. !

Corollary (Nonnegativity of mutual information) For any two random
variables, X, Y ,

I (X;Y) ≥ 0, (2.90)

with equality if and only if X and Y are independent.

Proof: I (X;Y) = D(p(x, y)||p(x)p(y)) ≥ 0, with equality if and only
if p(x, y) = p(x)p(y) (i.e., X and Y are independent). !
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Corollary
D(p(y|x)||q(y|x)) ≥ 0, (2.91)

with equality if and only if p(y|x) = q(y|x) for all y and x such that
p(x) > 0.

Corollary
I (X;Y |Z) ≥ 0, (2.92)

with equality if and only if X and Y are conditionally independent given Z.

We now show that the uniform distribution over the range X is the
maximum entropy distribution over this range. It follows that any random
variable with this range has an entropy no greater than log |X|.

Theorem 2.6.4 H(X) ≤ log |X|, where |X| denotes the number of ele-
ments in the range of X, with equality if and only X has a uniform distri-
bution over X.

Proof: Let u(x) = 1
|X | be the uniform probability mass function over X,

and let p(x) be the probability mass function for X. Then

D(p ∥ u) =
∑

p(x) log
p(x)

u(x)
= log |X| − H(X). (2.93)

Hence by the nonnegativity of relative entropy,

0 ≤ D(p ∥ u) = log |X| − H(X). ! (2.94)

Theorem 2.6.5 (Conditioning reduces entropy)(Information can’t hurt)

H(X|Y) ≤ H(X) (2.95)

with equality if and only if X and Y are independent.

Proof: 0 ≤ I (X;Y) = H(X) − H(X|Y). !

Intuitively, the theorem says that knowing another random variable Y
can only reduce the uncertainty in X. Note that this is true only on the
average. Specifically, H(X|Y = y) may be greater than or less than or
equal to H(X), but on the average H(X|Y) =

∑
y p(y)H(X|Y = y) ≤

H(X). For example, in a court case, specific new evidence might increase
uncertainty, but on the average evidence decreases uncertainty.
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Example 2.6.1 Let (X, Y ) have the following joint distribution:

Then H(X) = H(1
8 , 7

8) = 0.544 bit, H(X|Y = 1) = 0 bits, and
H(X|Y = 2) = 1 bit. We calculate H(X|Y) = 3

4H(X|Y = 1) + 1
4

H(X|Y = 2) = 0.25 bit. Thus, the uncertainty in X is increased if Y = 2
is observed and decreased if Y = 1 is observed, but uncertainty decreases
on the average.

Theorem 2.6.6 (Independence bound on entropy) Let
X1, X2, . . . , Xn be drawn according to p(x1, x2, . . . , xn). Then

H(X1, X2, . . . , Xn) ≤
n∑

i=1

H(Xi) (2.96)

with equality if and only if the Xi are independent.

Proof: By the chain rule for entropies,

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi |Xi−1, . . . , X1) (2.97)

≤
n∑

i=1

H(Xi), (2.98)

where the inequality follows directly from Theorem 2.6.5. We have equal-
ity if and only if Xi is independent of Xi−1, . . . , X1 for all i (i.e., if and
only if the Xi’s are independent). !

2.7 LOG SUM INEQUALITY AND ITS APPLICATIONS

We now prove a simple consequence of the concavity of the logarithm,
which will be used to prove some concavity results for the entropy.
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Theorem 2.7.1 (Log sum inequality) For nonnegative numbers,
a1, a2, . . . , an and b1, b2, . . . , bn,

n∑

i=1

ai log
ai

bi
≥

(
n∑

i=1

ai

)

log
∑n

i=1 ai∑n
i=1 bi

(2.99)

with equality if and only if ai
bi

= const.

We again use the convention that 0 log 0 = 0, a log a
0 = ∞ if a > 0 and

0 log 0
0 = 0. These follow easily from continuity.

Proof: Assume without loss of generality that ai > 0 and bi > 0. The
function f (t) = t log t is strictly convex, since f ′′(t) = 1

t
log e > 0 for all

positive t . Hence by Jensen’s inequality, we have

∑
αif (ti) ≥ f

(∑
αi ti

)
(2.100)

for αi ≥ 0,
∑

i αi = 1. Setting αi = bi∑n
j=1 bj

and ti = ai
bi

, we obtain

∑ ai∑
bj

log
ai

bi
≥

∑ ai∑
bj

log
∑ ai∑

bj
, (2.101)

which is the log sum inequality. !

We now use the log sum inequality to prove various convexity results.
We begin by reproving Theorem 2.6.3, which states that D(p||q) ≥ 0 with
equality if and only if p(x) = q(x). By the log sum inequality,

D(p||q) =
∑

p(x) log
p(x)

q(x)
(2.102)

≥
(∑

p(x)
)

log
∑

p(x)
/∑

q(x) (2.103)

= 1 log
1
1

= 0 (2.104)

with equality if and only if p(x)
q(x)

= c. Since both p and q are probability
mass functions, c = 1, and hence we have D(p||q) = 0 if and only if
p(x) = q(x) for all x.
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Theorem 2.7.2 (Convexity of relative entropy) D(p||q) is convex in
the pair (p, q); that is, if (p1, q1) and (p2, q2) are two pairs of probability
mass functions, then

D(λp1 + (1 − λ)p2||λq1 + (1 − λ)q2) ≤ λD(p1||q1) + (1 − λ)D(p2||q2)
(2.105)

for all 0 ≤ λ ≤ 1.

Proof: We apply the log sum inequality to a term on the left-hand side
of (2.105):

(λp1(x) + (1 − λ)p2(x)) log
λp1(x) + (1 − λ)p2(x)

λq1(x) + (1 − λ)q2(x)

≤ λp1(x) log
λp1(x)

λq1(x)
+ (1 − λ)p2(x) log

(1 − λ)p2(x)

(1 − λ)q2(x)
. (2.106)

Summing this over all x, we obtain the desired property. !

Theorem 2.7.3 (Concavity of entropy) H(p) is a concave function
of p.

