
Lecture notes 1 January 25, 2016

Overview

Notation

Matrices are written in uppercase: A, vectors are written in lowercase: a. Aij denotes the
element of A in position (i, j), Ai denotes the ith column of A (it’s a vector!) and ai denotes
the ith entry of a.

1 Sparsity

In the following sections we describe some applications of sparse models in signal and image
processing, statistics and inverse problems. The goal is to provide a high-level picture of
how to leverage sparsity assumptions in these domains.

1.1 Denoising via thresholding

In data processing, data are often described as a combination between a signal component,
which contains the information that we are interested in, and a noise component, which
accounts for perturbations that corrupt the signal. The problem of denoising data consists
of teasing apart the signal and the noise, using prior information about their structure.

Let us consider an additive noise model

data = signal + noise. (1)

If we expect the signal to be sparse, then an intuitive denoising method is to set to zero any
entry that is below a certain value. This is known as hard thresholding (as opposed to
soft thresholding, which we will learn about later in the course).

Definition 1.1 (Hard thresholding). Let x ∈ Rn. The hard-thresholding operator Hη :
Rn → Rn sets to zero any entries in x with magnitude smaller than a predefined real-valued
threshold η > 0,

Hη (x)i :=

{
xi if |xi| > η,

0 otherwise.
(2)

Figure 1 shows an example in which a sparse signal is denoised by applying hard thresholding.



Before thresholding After thresholding

Data

Signal

Estimate

Signal

Figure 1: Denoising via hard thresholding.

1.2 Sparsity in a basis

Even though signals of interest in applications are often not sparse at all, they are often
well modeled as a linear combination of a small number of predefined atoms. This can be
conveniently expressed mathematically by grouping the atoms as columns of a certain matrix
D, which is often known as a dictionary. Recall that for any matrix D ∈ Rm×n and any
vector c ∈ Rn, the matrix-vector product

Dc =
n∑
i=1

Di ci, (3)

is a linear combination of the columns of D weighted by the entries in c. If the signal x = Dc
can be represented by a combination of a few atoms in the dictionary, then its corresponding
coefficient vector c will be sparse.

Sinusoids are an important example of atoms that allow to obtain sparse representations.
Figure 2 shows an example of a signal that is sparse in such a dictionary. Another very
popular sparsifying transform in signal and image processing is the wavelet transform.
Figure 3 shows a natural image and its corresponding wavelet coefficients, most of which are
extremely small.1

If the atoms form a basis of the ambient space, then the coefficients c ∈ Rn in the represen-
tation of x,

x = Bc, (4)

1The numerical simulations in Figures 3 and 5 were implemented using Gabriel Peyré’s Wavelet Toolbox
which is available online at http://www.ceremade.dauphine.fr/~peyre/matlab/wavelets/content.html
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Signal DCT coefficients

Figure 2: The signal on the left is sparse after applying a discrete cosine transform (DCT), which
expresses the signal in terms of cosine atoms. The corresponding coefficients are shown on the
right.

can be retrieved by applying the inverse of the dictionary B. This is the case for both
examples in Figures 2 and 3.

If we consider data corrupted with additive noise,

y = Bc+ z, (5)

it is straightforward to exploit the sparsity assumption through thresholding. We only need
to apply the inverse of the dictionary and then threshold. The estimated coefficients are of
the form,

ĉ = Hη

(
B−1y

)
, (6)

which yields the signal estimate

ŷ = Bĉ = BHη

(
B−1y

)
. (7)

Figures 4 and 5 show the results of applying this denoising method to the signals in Figures 2
and 3. Both signals are corrupted by additive Gaussian noise. In both cases, exploiting the
sparse decomposition allows us to denoise the data very effectively.
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Figure 3: Coefficients in a biorthogonal wavelet basis (center) of a natural image (left). Plotting
the ordered coefficients reveals that the image is highly compressible in the wavelet domain (right).
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Figure 4: Denoising via hard thresholding in the DCT basis.
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Figure 5: Denoising via hard thresholding in a biorthogonal wavelet basis.
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DCT coefficients

Figure 6: A signal consisting of spikes and sinusoids (left) and its DCT representation (right).

1.3 Sparsity in redundant representations

Figure 6 shows a signal that is not sparse either in a basis of spiky atoms or sinusoidal atoms.
However, it is sparse in a dictionary that contains both sinusoids and spikes,

x = Dc =
[
I F

] [a
b

]
= a+ Fb, (8)

where I ∈ Rn×n is the identity matrix and F ∈ Rn×n represents a basis of sinusoids (F
stands for Fourier).

Clearly, the dictionary D ∈ Rn×2n is not invertible. There are many (in fact infinite!) ways
of representing the signal in terms of the atoms of the dictionary. This makes it challenging
to leverage the assumption that the signal has a sparse representation in the dictionary. Let
us consider for a moment the problem of finding a sparse representation even if there is no
noise. Ideally, we would like to solve the following optimization problem.

min
c̃∈Rm

||c̃||0 such that x = Dc, (9)

where the `0 “norm” of a vector x ∈ Rn (which is not really a norm) is equal to the number
of nonzero entries of x

||x||0 := card ({i | xi 6= 0}) . (10)

Problem 9 is intractable even for signals of very moderate size. However, it turns out that
there is a tractable optimization problem that often produces sparse representations; it is
obtained by replacing the `0 “norm” with the `1 norm

min
c̃∈Rm

||c̃||1 such that x = Dc. (11)
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Figure 7: The original coefficients of the signal from Figure 6 in a dictionary containing spikes
and sinusoids are shown on the left. Minimizing the `2 norm of the coefficients does not yield a
sparse representation (center), but minimizing the `1 norm does.
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Figure 8: The minimum `1-norm solution is sparser than the minimum `2-norm solution because
of the geometry of the `1-norm and `2-norm balls.

Figure 7 shows how `1-norm minimization allows to compute a sparse coefficient vector in
the case of the signal in Figure 6. In contrast, minimizing the `2 norm of the coefficient
vector produces a very dense solution.2 This is due to the geometry of the `1 norm and the
`2 norms. Figure 8 provides a picture for the case where the dictionary has two atoms. The
`1-norm ball is more concentrated around the axes than the `2-norm ball. It is therefore more
likely for the line representing the constraint x = Dc to be tangent to the ball on an axis,
where the solution has cardinality one instead of two. As a result, the minimum `1-norm
solution is sparser than the minimum `2-norm solution.

In order to learn sparse representations when noise is present in the data, we can eliminate

2The numerical simulations in Figure 7 and several other figures in these notes were implemented using
Stephen Boyd’s and Michael Grant’s CVX software which is available online at http://cvxr.com/cvx/

7

http://cvxr.com/cvx/


Noisy data Estimated coefficients Estimated signal

Signal
Estimate

Signal
Estimate

Figure 9: Denoising via `1-norm-regularized least squares.

the equality constraint in Problem 11 and add a data-fidelity term to the cost function. This
is often known as basis-pursuit denoising. In more detail, we estimate the coefficients by
solving

ĉ = arg min
c̃∈Rm

||x−Dc̃||22 + λ ||c̃||1 (12)

where λ > 0 is a regularization parameter that determines the tradeoff between the term
that promotes sparsity and the term that promotes data fidelity. Figure 9 shows the result
of applying this denoising method to a signal that has a sparse representation in a dictionary
of spikes and sinusoids.

1.4 Learning the dictionary

Dictionary-learning techniques allow to learn dictionaries directly from the data. This is
very useful in situations where a dataset with a large number of signals cannot be compactly
represented in any predefined dictionary. If the signals are grouped as columns of a matrix
X ∈ Rn×k (k is the number of signals in the dataset), the aim is to learn a dictionary
D ∈ Rn×m such that X = DC, where the matrix of coefficients C ∈ Rm×k is very sparse.
Following the heuristic that penalizing the `1 norm promotes sparse solutions, an option is
to solve the following optimization program,

min
C̃∈Rm×k

∣∣∣∣∣∣X − D̃C̃∣∣∣∣∣∣2
F

+ λ
∣∣∣∣∣∣C̃∣∣∣∣∣∣

1
such that

∣∣∣∣∣∣D̃i

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ m, (13)

where the atoms of the dictionary are constrained to have unit norm. ||·||F denotes the
Frobenius norm, which is equal to the `2 norm of the entries of the matrix interpreted as a
vector.

As we will discuss later in the course, this optimization problem is much more challenging
to solve than (12), where the dictionary is fixed. Without getting into too much detail,
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Figure 10: Atoms (right) learnt from patches extracted from a natural image (left).

the optimization problem is nonconvex, and hence may have many local minima. Figure 10
shows patches learnt from a natural image.3 The corresponding dictionary can be used to
denoise other images quite effectively, as shown in Figure 11.

1.5 Sparse regression

In statistics, the problem of regression is that of learning a function that allows to estimate
a certain quantity of interest, the response or dependent variable, from other observed
variables, known as covariates or independent variables . For example, we might be
interested in estimating the price of a house from the number of square feet, the number of
rooms and the location. In linear regression, we assume that the function is linear. In
that case, the model is of the form

yi ≈
p∑
j=1

θjXij, 1 ≤ i ≤ n, (14)

where n is the number of data, y ∈ Rn is the response, X1, X2, . . . , Xp ∈ Rn contain the
covariates and θ1, θ2, . . . , θp ∈ R are the parameters of the linear model. In matrix form,
y ≈ Xθ. In order to calibrate the model, a common procedure is to fit the parameters so
that the model approximates the response as closely as possible in `2 norm. This is achieved
by solving the least-squares problem

θ̂ls := arg min
θ̃∈Rn

∣∣∣∣∣∣y −Xθ̃∣∣∣∣∣∣
2
. (15)

3The numerical simulations in Figures 11 and other figures in these notes were implemented using scikit-
learn, which is available online at http://scikit-learn.org.
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Figure 11: Denoising results using the dictionary learnt from the image shown in Figure 10.
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In some applications, however, many of the covariates may actually be unrelated to the
response. Imagine that we are trying to investigate the connection between the expression of
several genes and a certain disease. Each covariate corresponds to a gene and the response
quantifies a symptom of the disease. If most genes are unrelated to the disease, then we
need to perform model selection, i.e. determine what genes we should incorporate in
the regression function. Otherwise the model might try to explain the response using the
irrelevant covariates. Although this could actually allow to obtain a better fit on the data
that we are using to learn the model, it will hurt the ability of the model to generalize
to new data. In machine learning and statistics this is known as overfitting. For this
reason, if we have reason to suspect that only a few covariates are actually relevant, it makes
sense to try to fit a sparse model to the data. As in the case of sparse representations in
redundant dictionaries, penalizing the `1-norm often achieves this goal. In statistics, `1-norm
regularized least squares is known as the lasso,

θ̂lasso := arg min
θ̃∈Rn

∣∣∣∣∣∣y −Xθ̃∣∣∣∣∣∣2
2

+ λ
∣∣∣∣∣∣θ̃∣∣∣∣∣∣

1
, (16)

λ > 0 is a regularization parameter that controls the level of regularization.

Let us illustrate all of this with a simple numerical simulation.

1. We generate a training set by computing the response as a linear combination of 3
covariates and add some noise to the data

ytrain =
[
Xtrain

1 Xtrain
2 Xtrain

3

]
θ + ztrain, (17)

where n = 100, i.e. the response, covariates and noise vectors all have dimension 100.

2. We fit the model using a covariate matrix that includes 47 extra covariates X4, X5,
. . . , X50 that are completely independent from the response,

Xtrain =
[
X1 X2 X3 X4 · · · X50

]
, (18)

3. We test the model using a and a test set that consists of a response

ytest =
[
Xtest

1 Xtest
2 Xtest

3

]
θ + ztest, (19)

and a matrix of covariates

Xtest =
[
X1 X2 X3 X4 · · · X50

]
, (20)

where again n = 100, i.e. the response, covariates and noise vectors all have dimension
100. The coefficient vector θ is the same as in the training set.
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Figure 12: Value of the coefficients in the lasso (left) and ridge-regression models for different
values of the regularization parameter λ.

4. We fit the model using least-squares regression, the lasso and also ridge regression,
which penalizes the `2 norm of the parameter vector and is known as Tikhonov regu-
larization in the applied-mathematics literature,

θ̂ridge := arg min
θ̃∈Rn

∣∣∣∣∣∣y −Xθ̃∣∣∣∣∣∣2
2

+ λ
∣∣∣∣∣∣θ̃∣∣∣∣∣∣2

2
. (21)

Figure 12 shows the value of the fitted parameters for different values of the regularization
parameter. When λ is very large, all of the coefficients are set to zero by the lasso and
by ridge regression because the fitting error has no weight in the cost function. When λ is
very small, both methods are equivalent to least-squares regression. In between these two
regimes, the lasso model is sparse and for a certain range of values of λ it only includes
the relevant features. In contrast, ridge regression allows to diminish the influence of the
irrelevant covariates, but is not sparse. As discussed previously, this is due to the geometry
of the `1-norm and `2-norm balls (see Figure 8).

Figure 13 plots the relative error achieved on the training and test sets for least-squares
regression, the lasso and ridge regression. In the training set, least-squares regression achieves
the smallest error by overfitting the data. This becomes obvious when we compare the error
on the test set, where the fit of the sparse model obtained by the lasso is significantly better.
Ridge regression also prevents overfitting to some extent, but not as effectively as the lasso.
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Figure 13: Relative `2 norm error in estimating the response achieved using least-squares regres-
sion, the lasso and ridge regression.

1.6 Inverse problems

This section describes two inverse problems that are ill posed unless we make some as-
sumptions on the signal structure. In particular, leveraging sparsity-based models through
the use of `1-norm regularization often allows to obtain estimates, even if the problem is
underdetermined.

1.6.1 Super-resolution

Extracting fine-scale information from low-resolution data is a major challenge in many areas
of the applied sciences. In microscopy, astronomy and any other application employing an
optical device, spatial resolution is fundamentally limited by diffraction. An example with
real data is shown in Figure 14. Figure 15 illustrates a model for the data-acquisition process
in such cases: the object of interest is convolved with a point-spread function that blurs the
fine-scale details, acting essentially as a low-pass filter. The problem of super-resolution is
that of reconstructing the original signal from the blurred measurements.

Computing the convolution between two signals can be carried out by multiplying their
spectra in the frequency domain. To simplify matters, let us assume that the signal of
interest is a vector x ∈ Rn and that the point-spread function of the sensing mechanism is
a perfect low-pass filter. In that case, the spectrum of the measurements, which we denote
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Data

Figure 14: An example of deconvolution in fluorescence microscopy applied to data from the
Moerner lab at Stanford by V. Morgenshtern. On the left, it is not possible to distinguish the
individual fluorescent probes due to heavy aliasing. On the right, deconvolving the point sources
in the individual frames and pooling the frames together reveals the fine-scale details of the object
of interest.

by y, is equal to

y = FL x, (22)

where x ∈ Rm is the signal of interest and FL is a n ×m submatrix of the discrete Fourier
transform (DFT) matrix. Since some frequencies are suppressed, the number of measure-
ments is greater than the dimension of the signal m > n, which implies that the system is
underdetermined. If there is any solution to the system, there are infinite solutions, so we
need to make further assumptions for the inverse problem not to be completely ill posed.

In many applications, a reasonable assumption is that the signal is well modeled as a super-
position of point sources; examples include celestial bodies in astronomy, fluorescent probes
in microscopy, or line spectra in signal processing. In such cases, we can enforce a sparsity
prior in the same way by solving an `1-norm minimization problem, as in Section 1.3,

min
x̃∈Rm

||x̃||1 such that y = FL x̃. (23)

Figure 16 shows a simple example in which `1-norm minimization allows to recover a sparse
signal exactly. In contrast, minimizing the `2 norm does not produces a sparse estimate,
as illustrated in Figure 16. Later in the course, we will characterize under what conditions
`1-norm minimization is guaranteed to achieve exact recovery.
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Figure 15: Convolution with a low-pass point-spread function (above) is equivalent to pointwise
multiplication with a low-pass filter in the frequency domain (below).

Original signal Min. `2-norm estimate Min. `1-norm estimate

Figure 16: Minimizing the `1 norm of the estimate (right) allows to estimate the original signal
(left) exactly, whereas minimizing the `2 norm does not produce a sparse estimate.
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Figure 17: Image of a brain obtained by MRI, along with the magnitude of its 2D-Fourier or
k-space representation and the logarithm of this magnitude.

1.6.2 Compressed sensing

Magnetic resonance imaging (MRI) is a popular medical imaging technique used in radiology.
A simplified model of the data obtained via MRI is that they correspond to samples of the
2D or 3D Fourier transform of an image, known as k space in MRI jargon. An estimate of
the image can be obtained by computing the inverse Fourier transform of the data, as shown
in Figure 17.

An important challenge in MRI is to reduce measurement time. Compressed sensing
achieves this by randomly undersampling the k-space representation of the image. Let us
first consider a 1D version of the problem, where the signal is an m-dimensional vector x.
The data y may be modeled as random samples of the DFT of the signal. More precisely,

y = FΩ x, (24)

where x ∈ Rm and the linear operator FΩ ∈ Rn×m corresponds to n random rows of the
discrete Fourier transform (DFT) matrix. As in the case of super-resolution, m > n so the
system is underdetermined. Assuming that the signal is sparse, we can again solve `1-norm
minimization problem to promote a sparse solution,

min
x̃∈Rm

||x̃||1 such that y = FΩ x̃, (25)

Figure 18 shows the results of applying compressed sensing to a sparse 1D signal.

In general, images such as the one in Figure 17 are not sparse. However they are often
sparse in certain representations such as wavelet dictionaries, as discussed in Section 1.2.
Minimizing the `1 norm of the coefficients in the sparsifying dictionary, allows to recover
such images very accurately. An example is shown in Figure 19.
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Figure 18: Minimizing the `1 norm of the estimate (right) allows to estimate the original signal
(left) exactly from a small number of random samples of its spectrum (center).
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Figure 19: Compressed-sensing reconstruction (center) of a brain image (left) from random k-
space samples. Minimizing the `2-norm recovers a heavily-aliased image (right).

17



? ? ? ?

?

?

??

??

???

?

?

Figure 20: A depiction of the Netflix challenge in matrix form. Each row corresponds to a user
that ranks a subset of the movies, which correspond to the columns. The figure is due to Mahdi
Soltanolkotabi.

2 Low-rank models

In this section we describe three applications of low-rank models: matrix completion for
movie-rating prediction, low rank + sparse models for background subtraction and nonneg-
ative matrix factorization for topic modeling.

2.1 Matrix completion

The Netflix Prize was a contest organized by Netflix from 2007 to 2009 in which teams of
data scientists tried to develop algorithms to improve the prediction of movie ratings. The
problem of predicting ratings can be recast as that of completing a matrix from some of
its entries, as illustrated in Figure 20. It turns out that matrices of ratings are often well
modeled as being approximately low rank. We demonstrate this through a simple example.
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Bob, Molly, Mary and Larry rate the following six movies from 1 to 5,

A :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2

(26)

We subtract the average rating,

µ :=
1

n

m∑
i=1

n∑
j=1

Aij, (27)

(28)

from each entry in the matrix and then compute its singular value decomposition

A− Ā = USV T = U


7.79 0 0 0

0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

V T , (29)

where

Ā :=


µ µ · · · µ
µ µ · · · µ
· · · · · · · · · · · ·
µ µ · · · µ

 . (30)

The fact that the first singular value is significantly larger than the rest suggests that the
matrix may be well approximated by a rank-1 matrix. This is the case (for ease of comparison
the values of A are shown in brackets):

Ā+ σ1U1V
T

1 =

Bob Molly Mary Larry


1.34 (1) 1.19 (1) 4.66 (5) 4.81 (4) The Dark Knight
1.55 (2) 1.42 (1) 4.45 (4) 4.58 (5) Spiderman 3
4.45 (4) 4.58 (5) 1.55 (2) 1.42 (1) Love Actually
4.43 (5) 4.56 (4) 1.57 (2) 1.44 (1) Bridget Jones’s Diary
4.43 (4) 4.56 (5) 1.57 (1) 1.44 (2) Pretty Woman
1.34 (1) 1.19 (2) 4.66 (5) 4.81 (5) Superman 2

(31)
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This rank-1 model has an interesting interpretation. The first left singular vector is equal to

U1 =
D. Knight Spiderman 3 Love Act. B.J.’s Diary P. Woman Superman 2

( )−0.45 −0.39 0.39 0.39 0.39 −0.45 .

Entries with similar values represent movies that are rated similarly by viewers. The first
right singular vector is equal to

V1 =
Bob Molly Mary Larry

( )0.48 0.52 −0.48 −0.52 . (32)

Here, entries with similar values correspond to users that have a similar taste (Bob and
Molly vs Mary and Larry).

Now, let us consider the problem of completing the matrix if we only have access to a subset
of its entries. This problem is known as matrix completion.

Bob Molly Mary Larry


1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2

(33)

Knowing that rating matrices are often approximately low-rank, we would like to compute a
low-rank estimate from the available data. Achieving this through an optimization problem
that penalizes the rank of the estimate is not computationally tractable. However penalizing
the `1 norm of the singular values of the matrix does promote low-rank estimates. The `1

norm of the singular values is called the nuclear norm of the matrix, and is usually denoted
by ||·||∗. In our example, we can leverage this insight in the following way.

1. We compute the average observed rating and subtract it from each entry in the matrix.
We denote the vector of centered ratings by y.

2. We solve the optimization problem

min
X̃∈Rm×n

∣∣∣∣∣∣X̃Ω − y
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣∣∣X̃∣∣∣∣∣∣
∗

(34)

where λ > 0 is a regularization parameter. We denote the set of observed indices of
the matrix as Ω. For any m×n matrix M , MΩ is a vector containing the entries of M
indexed by Ω.
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3. We add the average observed rating to the solution of the optimization problem and
round each entry to the nearest integer.

The result is

Bob Molly Mary Larry


1 2 (1) 5 4 The Dark Knight

2 (2) 1 4 5 Spiderman 3
4 5 2 2 (1) Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 (5) 5 Superman 2

(35)

For comparison the original ratings are shown in brackets.

2.2 Low rank + sparse model

In computer vision, the problem of background subtraction is that of separating the
background and foreground of a video sequence. Imagine that we take a video of a static
background. We then stack the video frames in a matrix M , where each column corresponds
to a vectorized frame. If the background is completely static, then all the frames are equal
to a certain vector f ∈ Rm (m is the number of pixels in each frame) and the matrix is rank
1

M =
[
f f · · · f

]
= f

[
1 1 · · · 1

]
.

If the background is not completely static, but instead experiences gradual changes, then
the matrix containing the frames will be approximately low rank. Now, assume that there
are sudden events in the foreground. If these events occupy a small part of the field of view
and do not last very long, then the corresponding matrix can be modeled as sparse (most
entries are equal to zero).

These observations motivate the following method for background subtraction. Stack the
frames as columns of a matrix and separate the matrix into a low-rank and a sparse compo-
nent. Applying the heuristic that the nuclear norm promotes low-rank structure and the `1

norm promotes sparsity, this suggests solving the optimization problem

min
L̃,S̃∈Rm×n

∣∣∣∣∣∣L̃∣∣∣∣∣∣
∗

+ λ
∣∣∣∣∣∣S̃∣∣∣∣∣∣

1
such that L̃+ S̃ = Y, (36)

where λ > 0 is a regularization parameter and ||·||1 denotes the `1 norm of a matrix inter-
preted as a vector. The results of applying this method to a real video sequence are shown
in Figure 21.

21



Column 17 Column 42 Column 75

Y

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

L

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

S

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Figure 21: Background subtraction results from a video. This example is due to Stephen Becker.
The code is available at http://cvxr.com/tfocs/demos/rpca.

22

http://cvxr.com/tfocs/demos/rpca


2.3 Nonnegative matrix factorization

Topic modeling aims to learn the thematic structure of a text corpus automatically. Let
us work on a simple example. We take six newspaper articles and compute the frequency of
a list of words in each of them. Our final goal is to separate the words into different clusters
that hopefully correspond to different topics. The following matrix contains the counts for
each word and article. Each entry contains the number of times that the word corresponding
to column j is mentioned in the article corresponding to row i.