Proof
H(p) = log |X| − D(p||u), (2.107)

where u is the uniform distribution on |X| outcomes. The concavity of H
then follows directly from the convexity of D. !

Alternative Proof: Let X1 be a random variable with distribution p1,
taking on values in a set A. Let X2 be another random variable with
distribution p2 on the same set. Let

θ =
{

1 with probability λ,
2 with probability 1 − λ.

(2.108)

Let Z = Xθ . Then the distribution of Z is λp1 + (1 − λ)p2. Now since
conditioning reduces entropy, we have

H(Z) ≥ H(Z|θ), (2.109)

or equivalently,

H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2), (2.110)

which proves the concavity of the entropy as a function of the distribution.
!
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One of the consequences of the concavity of entropy is that mixing two
gases of equal entropy results in a gas with higher entropy.

Theorem 2.7.4 Let (X, Y ) ∼ p(x, y) = p(x)p(y|x). The mutual infor-
mation I (X;Y) is a concave function of p(x) for fixed p(y|x) and a convex
function of p(y|x) for fixed p(x).

Proof: To prove the first part, we expand the mutual information

I (X;Y) = H(Y) − H(Y |X) = H(Y) −
∑

x

p(x)H(Y |X = x). (2.111)

If p(y|x) is fixed, then p(y) is a linear function of p(x). Hence H(Y),
which is a concave function of p(y), is a concave function of p(x). The
second term is a linear function of p(x). Hence, the difference is a concave
function of p(x).

To prove the second part, we fix p(x) and consider two different con-
ditional distributions p1(y|x) and p2(y|x). The corresponding joint dis-
tributions are p1(x, y) = p(x)p1(y|x) and p2(x, y) = p(x)p2(y|x), and
their respective marginals are p(x), p1(y) and p(x), p2(y). Consider a
conditional distribution

pλ(y|x) = λp1(y|x) + (1 − λ)p2(y|x), (2.112)

which is a mixture of p1(y|x) and p2(y|x) where 0 ≤ λ ≤ 1. The cor-
responding joint distribution is also a mixture of the corresponding joint
distributions,

pλ(x, y) = λp1(x, y) + (1 − λ)p2(x, y), (2.113)

and the distribution of Y is also a mixture,

pλ(y) = λp1(y) + (1 − λ)p2(y). (2.114)

Hence if we let qλ(x, y) = p(x)pλ(y) be the product of the marginal
distributions, we have

qλ(x, y) = λq1(x, y) + (1 − λ)q2(x, y). (2.115)

Since the mutual information is the relative entropy between the joint
distribution and the product of the marginals,

I (X;Y) = D(pλ(x, y)||qλ(x, y)), (2.116)

and relative entropy D(p||q) is a convex function of (p, q), it follows that
the mutual information is a convex function of the conditional distribution.

!
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2.8 DATA-PROCESSING INEQUALITY

The data-processing inequality can be used to show that no clever manip-
ulation of the data can improve the inferences that can be made from
the data.

Definition Random variables X, Y,Z are said to form a Markov chain
in that order (denoted by X → Y → Z) if the conditional distribution of
Z depends only on Y and is conditionally independent of X. Specifically,
X, Y , and Z form a Markov chain X → Y → Z if the joint probability
mass function can be written as

p(x, y, z) = p(x)p(y|x)p(z|y). (2.117)

Some simple consequences are as follows:

• X → Y → Z if and only if X and Z are conditionally independent
given Y . Markovity implies conditional independence because

p(x, z|y) = p(x, y, z)

p(y)
= p(x, y)p(z|y)

p(y)
= p(x|y)p(z|y). (2.118)

This is the characterization of Markov chains that can be extended
to define Markov fields, which are n-dimensional random processes
in which the interior and exterior are independent given the values
on the boundary.

• X → Y → Z implies that Z → Y → X. Thus, the condition is some-
times written X ↔ Y ↔ Z.

• If Z = f (Y ), then X → Y → Z.

We can now prove an important and useful theorem demonstrating that
no processing of Y , deterministic or random, can increase the information
that Y contains about X.

Theorem 2.8.1 (Data-processing inequality) If X → Y → Z, then
I (X;Y) ≥ I (X;Z).

Proof: By the chain rule, we can expand mutual information in two
different ways:

I (X;Y, Z) = I (X;Z) + I (X;Y |Z) (2.119)

= I (X;Y) + I (X;Z|Y). (2.120)
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Since X and Z are conditionally independent given Y , we have
I (X;Z|Y) = 0. Since I (X;Y |Z) ≥ 0, we have

I (X;Y) ≥ I (X;Z). (2.121)

We have equality if and only if I (X;Y |Z) = 0 (i.e., X → Z → Y forms
a Markov chain). Similarly, one can prove that I (Y ;Z) ≥ I (X;Z). !

Corollary In particular, if Z = g(Y ), we have I (X;Y) ≥ I (X; g(Y )).

Proof: X → Y → g(Y ) forms a Markov chain. !

Thus functions of the data Y cannot increase the information about X.

Corollary If X → Y → Z, then I (X;Y |Z) ≤ I (X;Y).

Proof: We note in (2.119) and (2.120) that I (X;Z|Y) = 0, by
Markovity, and I (X;Z) ≥ 0. Thus,

I (X;Y |Z) ≤ I (X;Y). ! (2.122)

Thus, the dependence of X and Y is decreased (or remains unchanged)
by the observation of a “downstream” random variable Z. Note that it is
also possible that I (X;Y |Z) > I (X;Y) when X, Y , and Z do not form a
Markov chain. For example, let X and Y be independent fair binary ran-
dom variables, and let Z = X + Y . Then I (X;Y) = 0, but I (X;Y |Z) =
H(X|Z) − H(X|Y,Z) = H(X|Z) = P(Z = 1)H(X|Z = 1) = 1

2 bit.

2.9 SUFFICIENT STATISTICS

This section is a sidelight showing the power of the data-processing
inequality in clarifying an important idea in statistics. Suppose that we
have a family of probability mass functions {fθ (x)} indexed by θ , and let
X be a sample from a distribution in this family. Let T (X) be any statistic
(function of the sample) like the sample mean or sample variance. Then
θ → X → T (X), and by the data-processing inequality, we have

I (θ;T (X)) ≤ I (θ;X) (2.123)

for any distribution on θ . However, if equality holds, no information
is lost.