A =

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f

Computing the singular-value decomposition of the matrix– after subtracting the mean of
each entry as in (29)– we determine that the matrix is approximately low rank

A− Ā = USV T = U


19.32 0 0 0

0 14.46 0 0 0 0
0 0 4.99 0 0 0
0 0 0 2.77 0 0
0 0 0 0 1.67 0
0 0 0 0 0 0.93

V
T . (37)

Unfortunately the singular vectors do not have an intuitive interpretation as in Section 2.1.
In particular, they do not allow to cluster the words

a b c d e f
( )U1 = −0.51 −0.40 −0.54 −0.11 −0.38 −0.38
( )U2 = 0.19 −0.45 −0.19 −0.69 −0.2 −0.46
( )U3 = 0.14 −0.27 −0.09 −0.58 −0.69 −0.29

(38)

or the articles

singer GDP senate election vote stock bass market band
( )V1 = −0.38 0.05 0.4 0.27 0.4 0.17 −0.52 0.14 −0.38
( )V2 = 0.16 −0.46 0.33 0.15 0.38− 0.49 0.1 −0.47 0.12
( )V3 = −0.18 −0.18 −0.04 −0.74 −0.05 0.11 −0.1 −0.43 −0.43

(39)
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A problem here is that the singular vectors have negative entries that are difficult to interpret.
In the case of rating prediction, negative ratings mean that a person does not like a movie.
In contrast articles either are about a topic or they are not. Following this intuition, we
can try to obtain a low-rank model with nonnegative entries, i.e. compute two matrices
W ∈ Rm×r and H ∈ Rr×n such that

M ≈ WH, Wi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ r, (40)

Hi,j ≥ 0, 1 ≤ i ≤ r, 1 ≤ i ≤ n, (41)

where the rank of the model is equal to r < m, n. This is known as nonnegative matrix
factorization. Solving the problem for our example with r = 3 yields some interesting
results. The entries of H allow to cluster the words into three topics,

singer GDP senate election vote stock bass market band
( )H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
( )H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
( )H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43

(42)

The first topic correspond to the entries that are not zero (or very small) in H1: senate,
election and vote. The second corresponds to H2: GDP, stock and market. The third
corresponds to H3: singer, bass and band.

The entries of W allow to assign topics to articles. b, e and f are about politics (topic 1), d
and e about economics (topic 3) and a and c about music (topic 3)

a b c d e f
( )W1 = 0.03 2.23 0 0 1.59 2.24
( )W2 = 0.1 0 0.08 3.13 2.32 0
( )W3 = 2.13 0 2.22 0 0 0.03

(43)

Finally, we check that the factorization provides a good fit to the data. The product WH is
equal to

singer GDP senate election vote stock bass market band Art.


6.89 (6) 1.01 (1) 0.53 (1) 0.54 (0) 0.10 (0) 0.53 (1) 8.83 (9) 0.53 (0) 7.36 (8) a
0.75 (1) 0 (0) 8.32 (9) 5.66 (5) 8.18 (8) 1.15 (1) 0 (0) 0.78 (1) 0.78 (0) b
7.14 (8) 0.99 (1) 0.44 (0) 0.47 (1) 0 (0) 0.47 (0) 9.16 (9) 0.48 (1) 7.62 (7) c

0 (0) 7 (6.91) 0.67 (1) 1.41 (0) 0 (0) 8.28 (9) 0.65 (1) 7.60 (7) 0.69 (0) d
0.53 (0) 5.12 (5) 6.45 (6) 5.09 (7) 5.85 (5) 6.97 (6) 0.48 (0) 6.19 (7) 1.07 (2) e
0.86 (1) 0.01 (0) 8.36 (8) 5.69 (5) 8.22 (9) 1.16 (2) 0.14 (0) 0.79 (0) 0.9 (1) f

For ease of comparison the values of A are shown in brackets.
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Lecture notes 2 February 1, 2016

Convex optimization

Notation

Matrices are written in uppercase: A, vectors are written in lowercase: a. Aij denotes the
element of A in position (i, j), Ai denotes the ith column of A (it’s a vector!). Beware that xi
may denote the ith entry of a vector x or a the ith vector in a list depending on the context.
I denotes a subvector of x that contains the entries listed in the set I. For example, x1:n
contains the first n entries of x.

1 Convexity

1.1 Convex sets

A set is convex if it contains all segments connecting points that belong to it.

Definition 1.1 (Convex set). A convex set S is any set such that for any x, y ∈ S and
θ ∈ (0, 1)

θx+ (1− θ) y ∈ S. (1)

Figure 1 shows a simple example of a convex and a nonconvex set.

The following lemma establishes that the intersection of convex sets is convex.

Lemma 1.2 (Intersection of convex sets). Let S1, . . . ,Sm be convex subsets of Rn, ∩mi=1Si is
convex.

Proof. Any x, y ∈ ∩mi=1Si also belong to S1. By convexity of S1 θx+ (1− θ) y belongs to S1

for any θ ∈ (0, 1) and therefore also to ∩mi=1Si.

The following theorem shows that projection onto non-empty closed convex sets is unique.
The proof is in Section B.1 of the appendix.

Theorem 1.3 (Projection onto convex set). Let S ⊆ Rn be a non-empty closed convex set.
The projection of any vector x ∈ Rn onto S

PS (x) := arg min
s∈S
||x− s||2 (2)

exists and is unique.



Nonconvex Convex

Figure 1: An example of a nonconvex set (left) and a convex set (right).

A convex combination of n points is any linear combination of the points with nonnegative
coefficients that add up to one. In the case of two points, this is just the segment between
the points.

Definition 1.4 (Convex combination). Given n vectors x1, x2, . . . , xn ∈ Rn,

x :=
n∑
i=1

θixi (3)

is a convex combination of x1, x2, . . . , xn as along as the real numbers θ1, θ2, . . . , θn are non-
negative and add up to one,

θi ≥ 0, 1 ≤ i ≤ n, (4)
n∑
i=1

θi = 1. (5)

The convex hull of a set S contains all convex combination of points in S. Intuitively, it is
the smallest convex set that contains S.

Definition 1.5 (Convex hull). The convex hull of a set S is the set of all convex combinations
of points in S.

A justification of why we penalize the `1-norm to promote sparse structure is that the `1-
norm ball is the convex hull of the intersection between the `0 “norm” ball and the `∞-norm
ball. The lemma is illustrated in 2D in Figure 2 and proved in Section 1.6 of the appendix.

Lemma 1.6 (`1-norm ball). The `1-norm ball is the convex hull of the intersection between
the `0 “norm” ball and the `∞-norm ball.
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Figure 2: Illustration of Lemma (1.6) The `0 “norm” ball is shown in black, the `∞-norm ball in
blue and the `1-norm ball in a reddish color.

1.2 Convex functions

We now define convexity for functions.

Definition 1.7 (Convex function). A function f : Rn → R is convex if for any x, y ∈ Rn

and any θ ∈ (0, 1),

θf (x) + (1− θ) f (y) ≥ f (θx+ (1− θ) y) . (6)

The function is strictly convex if the inequality is always strict, i.e. if x 6= y implies that

θf (x) + (1− θ) f (y) > f (θx+ (1− θ) y) . (7)

A concave function is a function f such that −f is convex.

Remark 1.8 (Extended-value functions). We can also consider an arbitrary function f that
is only defined in a subset of Rn. In that case f is convex if and only if its extension f̃ is
convex, where

f̃ (x) :=

{
f (x) if x ∈ dom (f),

∞ if x /∈ dom (f).
(8)

Equivalently, f is convex if and only if its domain dom (f) is convex and any two points in
dom (f) satisfy (6).
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f (θx+ (1− θ)y)

θf (x) + (1− θ)f (y)

f (x)

f (y)

Figure 3: Illustration of condition (6) in Definition 1.7. The curve corresponding to the function
must lie below any chord joining two of its points.

Condition (6) is illustrated in Figure 3. The curve corresponding to the function must lie
below any chord joining two of its points. It is therefore not surprising that we can determine
whether a function is convex by restricting our attention to its behavior along lines in Rn.
This is established by the following lemma, which is proved formally in Section B.2 of the
appendix.

Lemma 1.9 (Equivalent definition of convex functions). A function f : Rn → R is convex
if and only if for any two points x, y ∈ Rn the univariate function gx,y : [0, 1]→ R defined by

gx,y (α) := f (αx+ (1− α) y) (9)

is convex. Similarly, f is strictly convex if and only if gx,y is strictly convex for any a, b.

Section A in the appendix provides a definition of the norm of a vector and lists the most
common ones. It turns out that all norms are convex.

Lemma 1.10 (Norms are convex). Any valid norm ||·|| is a convex function.

Proof. By the triangle inequality inequality and homogeneity of the norm, for any x, y ∈ Rn

and any θ ∈ (0, 1)

||θx+ (1− θ) y|| ≤ ||θx||+ ||(1− θ) y|| = θ ||x||+ (1− θ) ||y|| . (10)

The `0 “norm” is not really norm, as explained in Section A, and is not convex either.
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Lemma 1.11 (`0 “norm”). The `0 “norm” is not convex.

Proof. We provide a simple counterexample. Let x := ( 1
0 ) and y := ( 0

1 ), then for any
θ ∈ (0, 1)

||θx+ (1− θ) y||0 = 2 > 1 = θ ||x||0 + (1− θ) ||y||0 . (11)

We end the section by establishing a property of convex functions that is crucial in opti-
mization.

Theorem 1.12 (Local minima are global). Any local minimum of a convex function f :
Rn → R is also a global minimum.

We defer the proof of the theorem to Section B.4 of the appendix.

1.3 Sublevel sets and epigraph

In this section we define two sets associated to a function that are very useful when reasoning
geometrically about convex functions.

Definition 1.13 (Sublevel set). The γ-sublevel set of a function f : Rn → R, where γ ∈ R,
is the set of points in Rn at which the function is smaller or equal to γ,

Cγ := {x | f (x) ≤ γ} . (12)

Lemma 1.14 (Sublevel sets of convex functions). The sublevel sets of a convex function are
convex.

Proof. If x, y ∈ Rn belong to the γ-sublevel set of a convex function f then for any θ ∈ (0, 1)

f (θx+ (1− θ) y) ≤ θf (x) + (1− θ) f (y) by convexity of f (13)

≤ γ (14)

because both x and y belong to the γ-sublevel set. We conclude that any convex combination
of x and y also belongs to the γ-sublevel set.

Recall that the graph of a function f : Rn → R is the curve in Rn+1

graph (f) := {x | f (x1:n) = xn+1} , (15)

where x1:n ∈ Rn contains the first n entries of x. The epigraph of a function is the set in
Rn+1 that lies above the graph of the function. An example is shown in Figure 4.
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f

epi (f)

Figure 4: Epigraph of a function.

Definition 1.15 (Epigraph). The epigraph of a function f : Rn → R is defined as

epi (f) := {x | f (x1:n) ≤ xn+1} . (16)

Epigraphs allow to reason geometrically about convex functions. The following basic result
is proved in Section B.5 of the appendix.

Lemma 1.16 (Epigraphs of convex functions are convex). A function is convex if and only
if its epigraph is convex.

1.4 Operations that preserve convexity

It may be challenging to determine whether a function of interest is convex or not by using
the definition directly. Often, an easier alternative is to express the function in terms of
simpler functions that are known to be convex. In this section we list some operations that
preserve convexity.

Lemma 1.17 (Composition of convex and affine function). If f : Rn → R is convex, then
for any A ∈ Rn×m and any b ∈ Rn, the function

h (x) := f (Ax+ b) (17)

is convex.
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Proof. By convexity of f , for any x, y ∈ Rm and any θ ∈ (0, 1)

h (θx+ (1− θ) y) = f (θ (Ax+ b) + (1− θ) (Ay + b)) (18)

≤ θf (Ax+ b) + (1− θ) f (Ay + b) (19)

= θ h (x) + (1− θ)h (y) . (20)

Corollary 1.18 (Least squares). For any A ∈ Rn×m and any y ∈ Rn the least-squares cost
function

||Ax− y||2 (21)

is convex.

Lemma 1.19 (Nonnegative weighted sums). The weighted sum of m convex functions
f1, . . . , fm

f :=
m∑
i=1

αi fi (22)

is convex as long as the weights α1, . . . , α ∈ R are nonnegative.

Proof. By convexity of f1, . . . , fm, for any x, y ∈ Rm and any θ ∈ (0, 1)

f (θx+ (1− θ) y) =
m∑
i=1

αi fi (θx+ (1− θ) y) (23)

≤
m∑
i=1

αi (θfi (x) + (1− θ) fi (y)) (24)

= θ f (x) + (1− θ) f (y) . (25)

Corollary 1.20 (Regularized least squares). Regularized least-squares cost functions of the
form

||Ax− y||22 + ||x|| , (26)

where ||·|| is an arbitrary norm, are convex.

Proposition 1.21 (Pointwise maximum/supremum of convex functions). The pointwise
maximum of m convex functions f1, . . . , fm is convex

fmax (x) := max
1≤i≤m

fi (x) . (27)
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The pointwise supremum of a family of convex functions indexed by a set I

fsup (x) := sup
i∈I

fi (x) . (28)

is convex.

Proof. We prove that the supremum is unique, as it implies the result for the maximum. For
any 0 ≤ θ ≤ 1 and any x, y ∈ R,

fsup (θx+ (1− θ) y) = sup
i∈I

fi (θx+ (1− θ) y) (29)

≤ sup
i∈I

θfi (x) + (1− θ) fi (y) by convexity of the fi (30)

≤ θ sup
i∈I

fi (x) + (1− θ) sup
j∈I

fj (y) (31)

= θfsup (x) + (1− θ) fsup (y) . (32)

2 Differentiable functions

In this section we characterize the convexity of differentiable functions in terms of the be-
havior of their first and second order Taylor expansions, or equivalently in terms of their
gradient and Hessian.

2.1 First-order conditions

Consider the first-order Taylor expansion of f : Rn → R at x,

f 1
x (y) := f (x) +∇f (x) (y − x) . (33)

Note that this first-order approximation is a linear function. The following proposition,
proved in Section B.6 of the appendix, establishes that a function f is convex if and only if
f 1
x is a lower bound for f for any x ∈ Rn. Figure 5 illustrates the condition with an example.

Proposition 2.1 (First-order condition). A differentiable function f : Rn → R is convex if
and only if for every x, y ∈ Rn

f (y) ≥ f (x) +∇f (x)T (y − x) . (34)

It is strictly convex if and only if

f (y) > f (x) +∇f (x)T (y − x) . (35)
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x

f (y)

f 1
x (y)

Figure 5: An example of the first-order condition for convexity. The first-order approximation at
any point is a lower bound of the function.

An immediate corollary is that for a convex function, any point at which the gradient is zero
is a global minimum. If the function is strictly convex, the minimum is unique.

Corollary 2.2. If a differentiable function f is convex and ∇f (x) = 0, then for any y ∈ R

f (y) ≥ f (x) . (36)

If f is strictly convex then for any y ∈ R

f (y) > f (x) . (37)

For any differentiable function f and any x ∈ Rn let us define the hyperplane Hf,x ⊂ Rn+1

that corresponds to the first-order approximation of f at x,

Hf,x :=
{
y | yn+1 = f 1

x (y1:n)
}
. (38)

Geometrically, Proposition 2.1 establishes thatHf,x lies above the epigraph of f . In addition,
the hyperplane and epi (f) intersect at x. In convex analysis jargon, Hf,x is a supporting
hyperplane of epi (f) at x.

Definition 2.3 (Supporting hyperplane). A hyperplane H is a supporting hyperplane of a
set S at x if

• H and S intersect at x,

• S is contained in one of the half-spaces bounded by H.

The optimality condition has a very intuitive geometric interpretation in terms of the sup-
porting hyperplane Hf,x. ∇f = 0 implies that Hf,x is horizontal if the vertical dimension
corresponds to the n + 1th coordinate. Since the epigraph lies above hyperplane, the point
at which they intersect must be a minimum of the function.
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x

f (y)

f 2
x (y)

Figure 6: An example of the second-order condition for convexity. The second-order approxima-
tion at any point is convex.

2.2 Second-order conditions

For univariate functions that are twice differentiable, convexity is dictated by the curvature
of the function. As you might recall from basic calculus, curvature is the rate of change of
the slope of the function and is consequently given by its second derivative. The following
lemma, proved in Section B.8 of the appendix, establishes that univariate functions are
convex if and only if their curvature is always nonnegative.

Lemma 2.4. A twice-differentiable function g : R → R is convex if and only if g′′ (α) ≥ 0
for all α ∈ R.

By Lemma 1.9, we can establish convexity in Rn by considering the restriction of the function
along an arbitrary line. By multivariable calculus, the second directional derivative of f at
a point x in the direction of a unit vector is equal to uT∇2f (x)u. As a result, if the Hessian
is positive semidefinite, the curvatures is nonnegative in every direction and the function is
convex.

Corollary 2.5. A twice-differentiable function f : Rn → R is convex if and only if for every
x ∈ Rn, the Hessian matrix ∇2f (x) is positive semidefinite.

Proof. By Lemma 1.9 we just need to show that the univariate function ga,b defined by (9) is
convex for all a, b ∈ Rn. By Lemma 2.4 this holds if and only if the second derivative of ga,b
is nonnegative. Applying some basic multivariate calculus, we have that for any α ∈ (0, 1)

g′′a,b (α) := (a− b)T ∇2f (αa+ (1− α) b) (a− b) . (39)

This quantity is nonnegative for all a, b ∈ Rn if and only if ∇2f (x) is positive semidefinite
for any x ∈ Rn.

10



Convex Concave Neither

Figure 7: Quadratic forms for which the Hessian is positive definite (left), negative definite (center)
and neither positive nor negative definite (right).

Remark 2.6 (Strict convexity). If the Hessian is positive definite, then the function is
strictly convex (the proof is essentially the same). However, there are functions that are
strictly convex for which the Hessian may equal zero at some points. An example is the
univariate function f (x) = x4, for which f ′′ (0) = 0.

We can interpret Corollary 2.5 in terms of the second-order Taylor expansion of f : Rn → R
at x.

Definition 2.7 (Second-order approximation). The second-order or quadratic approximation
of f at x is

f 2
x (y) := f (x) +∇f (x) (y − x) +

1

2
(y − x)T ∇2f (x) (y − x) . (40)

f 2
x is a quadratic form that shares the same value at x. By the corollary, f is convex if

and only if this quadratic approximation is always convex. This is illustrated in Figure 6.
Figure 7 shows some examples of quadratic forms in two dimensions.

3 Nondifferentiable functions

If a function is not differentiable we cannot use its gradient to check whether it is convex
or not. However, we can extend the first-order characterization derived in Section 2.1 by
checking whether the function has a supporting hyperplane at every point. If a supporting
hyperplane exists at x, the gradient of the hyperplane is called a subgradient of f at x.
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Definition 3.1 (Subgradient). The subgradient of a function f : Rn → R at x ∈ Rn is a
vector q ∈ Rn such that

f (y) ≥ f (x) + qT (y − x) , for all y ∈ Rn. (41)

The set of all subgradients is called the subdifferential of the function at x.

The following theorem, proved in Section B.9 of the appendix, establishes that if a subgra-
dient exists at every point, the function is convex.

Theorem 3.2. If a function f : Rn → R has a non-empty subdifferential at any x ∈ Rn

then f is convex.

The subdifferential allows to obtain an optimality condition for nondifferentiable convex
functions.

Proposition 3.3 (Optimality condition). A convex function attains its minimum value at
a vector x if the zero vector is a subgradient of f at x.

Proof. By the definition of subgradient, if q := 0 is a subgradient at x for any y ∈ Rn

f (y) ≥ f (x) + qT (y − x) = f (x) . (42)

If a function is differentiable at a point, then the gradient is the only subgradient at that
point.

Proposition 3.4 (Subdifferential of differentiable functions). If a convex function f : Rn →
R is differentiable at x ∈ Rn, then its subdifferential at x only contains ∇f (x).

Proof. By Proposition 2.1 ∇f is a subgradient at x. Now, let q be an arbitrary subgradient
at x. By the definition of subgradient,

f (x+ α ei) ≥ f (x) + qTα ei (43)

= f (x) + qi α, (44)

f (x) ≥ f (x− α ei) + qTα ei (45)

= f (x− α ei) + qi α. (46)

Combining both inequalities

f (x)− f (x− α ei)
α

≤ qi ≤
f (x+ α ei)− f (x)

α
. (47)

If we let α→ 0, this implies qi = ∂f(x)
∂xi

. Consequently, q = ∇f .

12



An important nondifferentiable convex function in optimization-based data analysis is the
`1 norm. The following proposition characterizes its subdifferential.

Proposition 3.5 (Subdifferential of `1 norm). The subdifferential of the `1 norm at x ∈ Rn

is the set of vectors q ∈ Rn that satisfy

qi = sign (xi) if xi 6= 0, (48)

|qi| ≤ 1 if xi = 0. (49)

Proof. The proof relies on the following simple lemma, proved in Section B.10.

Lemma 3.6. q is a subgradient of ||·||1 : Rn → R at x if and only if qi is a subgradient of
|·| : R→ R at xi for all 1 ≤ i ≤ n.

If xi 6= 0 the absolute-value function is differentiable at xi, so by Proposition (3.4), qi is
equal to the derivative qi = sign (xi).

If xi = 0, qi is a subgradient of the absolute-value function if and only if |α| ≥ qi α for any
α ∈ R, which holds if and only if |qi| ≤ 1.

4 Optimization problems

4.1 Definition

We start by defining a canonical optimization problem. The vast majority of optimization
problems (certainly all of the ones that we will study in the course) can be cast in this form.

Definition 4.1 (Optimization problem).

minimize f0 (x) (50)

subject to fi (x) ≤ 0, 1 ≤ i ≤ m, (51)

hi (x) = 0, 1 ≤ i ≤ p, (52)

where f0, f1, . . . , fm, h1, . . . , hp : Rn → R.

The problem consists of a cost function f0, inequality constraints and equality constraints.
Any vector that satisfies all the constraints in the problem is said to be feasible. A solution
to the problem is any vector x∗ such that for all feasible vectors x

f0 (x) ≥ f0 (x∗) . (53)

If a solution exists f (x∗) is the optimal value or optimum of the optimization problem.

An optimization problem is convex if it satisfies the following conditions:
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• The cost function f0 is convex.

• The functions that determine the inequality constraints f1, . . . , fm are convex.

• The functions that determine the equality constraints h1, . . . , hp are affine, i.e. hi (x) =
aTi x+ bi for some ai ∈ Rn and bi ∈ R.

Note that under these assumptions the feasibility set is convex. Indeed, it corresponds to
the intersection of several convex sets: the 0-sublevel sets of f1, . . . , fm, which are convex by
Lemma 1.14, and the hyperplanes hi (x) = aTi x+bi. The intersection is convex by Lemma 1.2.

If both the cost function and the constraint functions are all affine, the problem is a linear
program (LP).

Definition 4.2 (Linear program).

minimize aTx (54)

subject to cTi x ≤ di, 1 ≤ i ≤ m, (55)

Ax = b. (56)

It turns out that `1-norm minimization can be cast as an LP. The theorem is proved in
Section B.11 of the appendix.

Theorem 4.3 (`1-norm minimization as an LP). The optimization problem

minimize ||x||1 (57)

subject to Ax = b (58)

can be recast as the linear program

minimize
n∑
i=1

ti (59)

subject to ti ≥ xi, (60)

ti ≥ −xi, (61)

Ax = b. (62)

If the cost function is a positive semidefinite quadratic form and the constraints are affine
the problem is a quadratic program (QP).

Definition 4.4 (Quadratic program).

minimize xTQx+ aTx (63)

subject to cTi x ≤ di, 1 ≤ i ≤ m, (64)

Ax = b, (65)

where Q ∈ Rn×n is positive semidefinite.
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A corollary of Theorem 4.3 is that `1-norm regularized least squares can be cast as a QP.