A statistic T (X) is called sufficient for θ if it contains all the infor-
mation in X about θ .
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Definition A function T (X) is said to be a sufficient statistic relative to
the family {fθ (x)} if X is independent of θ given T (X) for any distribution
on θ [i.e., θ → T (X) → X forms a Markov chain].

This is the same as the condition for equality in the data-processing
inequality,

I (θ;X) = I (θ; T (X)) (2.124)

for all distributions on θ . Hence sufficient statistics preserve mutual infor-
mation and conversely.

Here are some examples of sufficient statistics:

1. Let X1,X2, . . . , Xn, Xi ∈ {0, 1}, be an independent and identically
distributed (i.i.d.) sequence of coin tosses of a coin with unknown
parameter θ = Pr(Xi = 1). Given n, the number of 1’s is a sufficient
statistic for θ . Here T (X1, X2, . . . , Xn) =

∑n
i=1 Xi . In fact, we can

show that given T , all sequences having that many 1’s are equally
likely and independent of the parameter θ . Specifically,

Pr

{

(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)

∣∣∣∣∣

n∑

i=1

Xi = k

}

=
{

1
(n
k)

if
∑

xi = k,

0 otherwise.
(2.125)

Thus, θ →
∑

Xi → (X1, X2, . . . , Xn) forms a Markov chain, and
T is a sufficient statistic for θ .

The next two examples involve probability densities instead of
probability mass functions, but the theory still applies. We define
entropy and mutual information for continuous random variables in
Chapter 8.

2. If X is normally distributed with mean θ and variance 1; that is, if

fθ (x) = 1√
2π

e−(x−θ)2/2 = N(θ, 1), (2.126)

and X1, X2, . . . , Xn are drawn independently according to this distri-
bution, a sufficient statistic for θ is the sample mean Xn = 1

n

∑n
i=1 Xi .

It can be verified that the conditional distribution of X1, X2, . . . , Xn,
conditioned on Xn and n does not depend on θ .
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3. If fθ = Uniform(θ, θ + 1), a sufficient statistic for θ is

T (X1, X2, . . . , Xn)

= (max{X1, X2, . . . , Xn}, min{X1, X2, . . . , Xn}). (2.127)

The proof of this is slightly more complicated, but again one can
show that the distribution of the data is independent of the parameter
given the statistic T .

The minimal sufficient statistic is a sufficient statistic that is a function
of all other sufficient statistics.

Definition A statistic T (X) is a minimal sufficient statistic relative to
{fθ (x)} if it is a function of every other sufficient statistic U . Interpreting
this in terms of the data-processing inequality, this implies that

θ → T (X) → U(X) → X. (2.128)

Hence, a minimal sufficient statistic maximally compresses the infor-
mation about θ in the sample. Other sufficient statistics may contain
additional irrelevant information. For example, for a normal distribution
with mean θ , the pair of functions giving the mean of all odd samples and
the mean of all even samples is a sufficient statistic, but not a minimal
sufficient statistic. In the preceding examples, the sufficient statistics are
also minimal.

2.10 FANO’S INEQUALITY

Suppose that we know a random variable Y and we wish to guess the value
of a correlated random variable X. Fano’s inequality relates the probabil-
ity of error in guessing the random variable X to its conditional entropy
H(X|Y). It will be crucial in proving the converse to Shannon’s channel
capacity theorem in Chapter 7. From Problem 2.5 we know that the con-
ditional entropy of a random variable X given another random variable
Y is zero if and only if X is a function of Y . Hence we can estimate X
from Y with zero probability of error if and only if H(X|Y) = 0.

Extending this argument, we expect to be able to estimate X with a
low probability of error only if the conditional entropy H(X|Y) is small.
Fano’s inequality quantifies this idea. Suppose that we wish to estimate a
random variable X with a distribution p(x). We observe a random variable
Y that is related to X by the conditional distribution p(y|x). From Y , we
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calculate a function g(Y ) = X̂, where X̂ is an estimate of X and takes on
values in X̂. We will not restrict the alphabet X̂ to be equal to X, and we
will also allow the function g(Y ) to be random. We wish to bound the
probability that X̂ ̸= X. We observe that X → Y → X̂ forms a Markov
chain. Define the probability of error

Pe = Pr
{
X̂ ̸= X

}
. (2.129)

Theorem 2.10.1 (Fano’s Inequality) For any estimator X̂ such that
X → Y → X̂, with Pe = Pr(X ̸= X̂), we have

H(Pe) + Pe log |X| ≥ H(X|X̂) ≥ H(X|Y). (2.130)

This inequality can be weakened to

1 + Pe log |X| ≥ H(X|Y) (2.131)

or
Pe ≥ H(X|Y) − 1

log |X|
. (2.132)

Remark Note from (2.130) that Pe = 0 implies that H(X|Y) = 0, as
intuition suggests.

Proof: We first ignore the role of Y and prove the first inequality in
(2.130). We will then use the data-processing inequality to prove the more
traditional form of Fano’s inequality, given by the second inequality in
(2.130). Define an error random variable,

E =
{

1 if X̂ ̸= X,

0 if X̂ = X.
(2.133)

Then, using the chain rule for entropies to expand H(E, X|X̂) in two
different ways, we have

H(E, X|X̂) = H(X|X̂) + H(E|X, X̂)︸ ︷︷ ︸
=0

(2.134)

= H(E|X̂)︸ ︷︷ ︸
≤H(Pe)

+ H(X|E, X̂)︸ ︷︷ ︸
≤Pe log |X |

. (2.135)

Since conditioning reduces entropy, H(E|X̂) ≤ H(E) = H(Pe). Now
since E is a function of X and X̂, the conditional entropy H(E|X, X̂) is
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equal to 0. Also, since E is a binary-valued random variable, H(E) =
H(Pe). The remaining term, H(X|E, X̂), can be bounded as follows:

H(X|E, X̂) = Pr(E = 0)H(X|X̂, E = 0) + Pr(E = 1)H(X|X̂, E = 1)

≤ (1 − Pe)0 + Pe log |X|, (2.136)

since given E = 0, X = X̂, and given E = 1, we can upper bound the
conditional entropy by the log of the number of possible outcomes. Com-
bining these results, we obtain

H(Pe) + Pe log |X| ≥ H(X|X̂). (2.137)

By the data-processing inequality, we have I (X; X̂) ≤ I (X;Y) since
X → Y → X̂ is a Markov chain, and therefore H(X|X̂) ≥ H(X|Y). Thus,
we have

H(Pe) + Pe log |X| ≥ H(X|X̂) ≥ H(X|Y). ! (2.138)

Corollary For any two random variables X and Y , let p = Pr(X ̸= Y).

H(p) + p log |X| ≥ H(X|Y). (2.139)

Proof: Let X̂ = Y in Fano’s inequality. !

For any two random variables X and Y , if the estimator g(Y ) takes
values in the set X, we can strengthen the inequality slightly by replacing
log |X| with log(|X| − 1).

Corollary Let Pe = Pr(X ̸= X̂), and let X̂ : Y → X; then

H(Pe) + Pe log(|X| − 1) ≥ H(X|Y). (2.140)

Proof: The proof of the theorem goes through without change, except
that

H(X|E, X̂) = Pr(E = 0)H(X|X̂, E = 0) + Pr(E = 1)H(X|X̂, E = 1)

(2.141)
≤ (1 − Pe)0 + Pe log(|X| − 1), (2.142)

since given E = 0, X = X̂, and given E = 1, the range of possible X
outcomes is |X| − 1, we can upper bound the conditional entropy by the
log(|X| − 1), the logarithm of the number of possible outcomes. Substi-
tuting this provides us with the stronger inequality. !
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Remark Suppose that there is no knowledge of Y . Thus, X must be
guessed without any information. Let X ∈ {1, 2, . . . , m} and p1 ≥ p2 ≥
· · · ≥ pm. Then the best guess of X is X̂ = 1 and the resulting probability
of error is Pe = 1 − p1. Fano’s inequality becomes

H(Pe) + Pe log(m − 1) ≥ H(X). (2.143)

The probability mass function

(p1, p2, . . . , pm) =
(

1 − Pe,
Pe

m − 1
, . . . ,

Pe

m − 1

)
(2.144)

achieves this bound with equality. Thus, Fano’s inequality is sharp.
While we are at it, let us introduce a new inequality relating probability

of error and entropy. Let X and X′ by two independent identically dis-
tributed random variables with entropy H(X). The probability at X = X′

is given by

Pr(X = X′) =
∑

x

p2(x). (2.145)

We have the following inequality:

Lemma 2.10.1 If X and X′ are i.i.d. with entropy H(X),

Pr(X = X′) ≥ 2−H(X), (2.146)

with equality if and only if X has a uniform distribution.

Proof: Suppose that X ∼ p(x). By Jensen’s inequality, we have

2E log p(X) ≤ E2log p(X), (2.147)

which implies that

2−H(X) = 2
∑

p(x) log p(x) ≤
∑

p(x)2log p(x) =
∑

p2(x). ! (2.148)

Corollary Let X, X′ be independent with X ∼ p(x), X′ ∼ r(x), x, x′ ∈
X. Then

Pr(X = X′) ≥ 2−H(p)−D(p||r), (2.149)

Pr(X = X′) ≥ 2−H(r)−D(r||p). (2.150)
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Proof: We have

2−H(p)−D(p||r) = 2
∑

p(x) log p(x)+
∑

p(x) log r(x)
p(x) (2.151)

= 2
∑

p(x) log r(x) (2.152)

≤
∑

p(x)2log r(x) (2.153)

=
∑

p(x)r(x) (2.154)

= Pr(X = X′), (2.155)

where the inequality follows from Jensen’s inequality and the convexity
of the function f (y) = 2y . !

The following telegraphic summary omits qualifying conditions.

SUMMARY

Definition The entropy H(X) of a discrete random variable X is
defined by

H(X) = −
∑

x∈X
p(x) log p(x). (2.156)

Properties of H

1. H(X) ≥ 0.
2. Hb(X) = (logb a)Ha(X).

3. (Conditioning reduces entropy) For any two random variables, X
and Y , we have

H(X|Y) ≤ H(X) (2.157)

with equality if and only if X and Y are independent.
4. H(X1, X2, . . . , Xn) ≤

∑n
i=1 H(Xi), with equality if and only if the

Xi are independent.
5. H(X) ≤ log | X |, with equality if and only if X is distributed uni-

formly over X.
6. H(p) is concave in p.
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Definition The relative entropy D(p ∥ q) of the probability mass
function p with respect to the probability mass function q is defined by

D(p ∥ q) =
∑

x
p(x) log

p(x)

q(x)
. (2.158)

Definition The mutual information between two random variables X
and Y is defined as

I (X;Y) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
. (2.159)

Alternative expressions

H(X) = Ep log
1

p(X)
, (2.160)

H(X, Y ) = Ep log
1

p(X, Y )
, (2.161)

H(X|Y) = Ep log
1

p(X|Y)
, (2.162)

I (X;Y) = Ep log
p(X, Y )

p(X)p(Y )
, (2.163)

D(p||q) = Ep log
p(X)

q(X)
. (2.164)

Properties of D and I

1. I (X;Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) = H(X) +
H(Y) − H(X, Y ).

2. D(p ∥ q) ≥ 0 with equality if and only if p(x) = q(x), for all x ∈
X.

3. I (X;Y) = D(p(x, y)||p(x)p(y)) ≥ 0, with equality if and only if
p(x, y) = p(x)p(y) (i.e., X and Y are independent).

4. If | X |= m, and u is the uniform distribution over X, then D(p ∥
u) = log m − H(p).

5. D(p||q) is convex in the pair (p, q).

Chain rules
Entropy: H(X1, X2, . . . , Xn) =

∑n
i=1 H(Xi |Xi−1, . . . , X1).