Corollary 4.5 (`1-norm regularized least squares as a QP). The optimization problem

minimize ||Ax− y||22 + λ ||x||1 (66)

can be recast as the quadratic program

minimize xTATAx− 2yTx+ λ
n∑
i=1

ti (67)

subject to ti ≥ xi, (68)

ti ≥ −xi. (69)

We will discuss other types of convex optimization problems, such as semidefinite programs
later on in the course.

4.2 Duality

The Lagrangian of the optimization problem in Definition 4.1 is defined as the cost function
augmented by a weighted linear combination of the constraint functions,

L (x, λ, ν) := f0 (x) +
m∑
i=1

λi fi (x) +

p∑
j=1

νj hj (x) , (70)

where the vectors λ ∈ Rm, ν ∈ Rp are called Lagrange multipliers or dual variables. In
contrast, x is the primal variable.

Note that as long as λi ≥ 0 for 1 ≤ i ≤ m, the Lagrangian is a lower bound for the value of
the cost function at any feasible point. Indeed, if x is feasible and λi ≥ 0 for 1 ≤ i ≤ m then

λi fi (x) ≤ 0, (71)

νj hj (x) = 0, (72)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ p. This immediately implies,

L (x, λ, ν) ≤ f0 (x) . (73)

The Lagrange dual function is the infimum of the Lagrangian over the primal variable x

l (λ, ν) := inf
x∈Rn

f0 (x) +
m∑
i=1

λi fi (x) +

p∑
j=1

νj hj (x) . (74)
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Proposition 4.6 (Lagrange dual function as a lower bound of the primal optimum). Let p∗

denote an optimal value of the optimization problem in Definition 4.1,

l (λ, ν) ≤ p∗, (75)

as long as λi ≥ 0 for 1 ≤ i ≤ n.

Proof. The result follows directly from (73),

p∗ = f0 (x∗) (76)

≥ L (x∗, λ, ν) (77)

≥ l (λ, ν) . (78)

Optimizing this lower bound on the primal optimum over the Lagrange multipliers yields
the dual problem of the original optimization problem, which is called the primal problem
in this context.

Definition 4.7 (Dual problem). The dual problem of the optimization problem from Defi-
nition 4.1 is

maximize l (λ, ν) (79)

subject to λi ≥ 0, 1 ≤ i ≤ m. (80)

Note that the cost function is a pointwise supremum of linear (and hence convex) functions,
so by Proposition 1.21 the dual problem is a convex optimization problem even if the primal
is nonconvex! The following result, which is an immediate corollary to Proposition 4.6, states
that the optimum of the dual problem is a lower bound for the primal optimum. This is
known as weak duality.

Corollary 4.8 (Weak duality). Let p∗ denote an optimum of the optimization problem in
Definition 4.1 and d∗ an optimum of the corresponding dual problem,

d∗ ≤ p∗. (81)

In the case of convex functions, the optima of the primal and dual problems are often equal,
i.e.

d∗ = p∗. (82)

This is known as strong duality. A simple condition that guarantees strong duality for convex
optimization problems is Slater’s condition.
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Definition 4.9 (Slater’s condition). A vector x ∈ Rn satisfies Slater’s condition for a convex
optimization problem if

fi (x) < 0, 1 ≤ i ≤ m, (83)

Ax = b. (84)

A proof of strong duality under Slater’s condition can be found in Section 5.3.2 of [1].
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A very readable and exhaustive reference is Boyd and Vandenberghe’s seminal book on con-
vex optimization [1], which unfortunately does not cover subgradients.1 Nesterov’s book [2]
and Rockafellar’s book [3] do cover subgradients.
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[3] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Springer Science & Business Media,
2009.

A Norms

The norm of a vector is a generalization of the concept of length.

Definition A.1 (Norm). Let V be a vector space, a norm is a function ||·|| from V to R
that satisfies the following conditions.

• It is homogeneous. For all α ∈ R and x ∈ V

||αx|| = |α| ||x|| . (85)

• It satisfies the triangle inequality

||x+ y|| ≤ ||x||+ ||y|| . (86)

In particular, it is nonnegative (set y = −x).

• ||x|| = 0 implies that x is the zero vector 0.

1However, see http://see.stanford.edu/materials/lsocoee364b/01-subgradients_notes.pdf
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The `2 norm is induced by the inner product 〈x, y〉 = xTy

||x||2 :=
√
xTx. (87)

Definition A.2 (`2 norm). The `2 norm of a vector x ∈ Rn is defined as

||x||2 :=

√√√√ n∑
i=1

x2i . (88)

Definition A.3 (`1 norm). The `1 norm of a vector x ∈ Rn is defined as

||x||1 :=
n∑
i=1

|xi| . (89)

Definition A.4 (`∞ norm). The `∞ norm of a vector x ∈ Rn is defined as

||x||∞ := max
1≤i≤n

|xi| . (90)

Remark A.5. The `0 “norm” is not a norm, as it is not homogeneous. For example, if x
is not the zero vector,

||2x||0 = ||x||0 6= 2 ||x||0 . (91)

B Proofs

B.1 Proof of Theorem 1.3

Existence

Since S is non-empty we can choose an arbitrary point s̃ ∈ S. Minimizing ||x− s||2 over
S is equivalent to minimizing ||x− s||2 over S ∩ {y | ||x− y||2 ≤ ||x− s̃||2}. Indeed, the
solution cannot be a point that is farther away from x than s̃. By Weierstrass’s extreme-
value theorem, the optimization problem

minimize ||x− s||22 (92)

subject to s ∈ S ∩ {y | ||x− y||2 ≤ ||x− s̃||2} (93)

has a solution because ||x− s||22 is a continuous function and the feasibility set is bounded
and closed, and hence compact. Note that this also holds if S is not convex.

Uniqueness
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Assume that there are two distinct projections s1 6= s2. Consider the point

s :=
s1 + s2

2
, (94)

which belongs to S because S is convex. The difference between x and s and the difference
between s1 and s are orthogonal vectors,

〈x− s, s1 − s〉 =

〈
x− s1 + s2

2
, s1 −

s1 + s2
2

〉
(95)

=

〈
x− s1

2
+
x− s2

2
,
x− s1

2
− x− s2

2

〉
(96)

=
1

4

(
||x− s1||2 + ||x− s2||2

)
(97)

= 0, (98)

because ||x− s1|| = ||x− s2|| by assumption. By Pythagoras’s theorem this implies

||x− s1||22 = ||x− s||22 + ||s1 − s||22 (99)

= ||x− s||22 +

∣∣∣∣∣∣∣∣s1 − s22

∣∣∣∣∣∣∣∣2
2

(100)

> ||x− s||22 (101)

because s1 6= s2 by assumption. We have reached a contradiction, so the projection is unique.

B.2 Proof of Lemma 1.9

The proof for strict convexity is exactly the same, replacing the inequalities by strict in-
equalities.

f being convex implies that gx,y is convex for any x, y ∈ Rn

For any α, β, θ ∈ (0, 1)

gx,y (θα + (1− θ) β) = f ((θα + (1− θ) β)x+ (1− θα− (1− θ) β) y) (102)

= f (θ (αx+ (1− α) y) + (1− θ) (βx+ (1− β) y)) (103)

≤ θf (αx+ (1− α) y) + (1− θ) f (βx+ (1− β) y) by convexity of f

= θgx,y (α) + (1− θ) gx,y (β) . (104)

gx,y being convex for any x, y ∈ Rn implies that f is convex
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For any α, β, θ ∈ (0, 1)

f (θx+ (1− θ) y) = gx,y (θ) (105)

≤ θgx,y (1) + (1− θ) gx,y (0) by convexity of gx,y (106)

= θf (x) + (1− θ) f (y) . (107)

B.3 Proof of Lemma 1.6

We prove that the `1-norm ball B`1 is equal to the convex hull of the intersection between the
`0 “norm” ball B`0 and the `∞-norm ball B`∞ by showing that the sets contain each other.

B`1 ⊆ C (B`0 ∩ B`∞)

Let x be an n-dimensional vector in B`1 . If we set θi := |x(i)|, where x (i) is the ith entry of
x by x (i), and θ0 = 1−∑n

i=1 θi we have

n+1∑
i=1

θi = 1, (108)

θi ≥ 0 for 1 ≤ i ≤ n by definition, (109)

θ0 = 1−
n+1∑
i=1

θi (110)

= 1− ||x||1 (111)

≥ 0 because x ∈ B`1 . (112)

We can express x as a convex combination of the standard basis vectors e1, e2, . . . , en, which
belong to B`0 ∩B`∞ since they have a single nonzero entry equal to one, and the zero vector
e0, which also belongs to B`0 ∩ B`∞ ,

x =
n∑
i=1

θiei + θ0e0. (113)

C (B`0 ∩ B`∞) ⊆ B`1
Let x be an n-dimensional vector in C (B`0 ∩ B`∞). By the definition of convex hull, we can
write

x =
m∑
i=1

θiyi, (114)
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where m > 0, y1, . . . , ym ∈ Rn have a single entry bounded by one, θi ≥ 0 for all 1 ≤ i ≤ m
and

∑m
i=1 θi = 1. This immediately implies x ∈ B`1 , since

||x||1 ≤
m∑
i=1

θi ||yi||1 by the Triangle inequality (115)

≤
n∑
i=1

θi ||yi||∞ because each yi only has one nonzero entry (116)

≤
n∑
i=1

θi (117)

≤ 1. (118)

B.4 Proof of Theorem 1.12

We prove the result by contradiction. Let xloc be a local minimum and xglob a global minimum
such that f (xglob) < f (xloc). Since xloc is a local minimum, there exists γ > 0 for which
f (xloc) ≤ f (x) for all x ∈ Rn such that ||x− xloc||2 ≤ γ. If we choose θ ∈ (0, 1) small
enough, xθ := θxloc + (1− θ)xglob satisfies ||x− xloc||2 ≤ γ and therefore

f (xloc) ≤ f (xθ) (119)

≤ θf (xloc) + (1− θ) f (xglob) by convexity of f (120)

< f (xloc) because f (xglob) < f (xloc). (121)

B.5 Proof of Lemma 1.16

f being convex implies that epi (f) is convex

Let x, y ∈ Rn+1 ∈ epi (f), then for any θ ∈ (0, 1)

f (θx1:n + (1− θ) y1:n) ≤ θf (x1:n) + (1− θ) f (y1:n) by convexity of f (122)

≤ θxn+1 + (1− θ) yn+1 (123)

because x, y ∈ Rn+1 ∈ epi (f) so f (x1:n) ≤ xn+1 and f (y1:n) ≤ yn+1. This implies that
θx+ (1− θ) y ∈ epi (f).

epi (f) being convex implies that f is convex

For any x, y ∈ Rn, let us define x̃, ỹ ∈ Rn+1 such that

x̃1:n := x, x̃n+1 := f (x) , (124)

ỹ1:n := y, ỹn+1 := f (y) . (125)
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By definition of epi (f), x̃, ỹ ∈ epi (f). For any θ ∈ (0, 1), θx̃ + (1− θ) ỹ belongs to epi (f)
because it is convex. As a result,

f (θx+ (1− θ) y) = f (θx̃1:n + (1− θ) ỹ1:n) (126)

≤ θx̃n+1 + (1− θ) ỹn+1 (127)

= θf (x) + (1− θ) f (y) . (128)

B.6 Proof of Proposition 2.1

The proof for strict convexity is almost exactly the same; we omit the details.

The following lemma, proved in Section B.7 below establishes that the result holds for
univariate functions

Lemma B.1. A univariate differentiable function g : R→ R is convex if and only if for all
α, β ∈ R

g (β) ≥ g′ (α) (β − α) (129)

and strictly convex if and only if for all α, β ∈ R

g (β) > g′ (α) (β − α) . (130)

To complete the proof we extend the result to the multivariable case using Lemma 1.9.

If f (y) ≥ f (x) +∇f (x)T (y − x) for any x, y ∈ Rn then f is convex

By Lemma 1.9 we just need to show that the univariate function ga,b defined by (9) is convex
for all a, b ∈ Rn. Applying some basic multivariate calculus yields

g′a,b (α) = ∇f (α a+ (1− α) b)T (a− b) . (131)

Let α, β ∈ R. Setting x := α a+ (1− α) b and y := β a+ (1− β) b we have

ga,b (β) = f (y) (132)

≥ f (x) +∇f (x)T (y − x) (133)

= f (α a+ (1− α) b) +∇f (α a+ (1− α) b)T (a− b) (β − α) (134)

= ga,b (α) + g′a,b (α) (β − α) by (131), (135)

which establishes that ga,b is convex by Lemma B.1 above.

If f is convex then f (y) ≥ f (x) +∇f (x)T (y − x) for any x, y ∈ Rn
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By Lemma 1.9, gx,y is convex for any x, y ∈ Rn.

f (y) = gx,y (1) (136)

≥ gx,y (0) + g′x,y (0) by convexity of gx,y and Lemma B.1 (137)

= f (x) +∇f (x)T (y − x) by (131). (138)

B.7 Proof of Lemma B.1

g being convex implies g (β) ≥ g′ (α) (β − α) for all α, β ∈ R

If g is convex then for any α, β ∈ R and any 0 ≤ θ ≤ 1

θ (g (β)− g (α)) + g (α) ≥ g (α + θ (β − α)) . (139)

Rearranging the terms we have

g (β) ≥ g (α + θ (β − α))− g (α)

θ
+ g (α) . (140)

Setting h = θ (β − α), this implies

g (β) ≥ g (α + h)− g (α)

h
(β − α) + g (α) . (141)

Taking the limit when h→ 0 yields

g (β) ≥ g′ (α) (β − α) . (142)

If g (β) ≥ g′ (α) (β − α) for all α, β ∈ R then g is convex

Let z = θα + (1− θ) β, then by if g (β) ≥ g′ (α) (β − α)

g (α) ≥ g′ (z) (α− z) + g (z) (143)

= g′ (z) (1− θ) (α− β) + g (z) (144)

g (β) ≥ g′ (z) (β − z) + g (z) (145)

= g′ (z) θ (β − α) + g (z) (146)

Multiplying (144) by θ, then (146) by 1− θ and summing the inequalities, we obtain

θg (α) + (1− θ) g (β) ≥ g (θα + (1− θ) β) . (147)
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B.8 Proof of Lemma 2.4

The second derivative of g is nonnegative anywhere if and only if the first derivative is
nondecreasing, because g′′ is the derivative of g′.

If g is convex g′ is nondecreasing

By Lemma B.1, if the function is convex then for any α, β ∈ R such that β > α

g (α) ≥ g′ (β) (α− β) + g (β) , (148)

g (β) ≥ g′ (α) (β − α) + g (α) . (149)

Rearranging, we obtain

g′ (β) (β − α) ≥ g (β)− g (α) ≥ g′ (α) (β − α) . (150)

Since β − α > 0, we have g′ (β) ≥ g′ (α).

If g′ is nondecreasing, g is convex

For arbitrary α, β, θ ∈ R, such that β > α and 0 < θ < 1, let η = θβ + (1− θ)α. Since
β > η > α, by the mean-value theorem there exist γ1 ∈ [α, η] and γ2 ∈ [η, β] such that

g′ (γ1) =
g (η)− g (α)

η − α , (151)

g′ (γ2) =
g (β)− g (η)

β − η . (152)

Since γ1 < γ2, if g′ is nondecreasing

g (β)− g (η)

β − η ≥ g (η)− g (α)

η − α , (153)

which implies

η − α
β − αg (β) +

β − η
β − αg (α) ≥ g (η) . (154)

Recall that η = θβ + (1− θ)α, so that θ = (η − α) / (β − α) and θ = (η − α) / (β − α) and
1− θ = (β − η) / (β − α). (154) is consequently equivalent to

θg (β) + (1− θ) g (α) ≥ g (θβ + (1− θ)α) . (155)
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B.9 Proof of Theorem 3.2

For arbitrary x, y ∈ Rn and α ∈ R there exists a subgradient q of f at αx+ (1− α) y. This
implies

f (y) ≥ f (αx+ (1− α) y) + qT (y − αx− (1− α) y) (156)

= f (αx+ (1− α) y) + α qT (y − x) , (157)

f (x) ≥ f (αx+ (1− α) y) + qT (x− αx− (1− α) y) (158)

= f (αx+ (1− α) y) + (1− α) qT (y − x) . (159)

Multiplying equation (157) by 1 − α and equation (159) by α and adding them together
yields

αf (x) + (1− α) f (y) ≥ f (αx+ (1− α) y) . (160)

B.10 Proof of Lemma 3.6

If q is a subgradient for ||·||1 at x then qi is a subgradient for |·| at |xi| for 1 ≤ i ≤ n

|yi| = ||x+ (yi − xi) ei||1 − ||x||1 (161)

≥ qT (yi − xi) ei (162)

= qi (yi − xi) . (163)

If qi is a subgradient for |·| at |xi| for 1 ≤ i ≤ n then q is a subgradient for ||·||1 at x

||y||1 =
n∑
i=1

|yi| (164)

≥
n∑
i=1

|xi|+ qi (yi − xi) (165)

= ||x||1 + qT (y − x) . (166)

B.11 Proof of Theorem 4.3

To show that the linear problem and the `1-norm minimization problem are equivalent, we
show that they have the same set of solutions.
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Let us denote an arbitrary solution of the LP by
(
xlp, tlp

)
. For any solution x`1 of the `1-norm

minimization problem, we define t`1i :=
∣∣x`1i ∣∣. (x`1 , t`1) is feasible for the LP so

∣∣∣∣x`1∣∣∣∣
1

=
n∑
i=1

t`1i (167)

≥
n∑
i=1

tlpi by optimality of tlp (168)

≥
∣∣∣∣xlp∣∣∣∣

1
by constraints (60) and (61). (169)

This implies that any solution of the LP is also a solution of the `1-norm minimization
problem.

To prove the converse, we fix a solution x`1 of the `1-norm minimization problem. Setting
t`1i :=

∣∣x`1i ∣∣, we show that
(
x`1 , t`1

)
is a solution of the LP. Indeed,

n∑
i=1

t`1i =
∣∣∣∣x`1∣∣∣∣

1
(170)

≤
∣∣∣∣xlp∣∣∣∣

1
by optimality of x`1 (171)

≤
n∑
i=1

tlpi by constraints (60) and (61). (172)
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Lecture notes 3 February 8, 2016

Optimization methods

1 Introduction

In these notes we provide an overview of a selection of optimization methods. We focus
on methods which rely on first-order information, i.e. gradients and subgradients, to make
local progress towards a solution. In practice, these algorithms tend to converge to medium-
precision solutions very rapidly and scale reasonably well with the problem dimension. As a
result, they are widely used in machine-learning and signal-processing applications.

2 Differentiable functions

We begin by presenting gradient descent, a very simple algorithm that provably converges
to the minimum of a convex differentiable function.

2.1 Gradient descent

Consider the optimization problem

minimize f (x) , (1)

where f : Rn → R is differentiable and convex. Gradient descent exploits first-order local
information encoded in the gradient to iteratively approach the point at which f achieves
its minimum value. By multivariable calculus, at any point x ∈ Rn −∇f (x) is the direction
in which f decreases the most, see Figure 1. If we have no additional information about f ,
it makes sense to move in this direction at each iteration.

Algorithm 2.1 (Gradient descent, aka steepest descent). We set the initial point x(0) to an
arbitrary value in Rn. Then we apply

x(k+1) = x(k) − αk∇f
(
x(k)
)
, (2)

αk > 0 is a nonnegative real number which we call the step size.

Gradient descent can be run for a certain number of iterations, which might depend on
computational constraints, or until a stopping criterion is met. An example of a stopping
rule is checking whether the relative progress

∣∣∣∣x(k+1) − x(k)
∣∣∣∣

2
/
∣∣∣∣x(k)∣∣∣∣

2
is below a certain
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Figure 1: Contour lines of a function f : R2 → R. The gradients at different points are represented
by black arrows, which are orthogonal to the contour lines.

value. Figure 2 shows two examples in which gradient descent is applied in one and two
dimensions. In both cases the method converges to the minimum.

In the examples of Figure 2 the step size is constant. In practice, determining a constant step
that is adequate for a particular function can be challenging. Figure 3 shows two examples to
illustrate this. In the first the step size is too small and as a result convergence is extremely
slow. In the second the step size is too large which causes the algorithm to repeatedly
overshoot the minimum and eventually diverge.

Ideally, we would like to adapt the step size automatically as the iterations progress. A
possibility is to search for the minimum of the function along the direction of the gradient,

αk := arg min
α
h (α) (3)

= arg min
α∈R

f
(
x(k) − αk∇f

(
x(k)
))
. (4)

This is called a line search. Recall that the restriction of an n-dimensional convex function
to a line in its domain is also convex. As a result the line search problem is a one-dimensional
convex problem. However, it may still be costly to solve. The backtracking line search is
an alternative heuristic that produces very similar results in practice at less cost. The idea
is to ensure that we make some progress in each iteration, without worrying about actually
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Figure 2: Iterations of gradient descent applied to a univariate (left) and a bivariate (right)
function. The algorithm converges to the minimum in both cases.

minimizing the univariate function. By the first-order characterization of convexity we have

h (α) = f (x− α∇f (x)) (5)

≥ f (x)−∇f (x)T (x− (x− α∇f (x))) (6)

= f (x)− α ||∇f (x)||22 (7)

= h (0)− α ||∇f (x)||22 . (8)

The backtracking line search starts at a large value of α and decreases it until the function is
below f (x)− 1

2
||∇f (x)||22, a condition known as Armijo rule. Note that the Armijo rule will

be satisfied eventually. The reason is that the line h (0)−α ||∇f (x)||22 is the only supporting
line of h at zero because h is differentiable and convex (so the only subgradient at a point
is the gradient). Consequently h (α) must be below the line h (0) − α

2
||f (x)||22 as α → 0,

because otherwise this other line would also support h at zero.

Algorithm 2.2 (Backtracking line search with Armijo rule). Given α0 ≥ 0 and β, η ∈ (0, 1),
set αk := α0 βi for the smallest integer i such that

f
(
x(k+1)

)
≤ f

(
x(k)
)
− 1

2
αk
∣∣∣∣∇f (x(k))∣∣∣∣2

2
. (9)

Figure 4 shows the result of applying gradient descent with a backtracking line search to the
same example as in Figure 3. In this case, the line search manages to adjust the step size so
that the method converges.
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Figure 3: Iterations of gradient descent when the step size is small (left) and large (right). In the
first case the convergence is very small, whereas in the second the algorithm diverges away from
the minimum. The initial point is bright red.
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Figure 4: Gradient descent using a backtracking line search based on the Armijo rule. The
function is the same as in Figure 3.
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2.2 Convergence analysis

In this section we will analyze the convergence of gradient descent for a certain class of
functions. We begin by introducing a notion of continuity for functions from Rn to Rm.

Definition 2.3 (Lipschitz continuity). A function f : Rn → Rm is Lipschitz continuous with
Lipschitz constant L if for any x, y ∈ Rn

||f (y)− f (x)||2 ≤ L ||y − x||2 . (10)

We will focus on functions that have Lipschitz-continuous gradients. The following propo-
sition, proved in Section A.1 of the appendix, shows that we are essentially considering
functions that are upper bounded by a quadratic function.

Proposition 2.4 (Quadratic upper bound). If the gradient of a function f : Rn → R is
Lipschitz continuous with Lipschitz constant L,

||∇f (y)−∇f (x)||2 ≤ L ||y − x||2 (11)

then for any x, y ∈ Rn

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
||y − x||22 . (12)

The quadratic upper bound immediately implies a bound on the value of the cost function
after k iterations of gradient descent that will be very useful.

Corollary 2.5. Let x(i) be the ith iteration of gradient descent and αi ≥ 0 the ith step size,
if ∇f is L-Lipschitz continuous,

f
(
x(k+1)

)
≤ f

(
x(k)
)
− αk

(
1− αkL

2

) ∣∣∣∣∇f (x(k))∣∣∣∣2
2
. (13)

Proof. Applying the quadratic upper bound we obtain

f
(
x(k+1)

)
≤ f

(
x(k)
)

+∇f
(
x(k)
)T (

x(k+1) − x(k)
)

+
L

2

∣∣∣∣x(k+1) − x(k)
∣∣∣∣2
2
. (14)

The result follows because x(k+1) − x(k) = −αk∇f
(
x(k)
)
.

We can now establish that if the step size is small enough, the value of the cost function at
each iteration will decrease (unless we are at the minimum where the gradient is zero).

Corollary 2.6 (Gradient descent is indeed a descent method). If αk ≤ 1
L

f
(
x(k+1)

)
≤ f

(
x(k)
)
− αk

2

∣∣∣∣∇f (x(k))∣∣∣∣2
2
. (15)

5



Note that up to now we are not assuming that the function we are minimizing is convex.
Gradient descent will make local progress even for nonconvex functions if the step size is
sufficiently small. We now establish global convergence for gradient descent applied to convex
functions with Lipschitz-continuous gradients.

Theorem 2.7. We assume that f is convex, ∇f is L-Lipschitz continuous and there exists
a point x∗ at which f achieves a finite minimum. If we set the step size of gradient descent
to αk = α ≤ 1/L for every iteration,

f
(
x(k)
)
− f (x∗) ≤

∣∣∣∣x(0) − x∗∣∣∣∣2
2

2α k
(16)

Proof. By the first-order characterization of convexity

f
(
x(i−1)

)
+∇f

(
x(i−1)

)T (
x∗ − x(i−1)

)
≤ f (x∗) , (17)

which together with Corollary 2.6 yields

f
(
x(i)
)
− f (x∗) ≤ ∇f

(
x(i−1)

)T (
x(i−1) − x∗

)
− α

2

∣∣∣∣∇f (x(i−1))∣∣∣∣2
2

(18)

=
1

2α

(∣∣∣∣x(i−1) − x∗∣∣∣∣2
2
−
∣∣∣∣x(i−1) − x∗ − α∇f (x(i−1))∣∣∣∣2

2

)
(19)

=
1

2α

(∣∣∣∣x(i−1) − x∗∣∣∣∣2
2
−
∣∣∣∣x(i) − x∗∣∣∣∣

2

)
(20)

Using the fact that by Corollary 2.6 the value of f never increases, we have

f
(
x(k)
)
− f (x∗) ≤ 1

k

k∑
i=1

f
(
x(i)
)
− f (x∗) (21)

=
1

2α k

(∣∣∣∣x(0) − x∗∣∣∣∣2
2
−
∣∣∣∣x(k) − x∗∣∣∣∣2

2

)
(22)

≤
∣∣∣∣x(0) − x∗∣∣∣∣2

2

2α k
. (23)

The theorem assumes that we know the Lipschitz constant of the gradient beforehand. How-
ever, the following lemma establishes that a backtracking line search with the Armijo rule is
capable of adjusting the step size adequately.

Lemma 2.8 (Backtracking line search). If the gradient of a function f : Rn → R is Lipschitz
continuous with Lipschitz constant L the step size obtained by applying a backtracking line
search using the Armijo rule with η = 0.5 satisfies

αk ≥ αmin := min

{
α0,

β

L

}
. (24)
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Proof. By Corollary 2.5 the Armijo rule with η = 0.5 is satisfied if αk ≤ 1/L. Since there
must exist an integer i for which β/L ≤ α0βi ≤ 1/L this establishes the result.

We can now adapt the proof of Theorem 2.7 to establish convergence when we apply a
backtracking line search.

Theorem 2.9 (Convergence with backtracking line search). If f is convex and ∇f is L-
Lipschitz continuous. Gradient descent with a backtracking line search produces a sequence
of points that satisfy

f
(
x(k)
)
− f (x∗) ≤

∣∣∣∣x(0) − x∗∣∣∣∣2
2

2αmin k
, (25)

where αmin := min
{
α0, β

L

}
.

Proof. Following the reasoning in the proof of Theorem 2.7 up until equation (20) we have

f
(
x(i)
)
− f (x∗) ≤ 1

2αi

(∣∣∣∣x(i−1) − x∗∣∣∣∣2
2
−
∣∣∣∣x(i) − x∗∣∣∣∣

2

)
. (26)

By Lemma 2.8 αi ≥ αmin, so we just mimic the steps at the end of the proof of Theorem 2.7
to obtain

f
(
x(k)
)
− f (x∗) ≤ 1

k

k∑
i=1

f
(
x(i)
)
− f (x∗) (27)

=
1

2αmin k

(∣∣∣∣x(0) − x∗∣∣∣∣2
2
−
∣∣∣∣x(k) − x∗∣∣∣∣2

2

)
(28)

≤
∣∣∣∣x(0) − x∗∣∣∣∣2

2

2αmin k
. (29)

The results that we have proved imply that we need O (1/ε) to compute a point at which
the cost function has a value that is ε close to the minimum. However, in practice gradient
descent and related methods often converge much faster. If we restrict our class of functions of
interest further this can often be made theoretically rigorous. To illustrate this we introduce
strong convexity.

Definition 2.10 (Strong convexity). A function f : Rn is S-strongly convex if for any
x, y ∈ Rn

f (y) ≥ f (x) +∇f (x)T (y − x) + S ||y − x||2 . (30)
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Strong convexity means that the function is lower bounded by a quadratic with a fixed
curvature at any point. Under this condition, gradient descent converges much faster. The
following result establishes that we only needO

(
log 1

ε

)
iterations to get an ε-optimal solution.

For the proof see [6].

Theorem 2.11. If f is S-strongly convex and ∇f is L-Lipschitz continuous

f
(
x(k)
)
− f (x∗) ≤

ckL
∣∣∣∣x(k) − x0∣∣∣∣22

2
, c :=

L
S
− 1

L
S

+ 1
. (31)

2.3 Accelerated gradient descent

The following theorem by Nesterov shows that no algorithm that uses first-order informa-

tion can converge faster than O
(

1√
ε

)
for the class of functions with Lipschitz-continuous

gradients. The proof is constructive, see Section 2.1.2 of [4] for the details.

Theorem 2.12 (Lower bound on rate of convergence). There exist convex functions with
L-Lipschitz-continuous gradients such that for any algorithm that selects x(k) from

x(0) + span
{
∇f

(
x(0)
)
,∇f

(
x(1)
)
, . . . ,∇f

(
x(k−1)

)}
(32)

we have

f
(
x(k)
)
− f (x∗) ≥

3L
∣∣∣∣x(0) − x∗∣∣∣∣2

2

32 (k + 1)2
(33)

This rate is in fact optimal. The convergence of O (1/
√
ε) can be achieved if we modify

gradient descent by adding a momentum term:

y(k+1) = x(k) − αk∇f
(
x(k)
)
, (34)

x(k+1) = βk y
(k+1) + γk y

(k), (35)

where βk and γk may depend on k. This version of gradient descent is usually known as
accelerated gradient descent or Nesterov’s method. In Section 3.2 we will illustrate the
application of this idea to the proximal gradient method. Intuitively, a momentum term
prevents descent methods from overreacting to changes in the local slope of the function.
We refer the interested reader to [2, 4] for more details.
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Figure 5: Iterations of projected gradient descent applied to a convex function with feasibility
sets equal to the unit `2 norm (left) and the positive quadrant(right).

2.4 Projected gradient descent

In this section we explain how to adapt gradient descent to minimize a function within a
convex feasibility set, i.e. to solve

minimize f (x) (36)

subject to x ∈ S, (37)

where f is differentiable and S is convex. The method is very simple. At each iteration we
take a gradient-descent step and project on the feasibility set.

Algorithm 2.13 (Projected gradient descent). We set the initial point x(0) to an arbitrary
value in Rn. Then we compute

x(k+1) = PS
(
x(k) − αk∇f

(
x(k)
))
, (38)

until a convergence criterion is satisfied.

Figure 5 shows the results of applying projected gradient descent to minimize a convex
function with two different feasibility sets in R2: the unit `2 norm and the positive quadrant.

3 Nondifferentiable functions

In this section we describe several methods to minimize convex nondifferentiable functions.
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3.1 Subgradient method

Consider the optimization problem

minimize f (x) (39)

where f is convex but nondifferentiable. This implies that we cannot compute a gradient and
advance in the steepest descent direction as in gradient descent. However, we can generalize
the idea by using subgradients, which exist because f is convex. This will be useful as long
as it is efficient to compute the subgradient of the function.

Algorithm 3.1 (Subgradient method). We set the initial point x(0) to an arbitrary value in
Rn. Then we compute

x(k+1) = x(k) − αk q(k), (40)

where q(k) is a subgradient of f at x(k), until a convergence criterion is satisfied.

Interestingly, the subgradient method is not a descent method. The value of the cost function
can actually increase as the iterations progress. However, the method can be shown to
converge at a rate of order O (1/ε2) as long as the step size decreases along iterations,
see [6].

We now illustrate the performance of the subgradient method applied to least-squares re-
gression with `1-norm regularization. The cost function in the optimization problem,

minimize
1

2
||Ax− y||22 + λ ||x||1 , (41)

is convex but not differentiable. To compute a subgradient of the function at x(k) we use
the fact that sign (x) is a subgradient of the `1 norm at x, as we established in the previous
lecture,

q(k) = AT
(
Ax(k) − y

)
+ λ sign

(
x(k)
)
. (42)

The subgradient-method iteration for this problem is consequently of the form

x(k+1) = x(k) − αk
(
AT
(
Ax(k) − y

)
+ λ sign

(
x(k)
))
. (43)

Figure 6 shows the result of applying this algorithm to an example in which A ∈ R2000×1000,
y = Ax0 + z where x0 is 100-sparse and z is iid Gaussian. The example illustrates that
decreasing the step size at each iteration achieves faster convergence.
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Figure 6: Subgradient method applied to least-squares regression with `1-norm regularization for
different choices of step size (α0 is a constant).
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3.2 Proximal gradient method

As we saw in the previous section, convergence of subgradient method is slow, both in
terms of theoretical guarantees and in the example of Figure 6. In this section we introduce
an alternative method that can be applied to a class of functions which is very useful for
optimization-based data analysis.

Definition 3.2 (Composite function). A composite function is a function that can be written
as the sum

f (x) + g (x) (44)

where f convex and differentiable and g is convex but not differentiable.

Clearly, the least-squares regression cost function with `1-norm regularization is of this form.

In order to motivate proximal methods, let us begin by interpreting the gradient-descent
iteration as the solution to a local linearization of the function.

Lemma 3.3. The minimum of the function

h (x) := f
(
x(k)
)

+∇f
(
x(k)
)T (

x− x(k)
)

+
1

2α

∣∣∣∣x− x(k)∣∣∣∣2
2

(45)

is x(k) − α∇f
(
x(k)
)
.

Proof.

x(k+1) := x(k) − αk∇f
(
x(k)
)

(46)

= arg min
x

∣∣∣∣x− (x(k) − αk∇f (x(k)))∣∣∣∣22 (47)

= arg min
x
f
(
x(k)
)

+∇f
(
x(k)
)T (

x− x(k)
)

+
1

2αk

∣∣∣∣x− x(k)∣∣∣∣2
2
. (48)

A natural generalization of gradient descent is to minimize the sum of g and the local first-
order approximation of f .

x(k+1) = arg min
x
f
(
x(k)
)

+∇f
(
x(k)
)T (

x− x(k)
)

+
1

2αk

∣∣∣∣x− x(k)∣∣∣∣2
2

+ g (x) (49)

= arg min
x

1

2

∣∣∣∣x− (x(k) − αk∇f (x(k)))∣∣∣∣22 + αk g (x) (50)

= proxαk g

(
x(k) − αk∇f

(
x(k)
))
. (51)

We have written the iteration in terms of the proximal operator of the function g.
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Definition 3.4 (Proximal operator). The proximal operator of a function g : Rn → R is

proxg (y) := arg min
x
g (x) +

1

2
||x− y||22 . (52)

Solving the modified local first-order approximation of the composite function iteratively
yields the proximal-gradient method, which will be useful if the proximal operator of g can
be computed efficiently.

Algorithm 3.5 (Proximal-gradient method). We set the initial point x(0) to an arbitrary
value in Rn. Then we compute

x(k+1) = proxαk g

(
x(k) − αk∇f

(
x(k)
))
, (53)

until a convergence criterion is satisfied.

This algorithm may be interpreted as a fixed-point method. Indeed, vector is a fixed point
of the proximal-gradient iteration if and only if it is a minimum of the composite function.
This suggests that it is a good idea to apply the iteration repeatedly but that does not prove
convergence (for this we would need to prove that the operator is contractive, see [6]).

Proposition 3.6 (Fixed point of proximal operator). A vector x̂ is a solution to

minimize f (x) + g (x) , (54)

if and only if it is a fixed point of the proximal-gradient iteration

x̂ = proxαg (x̂− α∇f (x̂)) (55)

for any α > 0.

Proof. x̂ is a solution to the optimization problem if and only if there exists a subgradient q
of g at x̂ such that ∇f (x̂) + q = 0. x̂ is the solution to

minimize α g (x) +
1

2
||x̂− α∇f (x̂)− x||22 , (56)

which is the case if and only if there exists a subgradient q of g at x̂ such that α∇f (x̂)+αq =
0. As long as α > 0 the two conditions are equivalent.

In the case of the indicator function of a set,

IS (x) :=

{
0 if x ∈ S,
∞ if x /∈ S,

(57)

the proximal operator is just the projection onto the set.
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Lemma 3.7 (Proximal operator of indicator function). The proximal operator of the indi-
cator function of a convex set S ⊆ Rn is projection onto S.

Proof. The lemma follows directly from the definitions of proximal operator, projection and
indicator function.

An immediate consequence of this is that projected-gradient descent can be interpreted as
a special case of the proximal-gradient method.

Proximal methods are very useful for fitting sparse models because the proximal operator of
the `1 norm is very tractable.

Proposition 3.8 (Proximal operator of `1 norm). The proximal operator of the `1 norm
weighted by a constant λ > 0 is the soft-thresholding operator

proxλ ||·||1 (y) = Sλ (y) (58)

where

Sλ (y)i :=

{
yi − sign (yi)λ if |yi| ≥ λ,

0 otherwise.
(59)

The proposition, proved in Section A.3 of the appendix, allows us to derive the following
algorithm for least-squares regression with `1-norm regularization.

Algorithm 3.9 (Iterative Shrinkage-Thresholding Algorithm (ISTA)). We set the initial
point x(0) to an arbitrary value in Rn. Then we compute

x(k+1) = Sαk λ

(
x(k) − αk AT

(
Ax(k) − y

))
, (60)

until a convergence criterion is satisfied.

ISTA can be accelerated using a momentum term as in Nesterov’s accelerated gradient
method. This yields a fast version of the algorithm called FISTA.

Algorithm 3.10 (Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)). We set the
initial point x(0) to an arbitrary value in Rn. Then we compute

z(0) = x(0) (61)

x(k+1) = Sαk λ

(
z(k) − αk AT

(
Az(k) − y

))
, (62)

z(k+1) = x(k+1) +
k

k + 3

(
x(k+1) − x(k)

)
, (63)

until a convergence criterion is satisfied.
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Figure 7: ISTA and FISTA applied to least-squares regression with `1-norm regularization.

ISTA and FISTA were proposed by Beck and Teboulle in [1]. ISTA is a descent method.
It has the same convergence rate as gradient descent O (1/ε) both with a constant step size
and with a backtracking line search, under the condition that ∇f be L-Lipschitz continuous.
FISTA in contrast is not a descent method, but it can be shown to converge in O (1/

√
ε) to

an ε-optimal solution.

To illustrate the performance of ISTA and FISTA, we apply them to the same example used
in Figure 6. Even without applying a backtracking line search both methods converge to a
solution of middle precision (around 10−3 or 10−4) much more rapidly than the subgradient
method. The results are shown in Figure 7.

3.3 Coordinate descent

Coordinate descent is an optimization method that decouples n-dimensional problems of the
form

minimize h (x) (64)

by solving a sequence of 1D problems. The algorithm is very simple; we just fix all the entries
of the variable vector except one and optimize over it. This procedure is called coordinate
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descent because it is equivalent to iteratively minimizing the function in the direction of the
axes.

Algorithm 3.11 (Coordinate descent). We set the initial point x(0) to an arbitrary value
in Rn. At each iteration we choose an arbitrary position 1 ≤ i ≤ n and set

x
(k+1)
i = arg min

xi∈R
h
(
x
(k)
1 , . . . , xi, . . . , x

(k)
n

)
, (65)

until a convergence criterion is satisfied. The order of the entries that we optimize over can
be fixed or random.

The method is guaranteed to converge for composite functions where f is differentiable and
convex and g has an additive decomposition,

h (x) := f (x) + g (x) = f (x) +
n∑
i=1

gi (xi) ,

where the functions g1, g2, . . . , gn : R→ R are convex and nondifferentiable [5].

In order to apply coordinate descent it is necessary for the one-dimensional optimization
problems to be easy to solve. This is the case for least-squares regression with `1-norm
regularization as demonstrated by the following proposition, which is proved in Section A.4.

Proposition 3.12 (Coordinate-descent subproblems for least-squares regression with `1-norm
regularization). Let

h (x) =
1

2
||Ax− y||22 + λ ||x||1 . (66)

The solution to the subproblem minxi h (x1, . . . , xi, . . . , xn) is

x̂i =
Sλ (γi)

||Ai||22
(67)

where Ai is the ith column of A and

γi :=
m∑
l=1

Ali

(
yl −

∑
j 6=i

Aljxj

)
. (68)

For more information on coordinate descent and its application to sparse regression, see
Chapter 5 of [3].
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A Proofs

A.1 Proof of Proposition 2.4

Consider the function

g (x) :=
L

2
xTx− f (x) . (69)

We first establish that g is convex using the following lemma, proved in Section A.2 below.

Lemma A.1 (Monotonicity of gradient). A differentiable function f : Rn → R is convex if
and only if

(∇f (y)−∇f (x))T (y − x) ≥ 0. (70)

By the Cauchy-Schwarz inequality, Lipschitz continuity of the gradient of f implies

(∇f (y)−∇f (x))T (y − x) ≤ L ||y − x||22 , (71)
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for any x, y ∈ Rn. This directly implies

(∇g (y)−∇g (x))T (y − x) = (Ly − Lx+∇f (x)−∇f (y))T (y − x) (72)

= L ||y − x||22 − (∇f (y)−∇f (x))T (y − x) (73)

≥ 0 (74)

and hence that g is convex. By the first-order condition for convexity,

L

2
yTy − f (y) = g (y) (75)

≥ g (x) +∇g (x)T (y − x) (76)

=
L

2
xTx− f (x) + (Lx−∇f (x))T (y − x) . (77)

Rearranging the inequality we conclude that

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
||y − x||22 . (78)

A.2 Proof of Lemma A.1

Convexity implies (∇f (y)−∇f (x))T (y − x) ≥ 0 for all x, y ∈ Rn

If f is convex, by the first-order condition for convexity

f (y) ≥ f (x) +∇f (x)T (y − x) , (79)

f (x) ≥ f (y) +∇f (y)T (x− y) , (80)

(81)

Adding the two inequalities directly implies the result.

(∇f (y)−∇f (x))T (y − x) ≥ 0 for all x, y ∈ Rn implies convexity

Recall the univariate function ga,b : [0, 1]→ R defined by

ga,b (α) := f (αa+ (1− α) b) , (82)

for any a, b ∈ Rn. By multivariate calculus, g′a,b (α) = ∇f (α a+ (1− α) b)T (a− b). For any
α ∈ (0, 1) we have

g′a,b (α)− g′a,b (0) = (∇f (α a+ (1− α) b)−∇f (b))T (a− b) (83)

=
1

α
(∇f (α a+ (1− α) b)−∇f (b))T (α a+ (1− α) b− b) (84)

≥ 0 because (∇f (y)−∇f (x))T (y − x) ≥ 0 for any x, y. (85)
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This allows us to prove that the first-order condition for convexity holds. For any x, y

f (x) = gx,y (1) (86)

= gx,y (0) +

∫ 1

0

g′x,y (α) dα (87)

≥ gx,y (0) + g′x,y (0) (88)

= f (y) +∇f (y) (x− y) . (89)

A.3 Proof of Proposition 3.8

Writing the function as a sum,

λ ||x||1 +
1

2
||y − x||22 =

n∑
i=1

|xi|+
1

2
(yi − xi)2 (90)

reveals that it decomposes into independent nonnegative terms. The univariate function

h (β) := λ |β|+ 1

2
(yi − β)2 (91)

is strictly convex and consequently has a unique global minimum. It is also differentiable
everywhere except at zero. If β ≥ 0 the derivative is λ + β − yi, so if yi ≥ λ, the minimum
is achieved at yi − λ. If yi < λ the function is increasing for β ≥ 0, so the minimizer must
be smaller or equal to zero. The derivative for β < 0 is −λ + β − yi so the minimum is
achieved at yi + λ if yi ≤ λ. Otherwise the function is decreasing for all β < 0. As a result,
if −λ < yi < λ the minimum must be at zero.

A.4 Proof of Proposition 3.12

Note that

min
xi

h (x) = min
xi

n∑
l=1

1

2

(
m∑
j=1

Aljxj − yl

)2

+ λ

n∑
j=l

|xl| (92)

= min
xi

n∑
l=1

1

2
A2
lix

2
i +

(
m∑
j 6=i

Aljxj − yl

)
Alixi + λ |xl| (93)

= min
xi

1

2
||Ai||22 x

2
i − γixi + λ |xi| . (94)

The univariate function

g (β) :=
1

2
||Ai||22 β

2 − γiβ + λ |β| (95)
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is strictly convex and consequently has a unique global minimum. It is also differentiable
everywhere except at zero. If β ≥ 0 the derivative is ||Ai||22 β − γi + λ, so if γi ≥ λ, the
minimum is achieved at (γi − λ) / ||Ai||22. If γi < λ the function is increasing for β ≥ 0, so the
minimizer must be smaller or equal to zero. The derivative for β < 0 is ||Ai||22 β − γi − λ so
the minimum is achieved at (γi + λ) / ||Ai||22 if γi ≤ λ. Otherwise the function is decreasing
for all β < 0. As a result, if −λ < γi < λ the minimum must be at zero.
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Lecture notes 4 February 22, 2016

Sparse linear models and denoising

1 Introduction

1.1 Definition and motivation

Finding representations of signals that allow to process them more effectively is a central
problem in signal processing and data analysis. We will consider linear models, where the
signal x is a represented as a sum of weighted atoms φ1, φ2, . . . , φm

x =
m∑
i=1

ci φi. (1)

The set of atoms {φ1, φ2, . . . , φm} is often called a dictionary. The m-dimensional vector of
coefficients c is the representation of the signal x in the dictionary.

A sparse linear model consists of the sum of a small number of atoms selected from a certain
dictionary

x =
∑
i∈I

ci φi |I| � m, (2)

here I is a set of indices of atoms in the dictionary. Its cardinality is significantly smaller
than the number of atoms in the dictionary.

Signals in specific applications tend to have similar characteristics. In this lecture we will
study how to use sparse linear models to exploit this common structure and enhance data
analysis in applications such as compression and denoising. These models may also be
applied to tackle inverse problems, as we will see in the next couple of lectures.

Finding dictionaries that are able to represent classes of signals, such as images or speech,
parsimoniously has been an extremely active area of research in the last 30 years. It is very
related to the problem of computing useful features in machine learning. There are two main
approaches to building sparsifying dictionaries. The first is to use domain knowledge and
intuition. This is the approach on which we will focus in this lecture. The second approach
is to learn the transformation directly from a database of signals in the class of interest. We
will study such methods later on in the course.



1.2 Bases and overcomplete dictionaries

If the atoms of the dictionary {φ1, . . . , φn} form an orthonormal basis of Rn (or Cn) fitting
the coefficients of a linear model is extremely simple. If (1) and the atoms are orthonormal
then

ci = 〈φi, x〉 . (3)

The coefficients are obtained by computing inner products with the atoms. The representa-
tion is simply

x =
m∑
i=1

〈φi, x〉φi. (4)

If we construct a matrix using the atoms as columns

U :=
[
φ1 φ2 · · · φn

]
(5)

then c = UTx (or c = U∗ in the complex case).