Mutual information:
I (X1, X2, . . . , Xn; Y) =

∑n
i=1 I (Xi;Y |X1, X2, . . . , Xi−1).
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Relative entropy:
D(p(x, y)||q(x, y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x)).

Jensen’s inequality. If f is a convex function, then Ef (X) ≥ f (EX).

Log sum inequality. For n positive numbers, a1, a2, . . . , an and
b1, b2, . . . , bn,

n∑

i=1

ai log
ai

bi
≥

(
n∑

i=1

ai

)

log
∑n

i=1 ai∑n
i=1 bi

(2.165)

with equality if and only if ai
bi

= constant.

Data-processing inequality. If X → Y → Z forms a Markov chain,
I (X;Y) ≥ I (X;Z).

Sufficient statistic. T (X) is sufficient relative to {fθ (x)} if and only
if I (θ;X) = I (θ; T (X)) for all distributions on θ .

Fano’s inequality. Let Pe = Pr{X̂(Y ) ̸= X}. Then

H(Pe) + Pe log |X| ≥ H(X|Y). (2.166)

Inequality. If X and X′ are independent and identically distributed,
then

Pr(X = X′) ≥ 2−H(X), (2.167)

PROBLEMS

2.1 Coin flips . A fair coin is flipped until the first head occurs. Let
X denote the number of flips required.
(a) Find the entropy H(X) in bits. The following expressions may

be useful:

∞∑

n=0

rn = 1
1 − r

,

∞∑

n=0

nrn = r

(1 − r)2 .

(b) A random variable X is drawn according to this distribution.
Find an “efficient” sequence of yes–no questions of the form,
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“Is X contained in the set S?” Compare H(X) to the expected
number of questions required to determine X.

2.2 Entropy of functions . Let X be a random variable taking on a
finite number of values. What is the (general) inequality relation-
ship of H(X) and H(Y) if
(a) Y = 2X?
(b) Y = cos X?

2.3 Minimum entropy . What is the minimum value of
H(p1, . . . , pn) = H(p) as p ranges over the set of n-dimensional
probability vectors? Find all p’s that achieve this minimum.

2.4 Entropy of functions of a random variable. Let X be a discrete
random variable. Show that the entropy of a function of X is less
than or equal to the entropy of X by justifying the following steps:

H(X, g(X))
(a)= H(X) + H(g(X) | X) (2.168)
(b)= H(X), (2.169)

H(X, g(X))
(c)= H(g(X)) + H(X | g(X)) (2.170)
(d)
≥ H(g(X)). (2.171)

Thus, H(g(X)) ≤ H(X).

2.5 Zero conditional entropy . Show that if H(Y |X) = 0, then Y is
a function of X [i.e., for all x with p(x) > 0, there is only one
possible value of y with p(x, y) > 0].

2.6 Conditional mutual information vs. unconditional mutual informa-
tion. Give examples of joint random variables X, Y , and Z
such that
(a) I (X;Y | Z) < I (X;Y).
(b) I (X;Y | Z) > I (X;Y).

2.7 Coin weighing . Suppose that one has n coins, among which there
may or may not be one counterfeit coin. If there is a counterfeit
coin, it may be either heavier or lighter than the other coins. The
coins are to be weighed by a balance.
(a) Find an upper bound on the number of coins n so that k

weighings will find the counterfeit coin (if any) and correctly
declare it to be heavier or lighter.
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(b) (Difficult) What is the coin- weighing strategy for k = 3 weigh-
ings and 12 coins?

2.8 Drawing with and without replacement . An urn contains r red, w
white, and b black balls. Which has higher entropy, drawing k ≥ 2
balls from the urn with replacement or without replacement? Set it
up and show why. (There is both a difficult way and a relatively
simple way to do this.)

2.9 Metric. A function ρ(x, y) is a metric if for all x, y,
• ρ(x, y) ≥ 0.
• ρ(x, y) = ρ(y, x).
• ρ(x, y) = 0 if and only if x = y.
• ρ(x, y) + ρ(y, z) ≥ ρ(x, z).
(a) Show that ρ(X, Y ) = H(X|Y) + H(Y |X) satisfies the first,

second, and fourth properties above. If we say that X = Y if
there is a one-to-one function mapping from X to Y , the third
property is also satisfied, and ρ(X, Y ) is a metric.

(b) Verify that ρ(X, Y ) can also be expressed as

ρ(X, Y ) = H(X) + H(Y) − 2I (X;Y) (2.172)

= H(X, Y ) − I (X;Y) (2.173)

= 2H(X, Y ) − H(X) − H(Y). (2.174)

2.10 Entropy of a disjoint mixture. Let X1 and X2 be discrete random
variables drawn according to probability mass functions p1(·) and
p2(·) over the respective alphabets X1 = {1, 2, . . . , m} and X2 =
{m + 1, . . . , n}. Let

X =
{

X1 with probability α,
X2 with probability 1 − α.

(a) Find H(X) in terms of H(X1), H(X2), and α.

(b) Maximize over α to show that 2H(X) ≤ 2H(X1) + 2H(X2) and
interpret using the notion that 2H(X) is the effective alpha-
bet size.

2.11 Measure of correlation. Let X1 and X2 be identically distributed
but not necessarily independent. Let

ρ = 1 − H(X2 | X1)

H(X1)
.
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(a) Show that ρ = I (X1;X2)
H(X1)

.

(b) Show that 0 ≤ ρ ≤ 1.

(c) When is ρ = 0?
(d) When is ρ = 1?

2.12 Example of joint entropy . Let p(x, y) be given by

Find:
(a) H(X),H(Y ).

(b) H(X | Y), H(Y | X).

(c) H(X, Y ).

(d) H(Y) − H(Y | X).

(e) I (X;Y).
(f) Draw a Venn diagram for the quantities in parts (a) through (e).

2.13 Inequality . Show that ln x ≥ 1 − 1
x

for x > 0.

2.14 Entropy of a sum. Let X and Y be random variables that take
on values x1, x2, . . . , xr and y1, y2, . . . , ys , respectively. Let Z =
X + Y.

(a) Show that H(Z|X) = H(Y |X). Argue that if X, Y are inde-
pendent, then H(Y) ≤ H(Z) and H(X) ≤ H(Z). Thus, the
addition of independent random variables adds uncertainty.