If the atoms {φ1, . . . , φn} form a basis, then the matrix

B :=
[
φ1 φ2 · · · φn

]
, (6)

has an inverse matrix B−1. The rows of B−1, which we denote by θ1, θ2, . . . , θn, can be
interpreted as dual atoms. We have

x = BB−1x =
m∑
i=1

〈θi, x〉φi (7)

so

ci = 〈θi, x〉 . (8)

If the atoms {φ1, . . . , φm} are linearly independent and m > n, then the dictionary

D :=
[
φ1 φ2 · · · φm

]
(9)

is overcomplete and no longer has an inverse. There are two alternative ways in which we
can use a given overcomplete dictionary to define a sparse linear model:

1. Synthesis: The synthesis sparse model assumes that there is a sparse m-dimensional
vector of coefficients c such that

x = Dc. (10)

As we will see, finding such a c from a given x is not necessarily an easy task.

2



2. Analysis: In the analysis sparse model assumes that

DTx (11)

is sparse, i.e. that the signal has nonzero correlation with a small number of atoms in
the dictionary.

If the dictionary is an orthonormal basis, both models are equivalent.

2 Linear transforms

In this section we describe some of the most important transforms in signal processing.

2.1 Frequency representation

The frequency decomposition or spectrum of a function is obtained by representing the
function as a superposition of sinusoids. To make this more formal, let us consider an
infinite dictionary of sinusoids

φk :=
{
e2πkt = cos (2πkt) + i sin (2πkt) , k ∈ Z

}
. (12)

Recall that L2 ([0, 1]), the space of square-integrable functions defined on the unit interval,
is a Hilbert space when endowed with the inner product

〈f, g〉 =

∫ 1

0

f (t)g (t) d t. (13)

It is not difficult to check that the dictionary of sinusoidal is orthonormal under this inner
product: the atoms are mutually orthogonal and have unit norm.

The Fourier series coefficients of a signal f ∈ L2 are obtained by taking its inner product
with atoms from the dictionary,

ck := 〈φk, f〉 (14)

=

∫ 1

0

f (t) e−i2πkt d t. (15)

The Fourier series of order n of f is defined as

Sn (t) :=
n∑

k=−n
cke

i2πkt =
n∑

k=−n
〈φk, f〉φk. (16)

3



Signal DCT coefficients

Figure 1: A signal that is sparse in the DCT dictionary.

Signal Spectrum

Figure 2: Electrocardiogram signal (left) and the magnitude of its spectrum (right).
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It turns out that the dictionary is actually an orthonormal basis for L2, since

lim
n→∞

||f (t)− Sn (t)|| = 0 for all f ∈ L2 . (17)

This is a classical result, we refer to any text on Fourier analysis for the proof.

The discrete Fourier transform (DFT) is a discrete counterpart to the Fourier series. It maps
vectors in Cn to their decomposition in terms of discrete sinusoids of the form

φk =
1√
n


1

e
i2πk
n

e
i2πk2
n

· · ·
e
i2πk(n−1)

n

 , 0 ≤ k ≤ n− 1. (18)

This dictionary is an orthonormal basis of Cn. The corresponding matrix is known as the
DFT matrix,

F :=
[
φ0 φ1 · · · φn−1

]
, (19)

DFT {x} := Fx. (20)

The fast Fourier transform (FFT) algorithm allows to compute the DFT in O (n log n).
This efficiency is crucial in practical applications. The discrete cosine transform (DCT)
is a related transformation designed for real vectors; the corresponding atoms are shifted
cosines instead of complex exponentials. Figure 1 shows a signal that is sparse in the DCT
dictionary. Figure 2 shows the frequency representation of an electrocardiogram signal. The
energy of its spectrum is highly concentrated in the low frequencies, as the signal fluctuates
slowly. The representation allows to detect periodicities in the signal, which correspond to
DFT coefficients with large magnitudes.

The DFT can be extended to two dimensions by considering two-dimensional sinusoidal
atoms obtained by taking the outer product of the one-dimensional atoms defined by (18).

φ2D
k1,k2

:=
1

n


1 e

i2πk2
n · · · e

i2πk2(n−1)
n

e
i2πk1
n e

i2π(k1+k2)
n · · · e

i2π(k1+k2(n−1))
n

· · ·

e
i2πk1(n−1)

n e
i2π(k1(n−1)+k2)

n · · · e
i2π(k1(n−1)+k2(n−1))

n

 (21)

= φ1D
k1

(
φ1D
k2

)T
. (22)

To compute the 2D DFT of an image we take inner products with these 2D sinusoidal atoms,
which form an orthonormal basis of Cn×n. The transform can be computed efficiently by
applying 1D DFTs to the rows and columns of the array,

DFT2D {X} := FXF (23)

5



Original 10 % largest DCT coeffs 2 % largest DCT coeffs

Figure 3: Discarding the smallest DCT coefficients of an image allows to compress it quite effec-
tively.

The 2D frequency representation of images tends to be sparse. In particular, most of the
energy of the image tends to be concentrated in the lower frequencies. This insight can be
used to compress the image by just retaining the coefficients with larger magnitudes. Figure 3
shows that this simple scheme can be quite effective. The JPEG compression standard is
based on a similar idea: high-frequency coefficients are discarded according to a perceptual
model.

2.2 Short-time Fourier transform (STFT)

The Fourier series or the DFT provide global information about the periodicities of a signal,
but they do not capture localized periodicities. However, the spectrum of speech, music
and other sound signals changes with time. To analyze the changes in the spectrum we can
compute the DFT of time segments of the signal. However, doing this in a näıve way may
introduce spurious high-frequencies, as shown in Figure 4. Multiplying the time segment
with a window that tapers off at the ends smoothens the transitions and avoids introducing
high-frequency artifacts.

The short-time Fourier transform (STFT) is defined as the Fourier series coefficients of the
pointwise product between a function and a shifted window w : [0, 1] → C approximately
localized in time and frequency

STFT {f} (k, τ) :=

∫ 1

0

f (t)w (t− τ)e−i2πkt d t. (24)

Equivalently, the STFT coefficients are equal to the inner product between the signal and
atoms of the form φk,τ (t) := w (t− τ) ei2πkt, which corresponds to copies of w shifted by τ

6



Signal Window

× =

Spectrum ∗ =

× =

Spectrum ∗ =

Figure 4: The spectrum of a time segment may contain spurious high-frequency content produced
by the sudden transition at the ends of the segment. In the frequency domain, the spectrum is being
convolved by a sinc function, which has a very heavy tail. Multiplying the signal by a localized
window that has a faster decay in the frequency domain alleviates the problem.
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τ = 0, k = 0 τ = 1/32, k = 0

Real part Imaginary part

Spectrum

Real part Imaginary part

τ = 0, k = 64 τ = 1/32, k = 64

Real part Imaginary part

Spectrum

Real part Imaginary part

Figure 5: Atoms in the STFT dictionary.
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Time Frequency

Figure 6: Time and frequency representation of a speech signal.

Time

Frequency

Figure 7: Spectrogram (log magnitude of STFT coefficients) of the speech signal in Figure 6.
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Scaling function Mother wavelet

Figure 8: Scaling function and mother wavelet of the Haar wavelet transform.

in time and by k in frequency. Some examples are shown in Figure 5. Including dilations of
w (in addition to time and frequency translations) yields a dictionary of Gabor atoms.

The discrete-time STFT consists of pointwise multiplication by a shifted window followed by
a DFT. This is equivalent to computing DTx, where D ∈ Cn×m, m > n is an overcomplete
dictionary. The corresponding analysis sparse model is very useful for speech analysis. The
logarithm of the magnitude of the STFT coefficients, called an spectrogram, is widely used
for sound processing. Figure 7 shows the spectrogram of a real speech signal. The time and
frequency representation of the same signal are shown in Figure 6.

2.3 Wavelets

Wavelets are atoms that allow to capture signal structure at different scales. A wavelet ψ
is a unit-norm, zero-mean function in L2. The wavelet transform of a function f ∈ L2 is
defined as

W {f} (s, τ) :=
1√
s

∫
f (t)ψ

(
t− τ
s

)
d t = 〈φs,τ , f〉 . (25)

The wavelet coefficients are obtained by taking the inner product with atoms that are shifted
and dilated copies of the mother wavelet ψ

φs,τ (t) =
1√
s
ψ

(
t− τ
s

)
. (26)

The wavelet transform coefficients provide information about the signal at different scales.
This rather vague statement can be made precise using the multiresolution framework of
Mallat and Meyer.

10



Definition 2.1 (Multiresolution approximation). A multi resolution approximation is a se-
quence {Vj, j ∈ Z} of closed subspaces of L2 (R) satisfying the following conditions.

• Dilating functions in Vj by 2 yields functions in Vj+1

f (t) ∈ Vj ⇐⇒ f

(
t

2

)
∈ Vj+1. (27)

• Approximations at a scale 2j are always better than at 2j+1

Vj+1 ⊂ Vj. (28)

• Vj is invariant to translations at the scale 2j

f (t) ∈ Vj ⇐⇒ f
(
t− 2jk

)
∈ Vj for all k ∈ Z. (29)

• As j →∞ the approximation loses all information

lim
j→∞
Vj = {0} . (30)

• As j → −∞ the approximation is perfect

lim
j→−∞

Vj = L2. (31)

• There exists a scaling function ζ ∈ V0 such that

{ζ0,k (t) := ζ (t− k) , k ∈ Z} (32)

is an orthonormal basis for V0.

Under these conditions, we can interpret the projection PVj (f) of a function f onto Vj as
an approximation of f at scale 2j. In a remarkable result, Mallat and Meyer prove that for
any multiresolution approximation there exists a wavelet ψ such that

PVj (f) = PVj+1
(f) +

∑
k∈Z

〈
ψ2j ,k, f

〉
ψ2j ,k. (33)

The particular wavelet ψ that yields this orthonormal basis depends on the scaling function.
Figure 8 shows the scaling function and the corresponding mother wavelet for the Haar
wavelet transform. The dictionary of shifted wavelets dilated by 2j

{
ψ2j ,k, k ∈ Z

}
is an

orthonormal basis for Vj ∩ V⊥j+1, i.e. the subspace in Vj that contains the functions that

11



Signal Haar transform

Figure 9: Haar wavelet coefficients (right) of an electrocardiogram signal (left).

are not available at coarser scales. As a result,
{
ζ0,k (t) , ψ21,k, ψ22,k, . . . , ψ2j ,k, k ∈ Z

}
is an

orthonormal basis for Vj.

Wavelet bases can be discretized to obtain orthonormal bases of Cn or Rn. These discrete
transforms can be computed in O (n). Figure 9 shows the Haar wavelet coefficients of an
electrocardiogram signal. The corresponding multiresolution approximations at the different
scales are shown in Figures 10, 11 and 12.

A signal-processing interpretation of the wavelet transform is that the scaling function acts as
a low-pass filter, whereas the dilated and shifted wavelets act as band-pass filters in different
bands. Many other wavelet bases apart from the Haar exist: Meyer, Daubechies, Battle-
Lemarie, . . . We refer the interested reader to [3] for more information. Chapter 7 provides
a detailed and rigorous description of the construction of orthonormal wavelet bases from a
multiresolution approximation.

Two-dimensional wavelets can be obtained by taking outer products of one-dimensional
wavelets, as we did for the DFT.

φ2D
s1,s2,k1,k2

:= φ1D
s1,k1

(
φ1D
s2,k2

)T
(34)

The corresponding two-dimensional transform allows to obtain sparse representations of
natural images. An example is shown in Figure 13. The wavelet coefficients at finer scales
are mostly zero in most areas of the image. Figure 14 shows the sorted magnitudes of the
coefficients on a logarithmic scale. A large majority of the coefficients are very small and
can be discarded without significantly affecting the quality of the image. The JPEG 2000
compression standard is based this insight.

Finally we would like to mention that designing multidimensional transforms that are more
effective at providing sparse representations for images has been a vibrant research subject

12



Scale Contribution Approximation

29

28

27

Figure 10: Approximation of the electrocardiogram signal in Figure 9 using a Haar multiresolution
approximation at different scales (right). On the left, we can see the projection of the signal onto
Vj ∩ V⊥j+1, which captures the information in the signal at scale 2j .
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Scale Contribution Approximation

26

25

24

Figure 11: Approximation of the electrocardiogram signal in Figure 9 using a Haar multiresolution
approximation at different scales (right). On the left, we can see the projection of the signal onto
Vj ∩ V⊥j+1, which captures the information in the signal at scale 2j .
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Scale Contribution Approximation

23

22

21

20

Figure 12: Approximation of the electrocardiogram signal in Figure 9 using a Haar multiresolution
approximation at different scales (right). On the left, we can see the projection of the signal onto
Vj ∩ V⊥j+1, which captures the information in the signal at scale 2j .
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Wavelet coefficients

Figure 13: Coefficients in a wavelet basis (right) of a natural image (left).

for many years. Some of these extensions include the steerable pyramid, ridgelets, curvelets,
and bandlets. We refer to Section 9.3 in [3] for more details.

3 The synthesis model

Overcomplete dictionaries provide greater flexibility for signal representation than orthonor-
mal transforms, but this comes at a cost. Computing the corresponding coefficients and
using the corresponding sparse models to process data is not as simple or computation-
ally efficient. We consider an overcomplete dictionary D with linearly independent atoms
{φ1, . . . , φm ∈ Rm} that are linearly independent

D :=
[
φ1 φ2 · · · φm

]
, m > n. (35)

The synthesis sparse model assumes that a signal x ∈ Rn can be represented as

x = Dc, (36)

where c is sparse. Unfortunately, even if such a sparse c exists, it is not easy to compute
it from x. There reason is that there are infinite choices of coefficient vectors c′ such that
x = Dc′ and most of them are not sparse at all!

A possible choice for the coefficient vector is given by the following lemma, which is proved
in Section A.1 of the appendix.
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10−3

10−1

101

103

Figure 14: Sorted magnitude of the wavelet coefficients shown in Figure 13 plotted on a logarithmic
scale. The image is highly compressible in the wavelet domain.

Lemma 3.1 (Minimum `2-norm solution). The coefficient vector with minimum `2 norm
satisfying x = Dc is

c`2 := DT
(
DDT

)−1
x, (37)

which is the projection of c onto the row space of D.

In the case of complex signals, the same result holds replacing DT by D∗.

Unfortunately, the minimum `2-norm solution is often very dense. Let us consider a concrete
example. We define the atoms of an overcomplete dictionary of sinusoids as

φk (j) :=
1√
n
e
i2πkj
m , 1 ≤ k ≤ m, 1 ≤ j ≤ n. (38)

If m = n this is an orthonormal DFT basis, but for m > n the sinusoidal atoms are correlated
and the dictionary is overcomplete. Figure 15 shows a signal that is sparse in this dictionary
and the corresponding coefficient vector. Note that this signal would not be sparse in a DFT
basis. As we can see in Figure 16, the minimum `2-norm coefficient vector is not sparse.

Ideally, we would like to find the coefficient vector with the smallest number of nonzeros
that corresponds to the signal. More precisely, our aim is to solve

minimize ||c̃||0 (39)

subject to x = D c̃ (40)

Unfortunately, this optimization problem is computationally intractable. Intuitively, we
cannot do much better than try out all the possibilities. However there are tractable methods
that are able to produce sparse coefficients in practice. They are divided in two main classes.

17



Coefficients Signal

Figure 15: A signal that is sparse in an overcomplete dictionary of sinusoids (left) and its corre-
sponding coefficients (right).

• Greedy methods which select atoms one by one.

• Methods based on solving a related convex program, usually `1-norm minimization.

In general, the performance of these methods deteriorates for dictionaries with more cor-
related atoms. This is not surprising because correlations tangle the contributions of the
different atoms making more difficult to obtain a sparse solution efficiently.

3.1 Greedy methods

Matching pursuit (MP) [4] is a very simple method for obtaining a sparse coefficient vector.
We initialize a residual vector to equal the signal. Then we iteratively choose the atom
that is most correlated with the residual and subtract the component of the residual in that
direction.

Algorithm 3.2 (Matching pursuit). Given a dictionary D ∈ Rn×m (or Cn×m) and a signal
x ∈ Rn (or Cn), we initialize the residual and the approximation by setting,

r(0) := x, (41)

x̂(0) := 0, (42)

I(0) = ∅. (43)

18
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Figure 16: .
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Then for a fixed number of iterations k = 1, 2, . . . , N we compute

φ(k) := arg max
j∈{1,2,...,m}/I(k−1)

∣∣〈r(k−1), φj〉∣∣ , (44)

x̂(k) := x̂(k−1) +
〈
r(k−1), φ(k)

〉
φ(k), (45)

r(k) := r(k−1) −
〈
r(k−1), φ(k)

〉
φ(k), (46)

I(k) := I(k−1) ∪ {j} where j is the index such that φ(k) = φj. (47)

The output is a sparse approximation to the signal x̂(N) and the corresponding coefficient
indices I(N).

If the atoms form an orthonormal basis, MP produces the exact coefficient vector in a number
of iterations that is equal to its cardinality. However, for more correlated dictionaries it might
choose wrong atoms (that may be very correlated with the actual atoms that form the signal),
as shown in Figure 16.

The approximation obtained by MP at every iteration is not necessarily optimal in terms of
`2-norm. Indeed, given a set of atoms

DI(N) :=
[
φ(1) φ(2) · · · φ(N)

]
(48)

where N < m, the coefficients that yield the best `2-norm approximation are equal to the
least-squares estimate

cls := D†I(k)x (49)

=
(
DT
I(N)DI(N)

)−1
DT
I(N)x. (50)

In contrast, MP computes

(cMP)k =

〈
φ(k), x−

k−1∑
j=1

(cMP)j φ
(j)

〉
. (51)

Setting the coefficients to equal (49) ensures that the residual and the approximation are
orthogonal. This is the strategy followed by orthogonal matching pursuit (OMP) [5].

Algorithm 3.3 (Orthogonal matching pursuit). Given a dictionary D ∈ Rn×m (or Cn×m)
and a signal x ∈ Rn (or Cn), we initialize the residual and the approximation by setting,

r(0) := x, (52)

I(0) = ∅. (53)
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c1

c2
Min. `1-norm solution

Min. `2-norm solution

Dc = x

Figure 17: The minimum `1-norm solution is sparser than the minimum `2-norm solution because
of the geometry of the `1-norm and `2-norm balls.

Then for a fixed number of iterations k = 1, 2, . . . , N we compute

φ(k) := arg max
j∈{1,2,...,m}/I(k−1)

∣∣〈r(k−1), φj〉∣∣ , (54)

I(k) := I(k−1) ∪ {j} where j is the index such that φ(k) = φj, (55)

DI(k) :=
[
φ(1) φ(2) · · · φ(k)

]
, (56)

ĉ(k) := D†I(k)x, (57)

x̂(k) := DI(k) ĉ
(k), (58)

r(k) := x− x̂(k). (59)

The output is a sparse approximation to the signal x̂(N) and the corresponding coefficient
indices I(N).

OMP produces better approximations to the signal than MP, but it may still choose the
wrong atoms if the dictionary is highly correlated, as is the case in Figure 16.

3.2 `1-norm minimization

As shown in Figure 16 minimizing the `2 norm of the coefficient vector does not tend to yield
a sparse solution. However, minimizing the `1 norm, i.e. solving the problem

minimize ||c̃||1 (60)

subject to x = D c̃ (61)

often does. This approach is known as basis pursuit [2] in the literature. As we have seen in
previous lectures, the optimization problem is convex and can be recast as a linear program.
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It is therefore computationally tractable although significantly more computationally costly
than greedy methods such as MP or OMP. `1-norm minimization achieves better results than
these methods in some cases, see for instance Figure 16, but it may also fail to find sparse
solutions in highly correlated dictionaries.

Figure 17 provides some geometric intuition as to why minimizing the `1 norm is better than
minimizing the `2 norm when we aim to obtain sparse solutions under linear constraints.
The `1-norm ball is more concentrated around the axes than the `2-norm ball. It is therefore
more likely for the line representing the constraint x = Dc to be tangent to the ball on
an axis, where the solution has cardinality one instead of two. As a result, the minimum
`1-norm solution is sparser than the minimum `2-norm solution. This intuition generalizes
to higher dimensions.

4 Denoising

4.1 The denoising problem

The aim of denoising is to extract a signal from data that is corrupted by uninformative
perturbations, which we call noise. We will focus on the additive noise model

data = signal + noise, (62)

y = x+ z. (63)

In order to achieve denoising it is necessary to have some prior knowledge about the structure
of the signal and the structure of the noise. As an example, in Figure 18, an electrocardiogram
recording is corrupted by high-frequency perturbations. In the frequency domain, we can
see a small peak at 60 Hz due to noise coming from the power grid. To eliminate this noise
we enforce the prior that the signal of interest is essentially low pass by filtering out the high
end of the spectrum.

4.2 Thresholding

Dictionaries and transforms such as the DFT, STFT and the wavelet transform allow to
obtain sparse representations of images, music, speech and other signals. These dictionaries
exploit structure that is expected to be present in the signal but not in the noise. As a result
the noise component in the data will not have a sparse representation most of the time; it
is incoherent with the dictionary atoms. This can be exploited to denoise the signal via
thresholding.

Definition 4.1 (Hard thresholding). Let x ∈ Rn. The hard-thresholding operator Hη :
Rn → Rn sets to zero any entries in x with magnitude smaller than a predefined real-valued
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Spectrum

Denoised
signal

Figure 18: Electrocardiogram recording denoised via low-pass filtering.

threshold η > 0,

Hη (x)i :=

{
xi if |xi| > η,

0 otherwise.
(64)

The idea is very simple. We first map the signal to a domain where it is sparse, but the
noise is dense. Then we discard all the coefficients below a certain threshold, as illustrated
in Figure 19. In particular, if the signal is sparse in a basis, we threshold the coefficients
B−1y,

ĉ = Hη

(
B−1y

)
(65)

= Hη

(
c+B−1z

)
, (66)

x̂ = Bĉ. (67)

For the method to work B−1z must not be sparse. We can actually prove that this is the
case if the basis is orthonormal and the noise is iid Gaussian.

Lemma 4.2 (Thresholding Gaussian noise). If z is an n-dimensional iid Gaussian with zero
mean and variance σ2, then for any orthogonal matrix U ∈ Rn UT z is iid Gaussian with
zero mean and variance σ2.
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Figure 19: Denoising via hard thresholding.

Proof. By elementary properties of Gaussian random vectors, UT z is Gaussian with zero
mean and covariance matrix

Σ = UT
(
σ2 I
)
U = σ2UTU = σ2 I . (68)

Figures 20 and 21 show the results of applying this denoising method to the signals in
Figures 1 and 13. Both signals are corrupted by additive Gaussian noise. In both cases,
exploiting the sparse decomposition allows us to denoise the data very effectively.

Thresholding can also be applied in conjunction with a sparse analysis model. If we suspect
that the inner products between a signal x and the atoms in a dictionary D are mostly zero
then we can threshold DTy to denoise the coefficients,

ĉ = Hη

(
DTy

)
(69)

= Hη

(
DTx+DT z

)
, (70)

(71)

This method will be effective if DT z is dense (recall that z denotes the noise component).
Recovering an approximation to the signal from the thresholded vector Hη

(
DTy

)
requires

applying a left inverse L that might introduce some distortion,

x̂ = Lĉ, LDT = I . (72)

An alternative approach is to enforce the analysis model within an optimization problem, as
we explain in Section ??. Thresholding STFT coefficients is a popular denoising technique
in speech processing. Figures 24 and ?? show an example with real data.
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Figure 20: Denoising via hard thresholding in the DCT basis.
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Figure 21: Denoising via hard thresholding in a biorthogonal wavelet basis.
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Time thresholding

Figure 22: Time thresholding applied to the noisy data shown in Figure 6. The result sounds
terrible because the thresholding eliminates parts of the speech.

4.3 Block thresholding

When we apply transforms that capture localized details of signals, such as the wavelet
transform or the STFT, sparse representations tend to be highly structured. For example,
nonzero wavelet coefficients are often clustered around edges. This is apparent in Figure 13.
The reason is that several localized atoms are needed to reproduce sharp variations, whereas
a small number of coarse-scale atoms suffice to represent smooth areas of the image.