(b) Give an example of (necessarily dependent) random variables
in which H(X) > H(Z) and H(Y) > H(Z).

(c) Under what conditions does H(Z) = H(X) + H(Y)?

2.15 Data processing . Let X1 → X2 → X3 → · · · → Xn form a
Markov chain in this order; that is, let

p(x1, x2, . . . , xn) = p(x1)p(x2|x1) · · ·p(xn|xn−1).

Reduce I (X1; X2, . . . , Xn) to its simplest form.

2.16 Bottleneck . Suppose that a (nonstationary) Markov chain starts
in one of n states, necks down to k < n states, and then
fans back to m > k states. Thus, X1 → X2 → X3, that is,
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p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2), for all x1 ∈ {1, 2, . . . , n},
x2 ∈ {1, 2, . . . , k}, x3 ∈ {1, 2, . . . , m}.
(a) Show that the dependence of X1 and X3 is limited by the

bottleneck by proving that I (X1;X3) ≤ log k.

(b) Evaluate I (X1; X3) for k = 1, and conclude that no depen-
dence can survive such a bottleneck.

2.17 Pure randomness and bent coins . Let X1, X2, . . . , Xn denote the
outcomes of independent flips of a bent coin. Thus, Pr {Xi =
1} = p, Pr {Xi = 0} = 1 − p, where p is unknown. We wish
to obtain a sequence Z1, Z2, . . . , ZK of fair coin flips from
X1, X2, . . . , Xn. Toward this end, let f : Xn → {0, 1}∗ (where
{0, 1}∗ = {&, 0, 1, 00, 01, . . .} is the set of all finite-length binary
sequences) be a mapping f (X1, X2, . . . , Xn) = (Z1, Z2, . . . , ZK),
where Zi ∼ Bernoulli ( 1

2), and K may depend on (X1, . . . , Xn).
In order that the sequence Z1, Z2, . . . appear to be fair coin flips,
the map f from bent coin flips to fair flips must have the prop-
erty that all 2k sequences (Z1, Z2, . . . , Zk) of a given length k
have equal probability (possibly 0), for k = 1, 2, . . .. For example,
for n = 2, the map f (01) = 0, f (10) = 1, f (00) = f (11) = &
(the null string) has the property that Pr{Z1 = 1|K = 1} = Pr{Z1 =
0|K = 1} = 1

2 . Give reasons for the following inequalities:

nH(p)
(a)= H(X1, . . . , Xn)

(b)
≥ H(Z1, Z2, . . . , ZK, K)

(c)= H(K) + H(Z1, . . . , ZK |K)

(d)= H(K) + E(K)

(e)
≥ EK.

Thus, no more than nH(p) fair coin tosses can be derived from
(X1, . . . , Xn), on the average. Exhibit a good map f on sequences
of length 4.

2.18 World Series . The World Series is a seven-game series that termi-
nates as soon as either team wins four games. Let X be the random
variable that represents the outcome of a World Series between
teams A and B; possible values of X are AAAA, BABABAB, and
BBBAAAA. Let Y be the number of games played, which ranges
from 4 to 7. Assuming that A and B are equally matched and that
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the games are independent, calculate H(X), H(Y), H(Y |X), and
H(X|Y).

2.19 Infinite entropy . This problem shows that the entropy of a discrete
random variable can be infinite. Let A =

∑∞
n=2(n log2 n)−1. [It is

easy to show that A is finite by bounding the infinite sum by the
integral of (x log2 x)−1.] Show that the integer-valued random vari-
able X defined by Pr(X = n) = (An log2 n)−1 for n = 2, 3, . . .,
has H(X) = +∞.

2.20 Run-length coding . Let X1, X2, . . . , Xn be (possibly dependent)
binary random variables. Suppose that one calculates the run
lengths R = (R1, R2, . . .) of this sequence (in order as they
occur). For example, the sequence X = 0001100100 yields run
lengths R = (3, 2, 2, 1, 2). Compare H(X1, X2, . . . , Xn), H(R),
and H(Xn, R). Show all equalities and inequalities, and bound all
the differences.

2.21 Markov’s inequality for probabilities . Let p(x) be a probability
mass function. Prove, for all d ≥ 0, that

Pr {p(X) ≤ d} log
1
d

≤ H(X). (2.175)

2.22 Logical order of ideas . Ideas have been developed in order of
need and then generalized if necessary. Reorder the following ideas,
strongest first, implications following:
(a) Chain rule for I (X1, . . . , Xn; Y), chain rule for D(p(x1, . . . ,

xn)||q(x1, x2, . . . , xn)), and chain rule for H(X1, X2, . . . , Xn).
(b) D(f ||g) ≥ 0, Jensen’s inequality, I (X;Y) ≥ 0.

2.23 Conditional mutual information. Consider a sequence of n binary
random variables X1, X2, . . . , Xn. Each sequence with an even
number of 1’s has probability 2−(n−1), and each sequence with an
odd number of 1’s has probability 0. Find the mutual informations

I (X1; X2), I (X2; X3|X1), . . . , I (Xn−1; Xn|X1, . . . , Xn−2).

2.24 Average entropy . Let H(p) = −p log2 p − (1 − p) log2(1 − p)
be the binary entropy function.
(a) Evaluate H( 1

4) using the fact that log2 3 ≈1.584. (Hint: You
may wish to consider an experiment with four equally likely
outcomes, one of which is more interesting than the others.)
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(b) Calculate the average entropy H(p) when the probability p is
chosen uniformly in the range 0 ≤ p ≤ 1.

(c) (Optional ) Calculate the average entropy H(p1, p2, p3), where
(p1, p2, p3) is a uniformly distributed probability vector. Gen-
eralize to dimension n.

2.25 Venn diagrams . There isn’t really a notion of mutual information
common to three random variables. Here is one attempt at a defini-
tion: Using Venn diagrams, we can see that the mutual information
common to three random variables X, Y , and Z can be defined by

I (X;Y ; Z) = I (X;Y) − I (X;Y |Z) .