The assumption that the coefficients of a signal are grouped together is called group sparsity.
Thresholding-based denoising of group-sparse signals should take into account this structure.
It is probably a good idea to threshold an isolated coefficient that is not too large, but a sim-
ilar coefficient that lies near large nonzero coefficients is likely to contain useful information
and should not be discarded.

Block thresholding exploits group sparsity by thresholding the `2 norm of groups of co-
efficients. The coefficients are partitioned into blocks I1, I2, . . . , Ik. The blocks are then
thresholded one by one.

Bη (x)i :=

{
xi if i ∈ Ij such that

∣∣∣∣xIj ∣∣∣∣2 > η,

0 otherwise.
(73)

4.4 Speech denoising

We use a real speech denoising example to compare the effect of thresholding in different
domains and of applying block thresholding. The recording shown in Figures 6 and 7 is a
short snippet from the movie Apocalypse Now where one of the character talks over the noise
of a helicopter. We denoise the data using the following methods (click on the links to hear
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Frequency thresholding

Figure 23: Frequency thresholding applied to the noisy data shown in Figure 6. The result is
very low pitch because the thresholding eliminates the high frequencies of both the speech and the
noise.

the result):

• Time thresholding: The result, which is plotted in Figure 22, sounds terrible because
the thresholding eliminates parts of the speech.

• Frequency thresholding: The result has very low pitch because the thresholding elim-
inates the high frequencies of both the speech and the noise. The spectrum is shown
in Figure 22 before and after thresholding.

• STFT thresholding: The result is significantly better but isolated STFT coefficients
that are not discarded produce musical noise artifacts. The corresponding spectrogram
is shown in Figure 24.

• STFT block thresholding: The result does not suffer from musical noise and retains
some of the high-pitch speech. The corresponding spectrogram is shown in Figure 24.

The results are compared visually for a small time segment of the data in Figure 25.

4.5 Synthesis model

A discussed previously, overcomplete dictionaries are not invertible. This means that we
cannot apply a linear transform to the noisy signal and threshold in order to exploit the
synthesis model. However, we can apply the methods we studied in Section 3 for estimating
synthesis coefficients in the noiseless case. In particular, we can adapt the approach based
on `1-norm minimization by eliminating the equality constraint in Problem ?? and adding a
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STFT
thresholding

STFT block
thresholding

Figure 24: Spectrograms of the noisy signal (above) compared to the estimates obtained by simple
thresholding (center) and block thresholding (bottom). The result of simple thresholding contains
musical noise caused by particularly large STFT coefficients caused by the noise that were not
thresholded. The result of block thresholding does not suffer from these artifacts.
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Figure 25: Comparison of the original noisy data (blue) with the denoised signal for the data
shown in Figure 6. We compare frequency thresholding (above) and thresholding (center) and block
thresholding (below) of STFT coefficients.
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Figure 26: A signal consisting of a superposition of spikes and sinusoids.

data-fidelity term to the cost function. This is known as basis-pursuit denoising [2]. Thus,
we estimate the coefficients by solving

ĉ = arg min
x̃∈Rm

||y −Dc̃||22 + λ ||c̃||1 (74)

x̂ = Dĉ, (75)

where λ > 0 is a regularization parameter that determines the tradeoff between the term
that promotes sparsity and the term that promotes data fidelity.

The signal in Figure 26 is not sparse either in a basis of spiky atoms or sinusoidal atoms.
However, it is sparse in a dictionary that contains both sinusoids and spikes,

x = Dc =
[
I F

] [a
b

]
= a+ Fb, (76)

where I ∈ Rn×n is the identity matrix and F ∈ Rn×n is a DCT matrix. Figure 27 shows the
result of applying `1-norm regularization to denoise a noisy version of the signal.

4.6 Analysis model

In Section 4.2 we explained how to apply thresholding to the coefficients of a noisy signal
in an overcomplete dictionary. To retrieve an approximation of the signal we were forced to
apply a left inverse matrix that could distort the result. A more principled way to enforce a
sparse analysis model while denoising is to solve the `1-norm regularized problem

x̂ = arg min
x̃∈Rm

||y − x̃||22 + λ
∣∣∣∣AT x̃∣∣∣∣

1
, (77)

which can be interpreted as a tractable relaxation of the problem

minimize
∣∣∣∣DT x̃

∣∣∣∣
0

(78)

subject to y ≈ x̃. (79)
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Figure 27: Denoising via `1-norm-regularized least squares.

Although this problem is very similar to the `1-norm regularized synthesis formulation (74)
it is significantly more challenging to solve.

In image processing, an extremely popular analysis operator is the finite-differences operator.
The reason is that images are often well approximated as piecewise constant, which means
that they have sparse gradients. We define the total variation of an image Im as the `1-norm
of the horizontal and vertical components of its gradient

TV (Im) := ||∇x Im||1 + ||∇y Im||1 . (80)

If the image is corrupted by noise that is not piecewise constant, we can enforce the prior that
the gradient is sparse by penalizing the total variation of the estimate. This is equivalent
to applying `1-norm regularization with an analysis operator that computes the discretized
gradient of the image (i.e. a finite-differences operator),

Îm = arg min
Ĩm∈Rn×n

∣∣∣∣∣∣Y − Ĩm
∣∣∣∣∣∣2
F

+ λTV
(

Ĩm
)
. (81)

Figures 29, 30 and ?? display the results of applying total-variation denoising to a one-
dimensional piecewise constant signal and to a real image. Small values of the regularization
parameter do not denoise well, whereas large values produce cartoonish estimates. Medium
values however allow to denoise quite effectively. We refer the interested reader to [1, 6] for
more details on total-variation regularization.

References

The book A wavelet tour of signal processing by Mallat [3] is a great reference for the topics
discussed in these notes. Numerical experiments by Gabriel Peyré illustrating many of the
ideas that we have discussed are available here.
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Signal Data

Figure 28: One-dimensional signal (left) and the corresponding noisy data (right).

Small λ Medium λ Large λ

Figure 29: Total-variation denoising applied to the data in Figure 28 for different values of the
regularization parameter.
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Small λ Medium λ Large λ

Figure 30: Total-variation denoising applied to the image in Figure 21 for different values of the
regularization parameter.

Original Noisy Estimate

Figure 31: Total-variation denoising applied to the image in Figure 21 for different values of the
regularization parameter.
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A Proofs

A.1 Proof of Lemma 3.1

Consider the SVD of D = USV ∗. The columns of V ∈ Rm×n are an orthonormal basis for
the row space of D row (D). Let us decompose any coefficient vector c′ such that x = Dc′ as

c′ = V b+ Prow(D)⊥ (c′) (82)

where b is an n-dimensional vector. If x = Dc′, then

S−1UTx = V ∗c′ (83)

= V ∗
(
V b+ Prow(D)⊥ (c′)

)
(84)

= b, (85)

so b has the same value for any c′ such that x = Dc′. We can decompose the norm of c′ in
the following way by Pythagoras’s Theorem,

||c′||22 =
∣∣∣∣Prow(D) (c′)

∣∣∣∣2
2

+
∣∣∣∣∣∣Prow(D)⊥ (c′)

∣∣∣∣∣∣2
2

(86)

= ||b||22 + Prow(D)⊥ (c′) . (87)

Any solution such that Prow(D)⊥ (c′) 6= 0 will have norm greater than ||b||22 so the minimum
norm solution is

V b = V S−1UTx (88)

DT
(
DDT

)−1
x. (89)
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Random projections

1 Introduction

Random projections are a useful tool in the analysis and processing of high-dimensional
data. We will analyze two applications that use random projections to compress information
embedded in high-dimensional spaces: dimensionality reduction and compressed sensing.

2 Dimensionality reduction

The goal of dimensionality-reduction techniques is to project high-dimensional data onto a
lower-dimensional space while preserving as much information as possible. In these notes
we will denote the dimension of the high-dimensional space by n and the dimension of the
low-dimensional subspace by m. These methods are a basic tool in data analysis; some
applications include visualization (especially if we project onto R2 or R3), denoising and
decreasing the computational cost of processing the data. Indeed, the complexity of many
algorithms depends directly on the ambient dimension and in big-data regimes applying
even very simple machine-learning algorithms such as nearest-neighbour classification or
least-squares regression may have a huge computational cost.

We will focus on dimensionality reduction via linear projections.

Definition 2.1 (Linear projection). The linear projection of x ∈ Rn onto a subspace S ⊆ Rn

is the point of S that is closest to x, i.e. the solution to the optimization problem

minimize ||x− u||2 (1)

subject to u ∈ S. (2)

The following simple lemma explains how to compute a projection using an orthonormal
basis of the subspace that we want to project onto. The proof is in Section A.1 of the
appendix.

Lemma 2.2. Let U be a matrix whose columns are an orthonormal basis of a subspace
S ⊆ Rn.

PS (x) = UUTx. (3)



Once we fix a projection and a corresponding matrix U the lower-dimensional represen-
tation of a vector x ∈ Rn is UTx ∈ Rm, so the dimensionality is reduced from n to m.
An interesting problem is how to choose the low-dimensional subspace parametrized by U .
The following sections describe two popular alternatives: principal component analysis and
random projections.

2.1 Principal component analysis

Principal component analysis (PCA) is an adaptive dimensionality-reduction technique in
which we first determine the directions of maximum variation in a dataset and then project
onto them. PCA is based on the singular-value decomposition (SVD). The proof of the
following fundamental result can be found in any graduate linear algebra textbook.

Theorem 2.3. Without loss of generality let m ≤ n. Every rank r real matrix A ∈ Rm×n

has a unique singular-value decomposition of the form (SVD)

A =
[
u1 u2 · · · um

] 
σ1 0 · · · 0
0 σ2 · · · 0

· · ·
0 0 · · · σm



vT1
vT2
· · ·
vTm

 (4)

= USV T , (5)

where the singular values σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 are nonnegative real numbers, the matrix
U ∈ Rm×m containing the left singular vectors is orthogonal, and the matrix V ∈ Rm×n

containing the right singular vectors is a submatrix of an orthogonal matrix (i.e. its columns
form an orthonormal set).

Algorithm 2.4 (Principal component analysis). Given k data vectors x̃1, x̃2, . . . , x̃k ∈ Rn,
we apply the following steps.

1. Center the data,

xi = x̃i −
1

k

k∑
i=1

x̃i, 1 ≤ i ≤ n. (6)

2. Group the centered data in a data matrix X ∈ Rn×k

X =
[
x1 x2 · · · xk

]
. (7)

3. Compute the SVD of X and extract the left singular vectors corresponding to the m
largest singular values. These are the first m principal components.
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Figure 1: PCA of a dataset with n = 100 2D vectors with different configurations. The two
first singular values reflect how much energy is preserved by projecting onto the two first principal
components.

Once the data are centered, the energy of their projection onto different directions in the
ambient space reflects the variation of the dataset along those directions. PCA selects the
directions that maximize the `2 norm of the projection and are mutually orthogonal. The
span of the first m principal components is the subspace the best approximates the data in
terms of `2-norm error, as established by the following theorem proved in Section A.2 of the
appendix.

Theorem 2.5. For any matrix X ∈ Rn×k with left singular vectors u1, u2, . . . , un corre-
sponding to the nonzero singular values σ1 ≥ σ2 ≥ . . . ≥ σn,

k∑
i=1

∣∣∣∣Pspan(u1,u2,...,un) xi
∣∣∣∣2

2
≥

k∑
i=1

||PS xi||22 , (8)

for any subspace S of dimension m ≤ min {n, k}.

Figure 1 illustrates PCA in 2D. Note how the singular values are proportional to the energy
that lies in the direction of the corresponding principal component.

Figure 2 illustrates the importance of centering before applying PCA. Theorem 2.5 still holds
if the data are not centered. However, the norm of the projection onto a certain direction
no longer reflects the variation of the data. In fact, if the data are concentrated around a
point that is far from the origin, the first principal component will tend be aligned in that
direction. This makes sense as projecting onto that direction captures more energy. As a
result, the principal components do not capture the directions of maximum variation within
the cloud of data.
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Figure 2: PCA applied to n = 100 2D data points. On the left the data are not centered. As a
result the dominant principal component u1 lies in the direction of the mean of the data and PCA
does not reflect the actual structure. Once we center, u1 becomes aligned with the direction of
maximal variation.

The file seeds dataset.txt contains different geometric attributes (area, perimeter, compact-
ness, length of kernel, width of kernel, asymmetry coefficient and length of kernel groove) of
seeds belonging to three different varieties of wheat: Kama, Rosa and Canadian1. Figure 3
shows the projection of the data onto the first two and the last two principal components.
The structure of the data is much better conserved in the first case, which allows to visualize
the difference between the three seeds very clearly. Note however that the first principal
components only guarantee that the energy in the projection will be preserved, not that the
projection will be good for tasks such as classification.

2.2 Random projections

To apply PCA we need to process all of the data points beforehand in order to compute
the projection. This may be too computationally costly if the dataset is very large or not
possible at all if the aim is to project a stream of data in real time. For such cases we need a
non-adaptive alternative to PCA that chooses the projection before actually seeing the data.

A simple method that tends to work well is to project onto a random subspace. In particular,
if the data points are x1, x2, . . . ∈ Rn, we can obtain a random projection by multiplying the

1The data can be found at https://archive.ics.uci.edu/ml/datasets/seeds
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First two PCs Last two PCs

Figure 3: Projection of 7-dimensional vectors describing different wheat seeds onto the first two
(left) and the last two (right) principal components of the dataset. Each color represents a variety
of wheat.

Figure 4: Approximate projection of 7-dimensional vectors describing different wheat seeds onto
two random directions. Each color represents a variety of wheat.
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data with a random matrix A ∈ Rm×n to obtain Ax1, Ax2, . . . ∈ Rm. Strictly speaking, this is
a linear projection only if A is a projection matrix with orthonormal rows (UT in Lemma 2.2).
However, in many cases the rows of random matrices are approximately orthogonal and
consequently this procedure yields an approximate projection.

Figure 4 shows the result of applying such an approximate projection to the same data used
in Figure 3 onto two random directions by multiplying the data with a 2×7 random Gaussian
matrix. The structure of the data seems to be as well conserved by the projection as in the
case of PCA.

Dimensionality-reduction techniques are useful if they preserve the information that we are
interested in. In many cases, we would like the projection to conserve the distances between
the different data points. This allows to apply algorithms such as nearest neighbors in the
lower-dimensional space. The following lemma guarantees that random projections do not
distort the distances between points with a certain probability. The result is striking because
the lower bound on m– the dimension of the approximate projection– does not depend on
n– the ambient dimension of the data– and its dependence on the number of points in the
dataset is only logarithmic. Although we prove the result for a matrix with Gaussian entries,
the result can be extended to other matrices that can be applied more efficiently [1].

Lemma 2.6 (Johnson-Lindenstrauss lemma). Let S := {x1, . . . , xk} in Rn. There exists a
random function f such that for any pair of points xi, xj

(1− ε) ||xi − xj||22 ≤ ||f (xi)− f (xj)||22 ≤ (1 + ε) ||xi − xj||22 , (9)

with probability at least 1
k

as long as

m ≥ 8 log (k)

ε2
. (10)

The random function is of the form

f (x) :=
1√
m
Ax (11)

and A is a matrix with iid Gaussian entries with zero mean and unit variance.

Proof. To establish the result we use the following proposition, proved in Section A.4 of
the appendix, which establishes that the norm of a fixed vector is preserved by the random
projection with high probability.

Proposition 2.7. Let f be defined as in Lemma 2.6. For any fixed vector v ∈ Rn

P
(
(1− ε) ||v||22 ≤ ||f (v)||22 ≤ (1 + ε) ||v||22

)
≥ 1− 2 exp

(
−mε

2

8

)
. (12)
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We define the events

Eij =
{

(1− ε) ||xi − xj||22 ≤ ||f (xi − xj)||22 ≤ (1 + ε) ||xi − xj||22
}
, i 6= j, 1 ≤ i, j ≤ k.

By Proposition 2.7 applied to v := xi − xj and condition (10)

P
(
Ecij
)
≤ 2

k2
. (13)

There are
(
k
2

)
different pairs of points. The union bound yields

P

(⋂
i,j

Eij

)
= 1− P

(⋃
i,j

Ecij

)
(14)

≥ 1−
∑
i,j

P
(
Ecij
)

(15)

≥ 1−
(
k

2

)
2

k2
(16)

≥ 1

k
(17)

where the last inequality follows from condition (10). This completes the proof.

3 Compressed sensing

Compressed sensing allows to recover sparse signals from randomized measurements by min-
imizing their `1 norm. In this section we first illustrate the application of these ideas to MRI
and then provide a theoretical analysis.

3.1 Compressed sensing in MRI

Magnetic resonance imaging (MRI) is a popular medical imaging technique used in radiology.
MRI data can be modeled as samples from the 2D or 3D Fourier transform of the object
that is being imaged, for example a slice of a human brain. An estimate of the corresponding
image can be obtained by computing the inverse Fourier transform of the data, as shown in
Figure 5.

An important challenge in MRI is to reduce measurement time, which can be achieved by
undersampling the data. Consider a 1D version of the problem, where the signal is an n-
dimensional vector x and the DFT matrix is denoted by F . We model the undersampled
data y as

y = FΩ x, (18)
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K-space (magnitude) K-space (log. of magnitude)

Figure 5: Image of a brain obtained by MRI, along with the magnitude of its 2D-Fourier or
k-space representation and the logarithm of this magnitude.

where FΩ is a submatrix of F obtained by choosing m rows indexed by the set Ω. Since
m < n the system is underdetermined and has infinite solutions.

A possible estimate for the image is the solution x`2 with minimum `2 norm satisfying
y = FΩ x`2 . By Lemma 3.1 in Lecture Notes 4 this estimate equals

x`2 := F T
Ω

(
FΩF

T
Ω

)−1
x, (19)

where x is the original signal. Equivalently, x`2 is the projection of x onto the row space of
FΩ. This projection provides some insight as to the effect of different sampling strategies.
Figure 6 shows x`2 for two undersampling patterns in 2D: regular undersampling in one
direction and random undersampling. The corresponding artifacts are very different. Regular
undersampling produces coherent aliasing– the reconstruction is a superposition of shifted
copies of the image– whereas random undersampling produces aliasing that essentially looks
like noise.

MRI signals are sparse in different transform domains. For example, the brain image in
Figure 5 is sparse in the wavelet domain. This is good news if we are trying to recover
an image from undersampled data. We cannot estimate more than m parameters from m
measurements, so in principle it is hopeless to try to estimate an n-dimensional signal from
data given by 18. However, if the signal is sparse in some domain and can be parametrized
by s coefficients for instance, where s < m, then recovery may be possible.

As we discussed in the previous lecture, `1-norm minimization is an effective tool for obtaining
sparse solutions to underdetermined linear equations. Figure 7 shows the result of applying
`1-norm minimization to recover an image from the data corresponding to the images shown

8



Undersampling pattern Min. `2-norm estimate

Regular

Random

Figure 6: Two different sampling strategies in 2D k space: regular undersampling in one direction
(top) and random undersampling (bottom). The original data is the same as in Figure 5. On the
right we see the corresponding minimum-`2-norm estimate for each undersampling pattern.

Regular Random

Figure 7: Minimum-`1-norm for the two undersampling patterns shown in Figure 6.
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in Figure 6. Since the image is assumed to be sparse in the wavelet domain, we solve

minimize ||c̃||1 (20)

subject to y = FΩ Wc̃ (21)

where W is the matrix corresponding to an orthonormal wavelet transform. For regular
undersampling, then the estimate is essentially the same as the minimum-`2-norm estimate.
This is not surprising, since the minimum-`2-norm estimate is also sparse in the wavelet
domain because it is equal to a superposition of two shifted copies of the image. In con-
trast, `1-norm minimization recovers the original image perfectly when coupled with random
projections. Intuitively, `1-norm minimization cleans up the noisy aliasing caused by ran-
dom undersampling. In the next section we provide a theoretical characterization of this
phenomenon.

3.2 Exact recovery

In our theoretical analysis we will focus on one-dimensional sparse signals, but most of the
ideas extend to the case where the signal is multidimensional or sparse in a transform domain
instead. The measurement model is given by

y = Ax (22)

where x ∈ Rn is the sparse signal which has s nonzeros, y ∈ Rm the data and A ∈ Rm×n

the random matrix that models the measurement process. In MRI the rows of A are chosen
at random from a DFT matrix. Here we will mostly assume that the entries are sampled
independently at random from a Gaussian distribution. This model is not of great practical
interest because Gaussian measurements do not arise in applications and multiplication with
dense Gaussian matrices is computationally expensive. However, the Gaussian assumption
makes the proofs significantly simpler and allows to illustrate ideas that are readily applicable
to more useful cases such as random Fourier measurements.

Clearly, without any assumptions on x the underdetermined linear system (22) cannot be
solved to retrieve x if m < n. It is necessary to use the sparsity assumption. If s < n and
the sparsity pattern T (the indices of the entries of x that are nonzero) is known, then the
problem is actually overdetermined. Indeed, let xT be the subvector of nonzero entries of x
and AT ∈ Rm×s the submatrix of A consisting of the columns indexed by T . We have

y = Ax = ATxT . (23)

As long as the columns of AT are independent and m ≥ s we can easily find the original vector
by applying any left inverse of AT to the data. In particular, choosing the pseudoinverse,

A†y =
(
ATTAT

)−1
ATTy = x. (24)

10



Signal Spectrum (magnitude) Min. `1-norm estimate

Data

Figure 8: Minimizing the `1 norm of the estimate (right) allows to estimate the original signal
(left) exactly from a small number of random samples of its spectrum (center).

The bad news is that we don’t know T ! Trying every possible submatrix of s columns is
not feasible computationally for even very small values of s. Instead, we apply `1 norm
minimization to favor sparse estimates. We recover x by solving the convex program

minimize ||x̃||1 (25)

subject to y = Ax̃. (26)

Figure 8 shows an example where this procedure allows to reconstruct a sparse signal from
random Fourier data. The following theorem establishes that `1-norm minimization achieves
exact recovery of x with high probability as long as the number of measurements m is
proportional to the sparsity of the signal s up to logarithmic factors. The result is remarkable.
Random measurements allow to sample the signal at a rate that is essentially independent
of the ambient dimension and only depends on how compressible it is.

Theorem 3.1. Assume there exists a signal x ∈ Rn with s nonzeros such that

Ax = y (27)

for a random matrix A ∈ Rm×n with iid Gaussian entries with zero mean and unit variance.
The solution to Problem (106) is equal to x with probability at least 1 − 1

n
as long as the

number of measurements satisfies

m ≥ Cs log n, (28)

for a fixed numerical constant C.

An important generalization of this result establishes that A can be formed by taking ran-
dom rows from any unitary matrix U ∈ Cn×n (unitary is a fancy word for a matrix with
orthonormal columns). In that case, the number of measurements that are necessary for
exact recovery also depends on the coherence µ of the measurements, defined as

µ (U) :=
√
n max

1≤i≤n,1≤j≤m
|Uij| . (29)

11



Intuitively the coherence measures how localized or spiky the rows of U are. If the rows are
too localized, they might miss entries in the sparse vector. Recall that we don’t know the
support T beforehand, otherwise we would definitely use measurements that are localized on
T ! Exact recovery via `1-norm minimization is achieved with high probability for this kind
of measurements if

m ≥ Cµ (U) s log n. (30)

We refer to [6] for a proof of this result (see also [4]). In the case of the DFT µ = 1 since
the rows are complex exponentials divided by

√
n.

To prove Theorem 3.1 we use the following result, which establishes that the existence of a
certain vector implies exact recovery. We defer the proof to Section A.6 in the appendix.

Lemma 3.2. Let T be the indices of the nonzero entries in x. If AT is full rank and there
exists a vector v ∈ Rm such that(

ATv
)
i

= sign (xi) if xi 6= 0 (31)∣∣∣∣(ATv)
i

∣∣∣∣
∞ < 1 if xi = 0 (32)

then x is the unique solution to Problem (106).