This quantity is symmetric in X, Y , and Z, despite the preceding
asymmetric definition. Unfortunately, I (X;Y ; Z) is not necessar-
ily nonnegative. Find X, Y , and Z such that I (X;Y ; Z) < 0, and
prove the following two identities:
(a) I (X;Y ; Z) = H(X, Y,Z) − H(X) − H(Y) − H(Z) +

I (X;Y) + I (Y ;Z) + I (Z;X).
(b) I (X;Y ; Z) = H(X, Y, Z) − H(X, Y ) − H(Y, Z) −

H(Z, X) + H(X) + H(Y) + H(Z).
The first identity can be understood using the Venn diagram analogy
for entropy and mutual information. The second identity follows
easily from the first.

2.26 Another proof of nonnegativity of relative entropy . In view of the
fundamental nature of the result D(p||q) ≥ 0, we will give another
proof.
(a) Show that ln x ≤ x − 1 for 0 < x < ∞.
(b) Justify the following steps:

−D(p||q) =
∑

x

p(x) ln
q(x)

p(x)
(2.176)

≤
∑

x

p(x)

(
q(x)

p(x)
− 1

)
(2.177)

≤ 0. (2.178)

(c) What are the conditions for equality?

2.27 Grouping rule for entropy . Let p = (p1, p2, . . . , pm) be a prob-
ability distribution on m elements (i.e., pi ≥ 0 and

∑m
i=1 pi = 1).
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Define a new distribution q on m − 1 elements as q1 = p1, q2 = p2,
. . . , qm−2 = pm−2, and qm−1 = pm−1 + pm [i.e., the distribution q
is the same as p on {1, 2, . . . , m − 2}, and the probability of the
last element in q is the sum of the last two probabilities of p].
Show that

H(p) = H(q) + (pm−1 + pm)H

(
pm−1

pm−1 + pm
,

pm

pm−1 + pm

)
.

(2.179)

2.28 Mixing increases entropy . Show that the entropy of the proba-
bility distribution, (p1, . . . , pi, . . . , pj , . . . , pm), is less than the
entropy of the distribution (p1, . . . ,

pi+pj

2 , . . . ,
pi+pj

2 ,
. . . , pm). Show that in general any transfer of probability that
makes the distribution more uniform increases the entropy.

2.29 Inequalities . Let X, Y , and Z be joint random variables. Prove
the following inequalities and find conditions for equality.
(a) H(X, Y |Z) ≥ H(X|Z).
(b) I (X, Y ; Z) ≥ I (X;Z).
(c) H(X, Y, Z) − H(X, Y ) ≤ H(X, Z) − H(X).
(d) I (X;Z|Y) ≥ I (Z;Y |X) − I (Z;Y) + I (X;Z).

2.30 Maximum entropy . Find the probability mass function p(x) that
maximizes the entropy H(X) of a nonnegative integer-valued ran-
dom variable X subject to the constraint

EX =
∞∑

n=0

np(n) = A

for a fixed value A > 0. Evaluate this maximum H(X).

2.31 Conditional entropy . Under what conditions does H(X|g(Y )) =
H(X|Y)?

2.32 Fano. We are given the following joint distribution on (X, Y ):
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Let X̂(Y ) be an estimator for X (based on Y ) and let Pe =
Pr{X̂(Y ) ̸= X}.
(a) Find the minimum probability of error estimator X̂(Y ) and the

associated Pe.
(b) Evaluate Fano’s inequality for this problem and compare.

2.33 Fano’s inequality . Let Pr(X = i) = pi, i = 1, 2, . . . , m, and let
p1 ≥ p2 ≥ p3 ≥ · · · ≥ pm. The minimal probability of error pre-
dictor of X is X̂ = 1, with resulting probability of error Pe =
1 − p1. Maximize H(p) subject to the constraint 1 − p1 = Pe to
find a bound on Pe in terms of H . This is Fano’s inequality in the
absence of conditioning.

2.34 Entropy of initial conditions . Prove that H(X0|Xn) is nondecreas-
ing with n for any Markov chain.

2.35 Relative entropy is not symmetric.
Let the random variable X have three possible outcomes {a, b, c}.
Consider two distributions on this random variable:

Symbol p(x) q(x)

a 1
2

1
3

b 1
4

1
3

c 1
4

1
3

Calculate H(p), H(q), D(p||q), and D(q||p). Verify that in this
case, D(p||q) ̸= D(q||p).

2.36 Symmetric relative entropy . Although, as Problem 2.35 shows,
D(p||q) ̸= D(q||p) in general, there could be distributions for
which equality holds. Give an example of two distributions p and
q on a binary alphabet such that D(p||q) = D(q||p) (other than
the trivial case p = q).

2.37 Relative entropy . Let X, Y, Z be three random variables with a
joint probability mass function p(x, y, z). The relative entropy
between the joint distribution and the product of the marginals is

D(p(x, y, z)||p(x)p(y)p(z)) = E

[
log

p(x, y, z)

p(x)p(y)p(z)

]
. (2.180)

Expand this in terms of entropies. When is this quantity zero?
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2.38 The value of a question. Let X ∼ p(x), x = 1, 2, . . . , m. We are
given a set S ⊆ {1, 2, . . . , m}. We ask whether X ∈ S and receive
the answer

Y =
{

1 if X ∈ S
0 if X ̸∈ S.

Suppose that Pr{X ∈ S} = α. Find the decrease in uncertainty
H(X) − H(X|Y).
Apparently, any set S with a given α is as good as any other.

2.39 Entropy and pairwise independence. Let X, Y,Z be three binary
Bernoulli(1

2) random variables that are pairwise independent; that
is, I (X;Y) = I (X;Z) = I (Y ;Z) = 0.
(a) Under this constraint, what is the minimum value for

H(X, Y, Z)?
(b) Give an example achieving this minimum.

2.40 Discrete entropies . Let X and Y be two independent integer-
valued random variables. Let X be uniformly distributed over {1, 2,
. . . , 8}, and let Pr{Y = k} = 2−k , k = 1, 2, 3, . . ..
(a) Find H(X).
(b) Find H(Y).
(c) Find H(X + Y,X − Y).

2.41 Random questions . One wishes to identify a random object X ∼
p(x). A question Q ∼ r(q) is asked at random according to r(q).
This results in a deterministic answer A = A(x, q) ∈ {a1, a2, . . .}.
Suppose that X and Q are independent. Then I (X;Q, A) is the
uncertainty in X removed by the question–answer (Q, A).
(a) Show that I (X;Q, A) = H(A|Q). Interpret.
(b) Now suppose that two i.i.d. questions Q1, Q2, ∼ r(q) are

asked, eliciting answers A1 and A2. Show that two questions
are less valuable than twice a single question in the sense that
I (X;Q1, A1, Q2, A2) ≤ 2I (X;Q1, A1).

2.42 Inequalities . Which of the following inequalities are generally
≥,=, ≤? Label each with ≥,=, or ≤.
(a) H(5X) vs. H(X)

(b) I (g(X);Y) vs. I (X;Y)

(c) H(X0|X−1) vs. H(X0|X−1, X1)

(d) H(X, Y )/(H(X) + H(Y)) vs. 1
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2.43 Mutual information of heads and tails
(a) Consider a fair coin flip. What is the mutual information

between the top and bottom sides of the coin?
(b) A six-sided fair die is rolled. What is the mutual information

between the top side and the front face (the side most facing
you)?

2.44 Pure randomness . We wish to use a three-sided coin to generate
a fair coin toss. Let the coin X have probability mass function

X =

⎧
⎨

⎩

A, pA

B, pB

C, pC,

where pA, pB, pC are unknown.
(a) How would you use two independent flips X1, X2 to generate

(if possible) a Bernoulli(1
2 ) random variable Z?

(b) What is the resulting maximum expected number of fair bits
generated?

2.45 Finite entropy . Show that for a discrete random variable X ∈
{1, 2, . . .}, if E log X < ∞, then H(X) < ∞.

2.46 Axiomatic definition of entropy (Difficult). If we assume certain
axioms for our measure of information, we will be forced to use a
logarithmic measure such as entropy. Shannon used this to justify
his initial definition of entropy. In this book we rely more on the
other properties of entropy rather than its axiomatic derivation to
justify its use. The following problem is considerably more difficult
than the other problems in this section.
If a sequence of symmetric functions Hm(p1, p2, . . . , pm) satisfies
the following properties:
• Normalization: H2

(1
2 , 1

2

)
= 1,

• Continuity: H2(p, 1 − p) is a continuous function of p,
• Grouping: Hm(p1, p2, . . . , pm) = Hm−1(p1 + p2, p3, . . . , pm) +

(p1 + p2)H2

(
p1

p1+p2
, p2

p1+p2

)
,

prove that Hm must be of the form

Hm(p1, p2, . . . , pm) = −
m∑

i=1

pi log pi, m = 2, 3, . . . .

(2.181)
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There are various other axiomatic formulations which result in the
same definition of entropy. See, for example, the book by Csiszár
and Körner [149].

2.47 Entropy of a missorted file. A deck of n cards in order 1, 2, . . . , n
is provided. One card is removed at random, then replaced at ran-
dom. What is the entropy of the resulting deck?

2.48 Sequence length. How much information does the length of a
sequence give about the content of a sequence? Suppose that we
consider a Bernoulli (1

2) process {Xi}. Stop the process when the
first 1 appears. Let N designate this stopping time. Thus, XN is an
element of the set of all finite-length binary sequences {0, 1}∗ =
{0, 1, 00, 01, 10, 11, 000, . . . }.
(a) Find I (N;XN).

(b) Find H(XN |N).

(c) Find H(XN).

Let’s now consider a different stopping time. For this part, again
assume that Xi ∼ Bernoulli( 1

2) but stop at time N = 6, with prob-
ability 1

3 and stop at time N = 12 with probability 2
3 . Let this

stopping time be independent of the sequence X1X2 · · ·X12.

(d) Find I (N;XN).

(e) Find H(XN |N).

(f) Find H(XN).

HISTORICAL NOTES

The concept of entropy was introduced in thermodynamics, where it
was used to provide a statement of the second law of thermodynam-
ics. Later, statistical mechanics provided a connection between thermo-
dynamic entropy and the logarithm of the number of microstates in a
macrostate of the system. This work was the crowning achievement of
Boltzmann, who had the equation S = k ln W inscribed as the epitaph on
his gravestone [361].

In the 1930s, Hartley introduced a logarithmic measure of informa-
tion for communication. His measure was essentially the logarithm of the
alphabet size. Shannon [472] was the first to define entropy and mutual
information as defined in this chapter. Relative entropy was first defined
by Kullback and Leibler [339]. It is known under a variety of names,
including the Kullback–Leibler distance, cross entropy, information diver-
gence, and information for discrimination, and has been studied in detail
by Csiszár [138] and Amari [22].



HISTORICAL NOTES 55

Many of the simple properties of these quantities were developed by
Shannon. Fano’s inequality was proved in Fano [201]. The notion of
sufficient statistic was defined by Fisher [209], and the notion of the
minimal sufficient statistic was introduced by Lehmann and Scheffé [350].
The relationship of mutual information and sufficiency is due to Kullback
[335]. The relationship between information theory and thermodynamics
has been discussed extensively by Brillouin [77] and Jaynes [294].

The physics of information is a vast new subject of inquiry spawned
from statistical mechanics, quantum mechanics, and information theory.
The key question is how information is represented physically. Quan-
tum channel capacity (the logarithm of the number of distinguishable
preparations of a physical system) and quantum data compression [299]
are well-defined problems with nice answers involving the von Neumann
entropy. A new element of quantum information arises from the exis-
tence of quantum entanglement and the consequences (exhibited in Bell’s
inequality) that the observed marginal distribution of physical events are
not consistent with any joint distribution (no local realism). The funda-
mental text by Nielsen and Chuang [395] develops the theory of quantum
information and the quantum counterparts to many of the results in this
book. There have also been attempts to determine whether there are
any fundamental physical limits to computation, including work by Ben-
nett [47] and Bennett and Landauer [48].