By this lemma, all we need to do to establish exact recovery is show that for any subset
T with cardinality s there exists a vector v such that q := ATv is equal to the sign of x
on T and has magnitude strictly bounded by one on T c. v is commonly known as a dual
certificate in the literature. The reason is that it certifies optimality and is feasible for the
dual problem of Problem (106), derived in Section A.7 of the appendix.

Lemma 3.3 (Dual problem). The dual problem to Problem (106) is

maximize yT ṽ (33)

subject to
∣∣∣∣AT ṽ∣∣∣∣∞ ≤ 1, (34)

where the dual variable ṽ has dimension n.

The dual certificate is feasible for this problem and achieves a cost-function value of ||x||1,
since

yTv = xTATv (35)

=
∑
i∈T

xi sign (xi) (36)

= ||x||1 . (37)

By weak duality (Corollary 4.8 in Lecture Notes 2) this implies that x is a solution to the
primal problem (note that this does not prove that it is the unique solution but Lemma 3.2
does). In the next section we will construct the dual certificate that establishes Theorem 3.1.

12



Figure 9: Subgradient q`2 := AT v`2 (blue) corresponding to the minimum-`2-norm dual certificate
v`2 for a compressed-sensing problem with random Fourier measurements. q`2 interpolates the sign
of the signal (red) on its support.

3.3 Dual certificate

In this section we analyze a dual-certificate candidate and show that it satisfies the conditions
in Lemma 3.2 and hence proves Theorem 3.1 with high probability. In particular, we set v`2
to be the solution to the following minimization problem

minimize ||ṽ||2 (38)

subject to ATT ṽ = sign (xT ) . (39)

In words, v`2 is the minimum-`2-norm vector such that q`2 := ATv`2 interpolates the sign of
x on T . Ideally we would like to minimize the `∞ norm of the subgradient ATv on T c instead
of its `2 norm, but the former problem does not have a closed-form solution. From Lemma
3.1 in Lecture Notes 4 the solution to Problem (38) is

v`2 = AT
(
ATTAT

)−1
sign (xT ) (40)

as long as AT is full rank. Having an explicit expression for the solution allows us to analyze
the construction for any arbitrary support and sign pattern. We will do this under the
assumption that the entries of the measurement matrix A are Gaussian, but this technique
has also been applied to Fourier [7] and other random measurements [4] (see also [6] for
a more recent proof technique based on approximate dual certificates that provides better
guarantees). Figure 9 shows q`2 for the case of random Fourier measurements.

To characterize v`2 first we need to establish that AT is full rank, since otherwise ATTAT would
not have an inverse. The following proposition shows that the random matrix preserves the
norm of sparse vectors supported on a fixed set T with a certain probability. We defer the
proof to Section 3.4.

13



Proposition 3.4. Fix a set T ⊂ {1, 2, . . . , n} such that |T | ≤ s. For any unit-norm vector
x with support T

1− ε ≤ 1√
m
||Ax||2 ≤ 1 + ε (41)

with probability at least

1− 2

(
12

ε

)s
exp

(
−mε

2

32

)
. (42)

Setting ε = 1/2 implies that the minimum singular value of AT is lower bounded,

σmin (AT ) ≥
√
m

2
, (43)

with probability at least 1 − exp
(
−Cm

s

)
for a certain constant C. This implies ATTAT is

invertible and consequently that condition (31) is satisfied,

(q`2)T = ATTAT
(
ATTAT

)−1
sign (xT ) (44)

= sign (xT ) . (45)

All is left is to bound q`2 on T c. We define

w := AT
(
ATTAT

)−1
sign (xT ) . (46)

Since the entries of A are all independent, and w only depends on AT , it is independent of
any column of AT c . This means that for each i ∈ T c

(q`2)i = ATi AT
(
ATTAT

)−1
sign (xT ) (47)

= ATi w (48)

where Ai and w are independent.

By (43), we can bound the norm of w

||w||2 ≤
||sign (xT )||2
σmin (AT )

≤ 2

√
s

m
(49)

with probability 1− exp
(
−Cm

s

)
.

Conditioned on w, ATi w is Gaussian with mean 0 and variance ||w||22. We have

P
(∣∣ATi w∣∣ ≥ 1|w = w′

)
≤ P

(
|u| > 1

||w′||2

)
(50)

≤ 2 exp

(
− 1

2 ||w′||22

)
, (51)

where u has mean 0 and variance 1. We have applied the following deviation bound, proved
in Section A.9 of the appendix.
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Lemma 3.5. For a Gaussian random variable u with zero mean and unit variance and any
t > 0

P (|u| ≥ t) ≤ 2 exp

(
−t

2

2

)
. (52)

Let us define the event

E :=

{
||w||2 ≤ 2

√
s

m

}
. (53)

(51) implies that

P
(∣∣ATi w∣∣ ≥ 1

∣∣E) ≤ 2 exp
(
−m

8s

)
. (54)

As a result,

P
(∣∣ATi w∣∣ ≥ 1

)
≤ P

(∣∣ATi w∣∣ ≥ 1
∣∣E)+ P (Ec) (55)

≤ exp

(
−Cm

s

)
+ 2 exp

(
−m

8s

)
. (56)

By the union bound,

P

(⋃
i∈T c

{∣∣ATi w∣∣ ≥ 1
})
≤ n

(
exp

(
−Cm

s

)
+ 2 exp

(
−m

8s

))
. (57)

We can consequently choose a constant C ′ so that if the number of measurements satisfies

m ≥ C ′s log n (58)

we have exact recovery with probability 1− 1
n
.

3.4 Bounds on singular values of random matrices

In this section we provide the proof of Proposition 3.4, which illustrates a useful method to
bound the action of a linear operator on a set of infinite cardinality. Let XT be the set of
unit-norm vectors x with support T . By Proposition 2.7 we have that for any fixed unit-norm
vector v

(1− ε) ≤ 1

m
||Av||22 ≤ (1 + ε) (59)

with probability 1 − 2 exp
(
−mε2

8

)
. This does not immediately imply the result that we

want: the bounds must hold for all vectors in XT and we cannot just apply the union bound
because the set has infinite cardinality. To overcome this obstacle, we first apply the union
bound on a subset of XT called an ε-net instead.
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Definition 3.6 (Net). An ε-net of a set X is a subset Nε ⊆ X such that for every point
y ∈ X there exists z ∈ Nε for which

||y − z||2 ≤ ε. (60)

Definition 3.7 (Covering number). The covering number N (X , ε) of a set X at scale ε
is the minimal cardinality of an ε-net of X , or equivalently the minimal number of balls of
radius ε with centers in X required to cover X .

The following proposition, proved in Section A.8 of the appendix, provides a bound for the
covering number of the s-dimensional sphere Ss−1.

Proposition 3.8 (Covering number of a sphere). The covering number of the s-dimensional
sphere Ss−1 at scale ε satisfies

N
(
Sk−1, ε

)
≤
(

2 + ε

ε

)s
. (61)

It is not difficult to see that every vector x′ ∈ Rn with support T can be mapped to a vector
x′T ∈ Rs by choosing the entries in T and that ||x′||2 = ||x′T ||2. As a result, Proposition 3.8
provides a bound on the covering number of XT .

Corollary 3.9. If |T | ≤ s, the covering number of XT satisfies

N (XT , ε) ≤
(

3

ε

)s
. (62)

Let ε1 := ε/4 and ε2 := ε/2. Consider an ε1-net Nε1 of XT . We define the event

Eu,ε2 :=

{
(1− ε2) ||u||22 ≤

∣∣∣∣∣∣∣∣1kAu
∣∣∣∣∣∣∣∣2

2

≤ (1 + ε2) ||u||22

}
. (63)

By Proposition 2.7 and the union bound we have

P

 ⋃
u∈Nε1

Ecu,ε2

 ≤ ∑
u∈Nε1

P
(
Ecu,ε2

)
(64)

≤ |Nε1 |P
(
Ecu,ε2

)
(65)

≤ 2

(
12

ε

)s
exp

(
−mε

2

32

)
. (66)

Now, to finish the proof we need to show that the bound on the elements of the net can be
used to bound every other element. Let

σmax (AT )√
m

:= 1 + α (67)
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where σmax (AT ) denotes the largest singular value of AT . For all x′ ∈ XT
1√
m
||Ax′||2 =

1√
m
||ATx′T ||2 (68)

≤ 1 + α. (69)

For any x′ ∈ XT , there is a u ∈ N (X , ε1) such that ||x′ − u||2 ≤ ε/4. This implies

1√
m
||Ax′||2 ≤

1√
m
||Au||2 +

1√
m
||A (x′ − u)||2 (70)

≤ 1 +
ε

2
+

(1 + α) ε

4
. (71)

Since by definition σmax (AT ) is the smallest upper bound for the norm of ||ATx′T ||2 = ||Ax′||2
such that ||x′T ||2 = 1 (which holds because x′ ∈ XT ), we have

1 + α ≤ 1 +
ε

2
+

(1 + α) ε

4
, (72)

so that

α ≤ 3 ε

4− ε
≤ ε. (73)

The lower bound on the singular value follows immediately

1√
m
||Ax||2 ≥

1√
m

(||Au||2 − ||A (x− u)||2) (74)

≥ 1− ε

2
− (1 + α) ε

4
(75)

= 1− ε

2
− (1 + ε) ε

4
(76)

≥ 1− ε. (77)

3.5 Robustness to noise

In the previous sections we have shown that `1-norm minimization allows to recover sparse
signals exactly with high probability in the absence of noise. In this section we consider
recovery from data that is perturbed by noise, as is usually the case in practice. In more
detail, given an s-sparse signal x ∈ Rn we have access to

y = Ax+ z (78)

where A ∈ Rm×n is a random matrix and z ∈ Rm is an additive noise term. A necessary
condition for any recovery method to be stable is that A should preserve the energy of the
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sparse signal; if the signal is in the null space (or almost in the null space) of the measurement
operator then we cannot hope to reconstruct it in the presence of noise. A matrix that
satisfies the restricted isometry property (RIP) preserves the energy of any random vector;
it essentially behaves as an isometry when acting upon these class of vectors.

Definition 3.10 (Restricted isometry property). If a matrix M satisfies the restricted isom-
etry property with constant εs then for any s-sparse vector x

(1− εs) ||x||2 ≤ ||Mx||2 ≤ (1 + εs) ||x||2 . (79)

The RIP guarantees that the problem of recovering sparse vectors from the corresponding
linear measurements is well posed. If M satisfies the RIP for a sparsity level 2s then there
cannot be two sparse vectors x1 and x2 that are very different and yet produce similar
measurements y1 and y2, since

||y2 − y1||2 = M (x2 − x1) (80)

≥ (1− ε2s) ||x2 − x1||2 . (81)

Gaussian matrices satisfy the restricted isometry property with high probability, as estab-
lished in the following theorem. Random Fourier measurements also satisfy the RIP [8, 11].

Theorem 3.11 (Restricted isometry property for Gaussian matrices). Let A ∈ Rm×n be a
random matrix with iid Gaussian entries with zero mean and unit variance. 1√

m
A satisfies

the restricted isometry property with a constant εs with probability 1 − C2

n
as long as the

number of measurements

m ≥ C1s

ε2s
log
(n
s

)
(82)

for two fixed constants C1, C2 > 0.

Proof. By Proposition 3.4 we have that for a fixed support T ,

(1− ε) ||x||2 ≤
1√
m
||Ax||2 ≤ (1 + ε) ||x||2 (83)

for any x with support T with probability at least

1− 2

(
12

ε

)s
exp

(
−mε

2

32

)
. (84)

There are (
n

s

)
≤
(en
s

)s
(85)
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possible supports so by the union bound the result holds with probability at least

1− 2
(en
s

)s(12

ε

)s
exp

(
−mε

2

32

)
= 1− exp

(
log 2 + s+ s log

(n
s

)
+ s log

(
12

ε

)
− mε2

2

)
≤ 1− C2

n
(86)

for some constant C2 as long as m satisfies (82).

The RIP not only establishes that the recovery problem is well posed at least in principle,
it also implies that `1-norm minimization achieves stable recovery in the presence of noise.
Let us assume that we know an upper bound for the `2 norm of the noise in model (78).
We can then relax the equality constraint in Problem (106) to an inequality constraint that
takes into account the noise level.

minimize ||x̃||1 (87)

subject to ||Ax̃− y||2 ≤ σ. (88)

If the RIP constant for a matrix is ε2s <
√

2 − 1 and x is s-sparse the solution x̂ to the
relaxed problem satisfies

||x̂− x||2 ≤ C0 σ (89)

for a certain constant. In fact, even if the original vector x is not sparse the solution will
will satisfy

||x̂− x||2 ≤ C0 ε0 + C1
||x− xs||1√

s
(90)

where xs contains the s entries of x with largest magnitude. We refer to [5] for the proof of
this result.

4 Sampling

In this section we describe an application of compressed sensing to recovering signals that
have a sparse spectrum.

4.1 Nyquist-Shannon sampling theorem

Consider a bandlimited signal g ∈ L2 ([0, 1]), which is bandlimited. Its spectrum is equal to
zero beyond a certain cut-off frequency f ,

g (t) :=

f∑
k=−f

ck exp (i2πkt) . (91)
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Signal Spectrum Samples

Figure 10: Bandlimited signal (left), corresponding spectrum (center) and regular samples (right).

Our aim is to estimate the signal from samples taken at regular intervals g (0), g
(

1
n

)
, g
(

2
n

)
,

. . . , g
(
n−1
n

)
, where the sampling rate is determined by n. Such situations arise when we

need to store an analog signal such as music or speech digitally. Two important questions
are:

1. What sampling rate is necessary to preserve all the information in the signal?

2. How can we reconstruct the original signal from the sample?

Figure 10 shows an example of a bandlimited signal, its spectrum and the corresponding
samples.

In order to simplify notation we define

a−f :f (t)k :=



exp (−i2π (−f) t)

exp (−i2π (−f + 1) t)

· · ·

exp (−i2π (f − 1) t)

exp (−i2πft)


. (92)

We can now easily express g in terms of a−f :f and the vector of Fourier coefficients c,

g (t) :=

f∑
k=−f

ck exp (i2πkt) = a−f :f (t)∗ c. (93)
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For a fixed sampling rate the samples provide a system of n linear equations

F ∗c =



a−f :f (0)∗

a−f :f

(
1
n

)∗
a−f :f

(
2
n

)∗
· · ·

a−f :f

(
n−1
n

)∗


c =



g (0)

g
(

1
n

)
g
(

2
n

)
· · ·

g
(
n−1
n

)


. (94)

Since there are 2f + 1 unknowns we need n ≥ 2f + 1 to guarantee that the linear system
has a unique solution. Setting n = 2f + 1, we can check that the vectors

1√
n
a−f :f (0) ,

1√
n
a−f :f

(
1

n

)
, . . . ,

1√
n
a−f :f

(
n− 1

n

)
(95)

form an orthonormal basis (they actually form a DFT matrix!), so applying the adjoint
matrix allows to invert the system

c =
1

n
FF ∗c =

1

n
F



g (0)

g
(

1
n

)
g
(

2
n

)
· · ·

g
(
n−1
n

)


=

1

n

n∑
j=0

g

(
j

n

)
a−f :f

(
j

n

)
. (96)

In order to interpret this linear inversion in traditional signal processing terms, let us define
the periodized sinc or Dirichlet kernel

Df (t) :=
1

n

f∑
k=−f

e−i2πkt (97)

=
sin (πnt)

n sin (πt)
. (98)

A plot of this function is shown in Figure 11. We can easily express the result of shifting D
by τ in terms of a−f :f

Df (t− τ) =
1

n

f∑
k=−f

e−i2πk(t−τ) (99)

=
1

n
a−f :f (t)∗ a−f :f (τ) . (100)
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Figure 11: Periodized sinc or Dirichlet kernel.

This allows us to establish that obtaining the Fourier coefficients through linear inversion
and then using them to reconstruct the signal is equivalent to interpolation with shifted sinc
functions, as sketched in Figure 12.

g (t) = a−f :f (t)∗ c (101)

=
1

n

n∑
j=0

g

(
j

n

)
a−f :f (t)∗ a−f :f

(
j

n

)
by (96) (102)

=
n∑
j=0

g

(
j

n

)
Df

(
t− j

n

)
. (103)

We conclude that the sampling rate should be twice the cut-off frequency and that recon-
struction can be carried out by interpolating the samples with a sinc function. This is known
as the Nyquist-Shannon sampling theorem.

4.2 Compressive sampling

We now consider the problem of sampling a signal g ∈ L2 ([0, 1]) with a sparse spectrum

g (t) :=
∑
k∈S

ck exp (i2πkt) (104)

and then recovering it from its samples. The signal consists of s frequency components and
has a cut-off frequency of f . According to the Shannon-Nyquist sampling theorem, we need
2f + 1 samples in order to preserve the information in the signal and recover it applying
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Figure 12: Reconstruction via linear inversion is equivalent to interpolation with a sinc function.

sinc interpolation. In contrast, compressed sensing theory implies that recovery via `1-norm
minimization is possible from O (s log (2f + 1)) randomized samples of the form

F ∗Ω c =



�����
a−f :f (0)∗

a−f :f

(
1
n

)∗
������
a−f :f

(
2
n

)∗
· · ·

a−f :f

(
n−1
n

)∗


c =



���g (0)

g
(

1
n

)
���g
(

2
n

)
· · ·

g
(
n−1
n

)


:= yΩ, (105)

where Ω is a random subset of {1, 2, . . . , 2f + 1}. In detail, we can estimate the Fourier
coefficients c by solving

minimize ||c̃||1 (106)

subject to yΩ = F ∗Ωc̃ (107)

and then reconstruct g using (96). If s� 2f + 1 this procedure allows to reduce the number
of measurements significantly with respect to traditional Nyquist sampling. Figure 13 shows
an example which compares the two sampling schemes.
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Signal Spectrum

Linear estimate Compressive sampling

Figure 13: Example showing the samples that are necessary to recover a signal (top left) with
a sparse spectrum (top right). Compressive sampling (bottom right) requires significantly less
samples than traditional Nyquist sampling (bottom left).
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A Proofs

A.1 Proof of Lemma 2.2

x− UUTx is orthogonal to any vector y := Uc ∈ S since

yT (x− UUTx) = cTUTx− cTUTUUTx (108)

= cTUTx− cTUTx (109)

= 0. (110)

By Pythagoras’s theorem this implies

||x− y||22 =
∣∣∣∣x− UUTx+ UUTx− y

∣∣∣∣2
2

(111)

=
∣∣∣∣x− UUTx

∣∣∣∣2
2

+
∣∣∣∣UUTx− y

∣∣∣∣2
2

(112)

which is minimized by y = UUTx.

A.2 Proof of Theorem 2.5

We will need the following lemma, proved in Section A.3.

Lemma A.1. For any matrix X ∈ Rn×k, where k > n, with left singular vectors u1, u2, . . . , un
corresponding to the nonzero singular values σ1 ≥ σ2 ≥ . . . ≥ σn,

σ1 = max
||u||2=1

∣∣∣∣XTu
∣∣∣∣

2
, (113)

u1 = arg max
||u||2=1

∣∣∣∣XTu
∣∣∣∣

2
, (114)

σm = max
||u||2=1

u⊥u1,...,um−1

∣∣∣∣XTu
∣∣∣∣

2
, 2 ≤ m ≤ n, (115)

um = arg max
||u||2=1

u⊥u1,...,um−1

∣∣∣∣XTu
∣∣∣∣

2
, 2 ≤ m ≤ n. (116)

We will prove the result by induction on m. The base case m = 1 follows immediately
from (114). To complete the proof we need to show that if the result is true for m− 1 ≥ 1
(the induction hypothesis) then it also holds for m.

Let S be an arbitrary subspace of dimension m. We choose an orthonormal basis for the
subspace b1, b2, . . . , bm such that bm is orthogonal to u1, u2, . . . , um−1. Note that such a vector
must exist because otherwise S cannot have dimension m.
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By the induction hypothesis,

m−1∑
i=1

∣∣∣∣XTui
∣∣∣∣2

2
=

k∑
i=1

∣∣∣∣Pspan(u1,u2,...,um−1) xi
∣∣∣∣2

2
(117)

≥
k∑
i=1

∣∣∣∣Pspan(b1,b2,...,bm−1) xi
∣∣∣∣2

2
(118)

=
m−1∑
i=1

∣∣∣∣XT bi
∣∣∣∣2

2
. (119)

By (116)

n∑
i=1

∣∣∣∣Pspan(uk) xi
∣∣∣∣2

2
=
∣∣∣∣XTuk

∣∣∣∣2
2

(120)

≥
∣∣∣∣XT bk

∣∣∣∣2
2
. (121)

Combining (119) and (121) we conclude

k∑
i=1

∣∣∣∣Pspan(u1,u2,...,um) xi
∣∣∣∣2

2
=

m∑
i=1

∣∣∣∣XTui
∣∣∣∣2

2
(122)

≥
m∑
i=1

∣∣∣∣XT bi
∣∣∣∣2

2
(123)

≥
k∑
i=1

||PS xi||22 . (124)

A.3 Proof of Lemma A.1

The left singular vectors are an orthonormal basis of Rn, so we can represent any unit-norm
vector hm that is orthogonal to um, . . . , um−1 as

hk =
n∑

i=m

αiui (125)

where

||hm||22 =
n∑

i=m

α2
i = 1. (126)

Note that h1 is just an arbitrary unit-norm vector.
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Now we have

∣∣∣∣XThm
∣∣∣∣2

2
=

n∑
i=1

σi

(
n∑

j=m

αju
T
i uj

)2

(127)

=
n∑

i=m

σiα
2
i because u1, . . . , um is an orthonormal basis (128)

≤ σm

n∑
i=m

α2
i because σm ≥ σm+1 ≥ . . . ≥ σn (129)

= σm by (126). (130)

This establishes (113) and (115). To prove (114) and (116) we just need to show that um
achieves the maximum ∣∣∣∣XTum

∣∣∣∣2
2

=
n∑
i=1

σi
(
uTi um

)2
(131)

= σm. (132)

A.4 Proof of Proposition 2.7

The proof relies on the following concentration bounds for χ2 or chi-square random variables,
proved in Section A.5 of the appendix.

Proposition A.2 (Tail bound for chi-square random variables). Let Z be a χ2 or chi-square
random variable with m degrees of freedom, i.e.

Z =
m∑
i=1

X2
i (133)

where X1, . . . , Xm are independent Gaussian random variables with zero mean and unit vari-
ance. For any ε > 0 we have

P (Z > m (1 + ε)) ≤ exp

(
−mε

2

8

)
, (134)

P (Z < m (1− ε)) ≤ exp

(
−mε

2

2

)
. (135)

Let ai := vTAi where Ai is the ith row of A and hence an n-dimensional random vector with
zero mean and covariance matrix equal to the identity I. ai is a Gaussian random variable
with zero mean and variance ||v||22. This follows from the following well-known lemma (we
omit the proof).
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Lemma A.3 (Linear transformation of a Gaussian vector). Let M ∈ Rm× n. If an
n-dimensional Gaussian vector v has mean µ and covariance matrix Σ, Mv is an m-
dimensional Gaussian vector with mean Mµ and covariance matrix MΣMT .

As a result, we have that

Z :=
||Av||22
||v||22

(136)

=
m∑
i=1

a2
i

||v||22
(137)

is a chi-square random variable with m degrees of freedom. Let us define the events

E1 := {||f (v)||2 > (1 + ε) ||v||2} , (138)

E2 := {||f (v)||2 < (1− ε) ||v||2} . (139)

Inequalities (134) and (135) applied to Z imply

P (E1) = P
(
Z > m (1 + ε)2) (140)

≤ exp

(
−mε

2

8

)
, (141)

P (E2) = P
(
Z < m (1− ε)2) (142)

≤ exp

(
−mε

2

2

)
. (143)

By the union bound

P (E1 ∪ E2) ≤ P (E1) + P (E2) (144)

≤ 2 exp

(
−mε

2

8

)
. (145)

A.5 Proof of Proposition A.2

Proof of (134) The concentration bound is established by applying Markov’s inequality after
exponentiation, as is commonly done to prove Chernoff bounds.

Proposition A.4 (Markov’s inequality). Let X be a nonnegative random variable. For any
positive constant a > 0,

P (X ≥ a) ≤ E (X)

a
. (146)
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Markov’s inequality is proved in Section A.10 below. Let t > 0 be an arbitrary positive
number, we have

P (Z > a) = P (exp (tZ) > exp (at)) (147)

≤ exp (−at) E (exp (tZ)) by Markov’s inequality (148)

≤ exp (−at) E

(
exp

(
m∑
i=1

tX2
i

))
(149)

≤ exp (−at)
m∏
i=1

E
(
exp

(
tX2

i

))
by independence of X1, . . . , Xm. (150)

Some calculus yields

E
(
exp

(
tX2

))
=

1√
2π

∫ ∞
−∞

exp

(
−u

2

2

)
exp

(
tu2
)

du (151)

=
1√
2π

∫ ∞
−∞

exp

(
−(1− 2t)u2

2

)
du (152)

=
1√

2π (1− 2t)

∫ ∞
−∞

exp

(
−v

2

2

)
d v change of variables v = (2− t)u

=
1√

1− 2t
(153)

Combining (150) and (153),

P (Z > a) ≤ exp (−at)
(1− 2t)

m
2

. (154)

Setting

t :=
1

2
− 1

2 (1 + ε)
, (155)

a := m (1 + ε) (156)

we have

P (Z > m (1 + ε)) ≤ (1 + ε)m 2 exp
(
−mε

2

)
(157)

= exp
(
−m

2
(ε− log (1 + ε))

)
. (158)

The function g (x) := x− x2

4
− log (1 + x) is nonnegative between 0 and 1 (the derivative is

nonnegative and g (0) = 0). This implies

P (Z > m (1 + ε)) ≤ exp

(
−mε

2

8

)
. (159)
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Proof of (135)

A very similar argument to the one that yields (150) gives

P (Z < a′) = P (exp (−t′Z) > exp (−a′t′)) (160)

≤ exp (a′t′)
m∏
i=1

E
(
exp

(
−t′X2

i

))
. (161)

Setting t′ = t in (153), we have

E
(
exp

(
−t′X2

))
=

1√
1 + 2t′

. (162)

This implies

P (Z < a′) ≤ exp (a′t′)

(1 + 2t′)
m
2

. (163)

Setting

t′ := −1

2
+

1

2 (1− ε)
, (164)

a′ := m (1− ε) (165)

we have

P (Z < m (1− ε)) ≤ (1− ε)
m
2 exp

(mε
2

)
(166)

= exp
(
−m

2
(−ε− log (1− ε))

)
. (167)

The function h (x) := −x− x2

2
− log (1− x) is nonnegative between 0 and 1 (the derivative

is nonnegative and g (0) = 0). We conclude that

P (Z < m (1− ε)) ≤ exp

(
−mε

2

2

)
. (168)

A.6 Proof of Lemma 3.2

Note that

q := ATv (169)
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is a subgradient of the `1 norm at x by Proposition 3.5 in Lecture Notes 2. For any feasible
vector x̃, h := x− x̃ satisfies Ah = 0. Since q is a subgradient at x we immediately have

||x̃||1 = ||x+ h||1 (170)

≥ ||x||1 + qTh (171)

= ||x||1 + vTAh (172)

= ||x||1 . (173)

This proves that x is a solution but not that it is the only solution. For this we need to use
the strict inequality (32) and the assumption that AT is full rank. If AT is full rank then
hT c 6= 0 unless h = 0 because otherwise hT would be a nonzero vector in the null space of
AT . This together with (32) implies

||hT c ||1 > qThT c . (174)

Let PT (·) denote a projection that sets to zero all entries of a vector except the ones indexed
by T . We have

||x̃||1 = ||x+ PT (h)||1 + ||hT c||1 because x is supported on T (175)

> ||x||1 + qTPT (h) + qTPT c (h) by (174) (176)

= ||x||1 + qTh (177)

= ||x||1 . (178)

Since this holds for any arbitrary feasible vector x̃ we conclude that x must be the unique
solution.

A.7 Proof of Lemma 3.3

The Lagrangian is equal to

L (x̃, ṽ) = ||x̃||1 + ṽT (y − Ax̃) (179)

= ||x̃||1 −
(
AT ṽ

)T
x̃+ yT ṽ. (180)

To obtain the Lagrange dual function we minimize with respect to x̃,

min
x̃
L (x̃, ṽ) =

{
yT ṽ if

∣∣∣∣AT ṽ∣∣∣∣∞ ≤ 1,

−∞ otherwise.
(181)

The dual problem consists of maximizing this Lagrange dual function.
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A.8 Proof of Proposition 3.8

We construct an ε covering set Nε ⊆ Ss−1 recursively:

• We initialize Nε to the empty set.

• We choose a point x ∈ Ss−1 such that ||x− y||2 > ε for any y ∈ C. We add x to Nε
until there are no points in Ss−1 that are ε away from any point in Nε.

This algorithm necessarily ends in a finite number of steps because the n-dimensional sphere
is compact (otherwise we would have an infinite sequence such that no subsequence con-
verges).

Now, let us consider the balls of radius ε/2 centered at each of the points in Nε. These balls
do not intersect since their centers are at least ε apart and they are all inside the ball of
radius 1 + ε/2 centered at the origin because C ⊆ Ss−1. This means that

Vol
(
Bs1+ε/2 (0)

)
≥ Vol

(
∪x∈NεBsε/2 (x)

)
(182)

= |Nε|Vol
(
Bsε/2 (0)

)
(183)

where Bsr (x) is the ball of radius r centered at x. By multivariable calculus

Vol (Bsr (0)) = rs Vol (Bs1 (0)) , (184)

so (182) implies

(1 + ε/2)s ≥ |Nε| (ε/2)s . (185)

A.9 Proof of Lemma 3.5

By symmetry of the Gaussian probability density function, we just need to bound the prob-
ability that u > t. Applying Markov’s inequality (see Proposition A.4) we have

P (u ≥ t) = P
(
exp (ut) ≥ exp

(
t2
))

(186)

≤ E
(
exp

(
ut− t2

))
(187)

= exp

(
−t

2

2

)
1√
2π

∫ ∞
−∞

exp

(
−(u− t)2

2

)
du (188)

= exp

(
−t

2

2

)
. (189)
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A.10 Proof of Proposition A.4

Consider the indicator variable 1X≥a. Clearly the random variable

X − a 1X≥a ≥ 0. (190)

So in particular its expectation is non-negative (as it is the sum or integral of a non-negative
quantity over the positive real line). By linearity of expectation and the fact that 1X≥a is a
Bernoulli random variable with expectation P (X ≥ a) we have

E (X) ≥ aE (1X≥a) = aP (X ≥ a) . (191)
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Lecture notes 6 March 21, 2016

Super-resolution

1 Super-resolution of point sources

The word super-resolution has different meanings in different disciplines. In optics it is
usually used to describe data-acquisition techniques designed to overcome the diffraction
limit [8]. In image-processing and computer-vision applications the term tends to refer to the
problem of obtaining a high-resolution image either from several low-resolution images [10]
or by upsampling a single image while preserving its edges and hallucinating textures in a
reasonable way [5]. In this lecture, super-resolution denotes the inverse problem of estimating
a signal from low-pass measurements. In contrast to the previous definitions, we assume that
the data-acquisition mechanism is fixed and we aim to recover rather than hallucinate the
lost high-resolution information.

1.1 Spatial super-resolution

As Lord Rayleigh pointed out in his seminal 1891 paper On Pin-hole Photography, it has
long been known that the resolving power of lenses, however perfect, is limited. Diffraction
imposes an inflexible limit on the resolution of any optical system. However we are often in-
terested in information that is only apparent beyond this limit. For instance, in microscopy,
astronomy or medical imaging it may be challenging to discern cellular structures, celestial
bodies or incipient tumors from the available data. This is illustrated by the image on the
left of Figure 1, which shows measurements of the interior of a cell obtained by fluorescence
microscopy. The limited resolution of the microscope produces aliasing artifacts that com-
pletely obscure the fine-scale details of the image. The aim of super-resolution is to uncover
such fine-scale structure from coarse-scale measurements.

Let x be a high-resolution representation of an object of interest. Mathematically, a reason-
able model for the data in many of the applications mentioned in the previous paragraph
is

xLR := φ ∗ x. (1)

The signal x is convolved with a low-pass point spread function (PSF) φ that depends on
the sensing mechanism. This convolution smooths out the fine-scale details producing a low-
resolution version of the original signal. The aim of spatial super-resolution is to estimate
x from xLR, a problem which is often also referred to as deconvolution. Recovering the lost
fine-scale information amounts to extrapolating the spectrum of x. This becomes apparent



Data Super-resolved image

Figure 1: An example of super-resolution applied to cell imaging using fluorescence microscopy
data. In both images a superposition of a sequence of frames is shown. The data on the left are
contaminated by noise and heavy aliasing. Super-resolving the probes reveals the fine-scale details
of the cell, as we can see on the right. The image is due to Veniamin Morgenshtern.

when we consider the measurement process in the frequency domain. If the cut-off frequency
of the PSF is equal to fc, the spectrum of xLR

x̂LR = φ̂ x̂ = φ̂ Π[−fc,fc]d x̂, (2)

where d is the ambient dimension, ̂denotes the frequency representation of a signal and
Π[−fc,fc]d is an indicator function that is zero out of the set [−fc, fc]d. The high frequency
information in the signal is suppressed in the data. Super-resolution aims to extrapolate this
information from the low-pass measurements.

In order to super-resolve a signal it is necessary to leverage some prior knowledge about its
structure. Otherwise the problem is hopelessly ill posed; the missing spectrum can be filled
in arbitrarily to produce estimates that correspond to the data. In this lecture we consider
signals that are well modeled as superpositions of point sources,

x :=
∑
tj∈T

cjδtj , (3)

where δτ is a Dirac measure at τ , T is a set of locations in the unit interval and the amplitudes
aj may be complex valued. In this case, the low-resolution data are of the form

xLR (t) := φ ∗ x (t) (4)

=
∑
tj∈T

cjφ (t− tj) , (5)
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as illustrated at the top of Figure 2.

Point sources are used to represent celestial bodies in astronomy, neuron spikes in neuro-
science or line spectra in signal processing and spectroscopy. In addition, locating pointwise
fluorescent probes is a crucial step in some optical super-resolution procedures capable of han-
dling more complicated objects. Techniques such as photoactivated localization microscopy
(PALM) or stochastic optical reconstruction microscopy (STORM) are based on localizing
probes that switch randomly between a fluorescent and a non-fluorescent state. To obtain
an image of a certain object, multiple frames are gathered. Each frame consists of a su-
perposition of blurred light sources that correspond to the active probes. Deblurring these
sources and combining the results allows to super-resolve the object of interest. The image
to the right of Figure 1 was generated in this way.

An additional assumption that we make in this lecture is that the PSF of the sensing mech-
anism is known. This is usually a realistic assumption in point-source super-resolution as
long as the measurement process is indeed space-invariant. In such cases the PSF can be
estimated by locating an isolated blurred source in the data. For general images or PSFs
that are not low pass, which arise for instance due to motion blurring, it is necessary to
jointly estimate the PSF and the signal; a problem known as blind deconvolution which we
will not discuss here.

An important instance of the model given by (3) and (4) is when the signal is one dimensional
and the Fourier transform of the PSF φ is constant over [−fc, fc], i.e. φ is a periodized sinc
or Dirichlet kernel. In this case, since the support of xLR is restricted to the unit interval,
it follows from the sampling theorem that its spectrum is completely determined by the
discrete samples

yk := x̂LR(k) (6)

=

∫ 1

0

exp (−i2πkt)x(dt) (7)

=
∑
tj∈T

cj exp (−i2πktj) , k ∈ Z, |k| ≤ fc, (8)

where we assume for simplicity that fc is an integer. In a more compact form,

y = Fn x (9)

where y ∈ Cn and Fn is the linear operator that maps a measure or function to its lowest
n := 2fc + 1 Fourier coefficients.

3
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Data

Spectral super-resolution

Figure 2: Schematic illustration of spatial and spectral super-resolution.
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1.2 Spectral super-resolution

A basic problem in signal processing is to estimate the spectrum of a multisinusoidal signal

g (t) :=
∑
fj∈T

cj exp (−i2πfjt) (10)

from a finite number of samples. The corresponding spectrum of the signal is of the form

ĝ =
∑
fj∈T

cjδfj . (11)

Spectra that are composed of a superposition of Dirac measures are called line spectra.
Estimating line spectra is important for direction-of-arrival (DOA) problems in radar where
the aim is to determine the direction from which a propagating wave arrives at an array of
sensors.

Let us assume that the spectrum of g is restricted to the interval [−1/2, 1/2]. This means
that its cut-off frequency is f = 1/2. Regular samples taken at the rate dictated by the
Nyquist-Shannon theorem 2f = 1

g (k) :=
∑
fj∈T

cj exp (−i2πkfj) , ∞ ≤ k ≤ ∞, (12)

suffice to recover ĝ. Indeed, these samples g (k) are the Fourier coefficients of ĝ!

Unfortunately, in most practical situations we only have access to a finite number of samples.
Truncating the measurements in the time domain is equivalent to convolving the spectrum of
the signal with a periodized sinc. This induces aliasing in the frequency domain as depicted
in the lower half of Figure 2. Spectral super-resolution is the problem of estimating the line
spectra of g from such measurements. This exactly equivalent to the spatial super-resolution
in 1D where the PSF is a sinc. Indeed, ĝ is a superposition of Dirac measures just like x and
the measurements are a contiguous subset of the Fourier coefficients of the measure.

1.3 Deconvolution in reflection seismography

Characterizing underground geological structure, such as the strata portrayed in Figure 3,
from surface measurements is an important problem in geophysics. Reflection seismology is
a technique to achieve this by sending pulses into the ground and analyzing the reflected
signals. Figure 4 provides a cartoon description of the problem. The reflections at the
interface between two strata are governed by a reflection coefficient that corresponds to the
difference between the impedance of the two layers. Estimating the reflection coefficients and
their positions from the reflected pulse allows to determine the composition of the different
strata.

5



Figure 3: Geological strata in Salta, Argentina.

Geological
section

Acoustic
impedance

Reflection
coefficients

Sensing Pulse Data

Figure 4: Cartoon description of reflection seismology.
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Signal Pulse Data

∗ =

Spectrum
(magnitude)

× =

Figure 5: Simplified model for a seismography problem where the aim is to estimate reflection
coefficients from bandpass measurements.

A simplified mathematical model of the measurement process is that the data are equal to
the convolution of the pulse φ and the reflection coefficients x,

y = φ ∗ x (13)

where the reflection coefficients can be modeled as a superposition of Dirac measures,

x :=
∑
tj∈T

cjδtj . (14)

The spectrum of pulses used in reflection seismology is often approximately bandpass; it is
mostly concentrated in a certain band of frequencies. If we model the pulse as being exactly
bandpass, then the spectrum of the data corresponds to a contiguous subset of Fourier
coefficients of x, or two contiguous subsets if we consider real bandpass filters as illustrated
in Figure 5. The problem is consequently very similar to the simplified models for spatial
and spectral super-resolution introduced in the previous sections.

2 Conditioning of the super-resolution problem

In this section we analyze the conditioning of the super-resolution problem when the signal
is equal to a superposition of Dirac measures and the data are equal to the first n low-pass
Fourier coefficients

y = Fn x. (15)
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Figure 6: Illustration of the minimum separation of a signal.

As we discussed in the previous lecture, a fundamental insight in the theoretical analysis of
compressed sensing is that random measurements conserve the energy of sparse signals with
high probability. More specifically, the randomized operator obeys the restricted-isometry
property (RIP). This ensures that the inverse problem of sparse recovery from random mea-
surements is well posed at least in principle.

In contrast, sparsity is not enough to make super-resolution a well posed problem. The crucial
difference between super-resolution and compressed sensing is the correlation structure of
the measurement process. The sensing operator Fc defined by (19) can be interpreted as
an infinite matrix with n rows and infinite columns parametrized by t ∈ [0, 1]. Each of
the columns is a sinusoidal atom of the form exp i2πkt for −fc ≤ k ≤ fc. If the difference
between t1 and t2 is small, the corresponding columns

(Fn)t1 =


exp−i2πfct1

exp−i2π (fc − 1) t1
· · ·

exp i2πfct1

 ≈ (Fn)t2 =


exp−i2πfct2

exp−i2π (fc − 1) t2
· · ·

exp i2πfct2

 (16)

are extremely correlated. As a result, the measurement process does not even satisfy the RIP
with sparsity level equal to two! In this case, we cannot recover a 1-sparse signal reliably in
the presence of noise. However, if the difference between t1 and t2 is large then the atoms are
not too correlated. In fact, as we shall demonstrate numerically in a moment, submatrices
corresponding to columns that are spread out are well conditioned. This suggests restricting
the class of signals of interest to signals that have a support that is not too clustered. To
this end, we define the minimum separation of the support T of a signal. The concept is
illustrated in Figure 6.

Definition 2.1 (Minimum separation). For a set of points T ⊆ [0, 1], the minimum separa-
tion (or minimum distance) is defined as the closest distance between any two elements from
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T ,
∆(T ) = inf

(t,t′)∈T : t6=t′
|t− t′|. (17)

In order to determine how the linear operator Fn acts upon signals with supports that satisfy
a certain minimum separation, we compute the singular values of the submatrix formed by
the corresponding columns. Figure 7 shows the results. For minimum separations above
0.5/fc the submatrices are very well conditioned, but as soon as the minimum separation
falls below 0.5/fc some of the singular values of the operator plummet. Below 0.35/fc a
fourth of the singular values are extremely small. Below 0.2/fc the magnitude of half of
them is negligeable. The effect becomes more pronounced as the cardinality s of the support
of the signal increases.

Note that signals in the span of the singular vectors that correspond to very small singular
values in Figure 8 are essentially mapped to zero by the low-resolution operator. These
signals are consequently almost in the null space of the measurements: they are impossible to
estimate under very small perturbations to the data even if we know the support beforehand.
As a result, a fundamental limit for signal recovery in terms of the minimum separation is
1/fc, the inverse of the cut-off frequency (it also corresponds to the width of the main lobe
of the point-spread function φ, when the PSF is a sinc). To see why, consider two signals x1
and x2 with a minimum separation just below 1/fc such their difference d := x1 − x2 has a
minimum separation under 0.5/fc. From Figure 7 we can choose d so that

Fn d = Fn x1 −Fn x2 ≈ 0. (18)

Even under very low levels of noise it will be impossible to distinguish x1 and s2 from low-
resolution data. Figure 8 illustrates this: the measurements corresponding to two signals
with disjoint supports and a minimum distance of 0.9λc for fc = 103 are indeed almost
indistinguishable. The phenomenon can be characterized theoretically in an asymptotic
setting using Slepian’s prolate-spheroidal sequences [12] (see also Section 3.2 in [2]). More
recently, [9] (see Theorem 1.3) provides a non-asymptotic analysis.

The take-home lesson is that we can only hope to achieve stable super-resolution of signals
with a minimum separation above 0.5/fc if the signal consists of a large number of point
sources. For signals with a small number of point sources, robust recovery may be possible
below that limit. However, even for very small supports, the problem is always hopelessly
ill posed for a small enough value of the minimum distance.

3 Linear methods

In this section we describe some simple linear techniques to tackle the super-resolution
problem.

9
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Figure 7: Singular values of the linear operator Fn when restricted to act upon signals of sparsity
s that have a minimum separation of ∆.
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Figure 8: Two signals with disjoint supports that satisfy the minimum-separation condition for
∆ (T ) = 0.9fc when fc = 103 (top left) and their spectrum (top right). Their difference (center left)
has a spectrum that is concentrated away for the low-pass band between −fc and fc (center right).
As a result, it is very difficult to distinguish the data corresponding to the two signals (bottom).
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3.1 The periodogram

As explained in Section 1.2 in the spectral super-resolution problem the data (12) correspond
to a contiguous subset of the Fourier coefficients of the signal

y = Fn x. (19)

If x corresponds to a superposition of line spectra, this is equivalent to convolving the sparse
spectrum with a periodized sinc function. The periodogram recovers this representation
by applying the adjoint of the measurement operator Fn to the data. This is essentially
equivalent to projecting the data onto the signal space.

P (t) = F∗n y (20)

=

fc∑
k=−fc

y (k) exp (i2πkt) (21)

=

fc∑
k=−fc

∑
tj∈T

cj exp (i2πktj)

 exp (i2πkt) (22)

=
∑
tj∈T

cj

fc∑
k=−fc

exp (i2πk (t− tj)) (23)

=
∑
tj∈T

cjDfc (t− tj) , (24)

where Dfc is the periodized sinc or Dirichlet kernel

Dfc (t) :=

fc∑
k=−fc

exp (i2πkt) =

{
1 if t = 0
sin((2fc+1)πt)
(2fc+1) sin(πt)

otherwise .
(25)

Just to clarify, in most applications that use the periodogram t would index the frequency
domain, not the time domain, but we keep this notation for the sake of consistency. Also, fc
no longer has a physical meaning (beyond determining the number of time-domain samples)
in contrast to spatial super-resolution where it represents the cut-off frequency of the sensing
mechanism.

Computing the periodogram does not solve the super-resolution problem, it just allows to
visualize the aliased spectrum corresponding to the data samples available in spectral super-
resolution. If the line spectra of the signal are far apart, a straightforward way to estimate
their location is to locate local maxima of P . The problem with this approach is that the
side lobes corresponding to large blurred spikes may mask the presence of smaller spikes. As
a result, the periodogram is not very useful if the spikes are not far enough from each other

12



Data Window function
Windowed data

Signal (magnitude)
Periodogram

Signal (magnitude)
Periodogram

Signal (magnitude)
Windowed periodogram

Signal (magnitude)
Windowed periodogram

Figure 9: Example of data in spectral super-resolution generated according to (6) before (top left)
and after applying a window function (top right). No noise is added to the data. Below we can
see the periodogram (center) and windowed periodogram (bottom) computed from the data. The
scaling of the periodograms is set so that both the large and small peaks can be seen on the plot.
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or if their amplitudes differ substantially, even if no noise is present in the data. The image
at the center of Figure 9 illustrates this: detecting some of the lower-amplitude spikes from
the periodogram is impossible.

In order to alleviate this problem one can apply a window function ŵ ∈ Cn to the data
before computing the periodogram,

yŵ = y · ŵ, (26)

where · denotes pointwise multiplication. The windowed periodogram

Pŵ(f) = F∗n yŵ (27)

=
∑
tj∈T

cjw (t− tj) , (28)

where w denotes the inverse Fourier transform of the window function. Ideally, w should be
as spiky as possible to make it easier to locate the support of the signal from the windowed
periodogram. However, this is challenging due to the constraint that ŵ has finite support
and hence w is a low-pass function.

In the image on the top right of Figure 9 we apply a Gaussian window to the data. To be
more precise, we set ŵ to be a truncated Gaussian, so that w is equal to the convolution
between a periodized sinc and a periodized Gaussian. The resulting periodogram, shown at
the center of Figure 9, has much less spectral leakage from the largest signal components,
due to the fact that the Gaussian window has lower side lobes than the periodized sinc.
However, the latter is spikier at the origin, which allows to better distinguish neighboring
spikes with similar amplitudes. In general, designing an adequate window implies finding
a good tradeoff between the width of the main lobe and the height of the side lobes. We
refer the reader to [6] for a detailed account of design considerations and types of window
function. As discussed in Lecture Notes 4, windowing is also important when computing
short-time Fourier transforms.

Figure 10 compares the result of applying the periodogram and the windowed periodogram
to noisy data from two signals with different minimum separations. The signal-to-noise ratio
is 20 dB (equivalently the ratio between the `2-norm of the signal and the noise is equal to
10). When the minimum separation is large the windowed periodogram provides a relatively
good estimate of the number of point sources, although their locations do not exactly coincide
with the local maxima for some of the spikes. Without windowing, the periodogram provides
sharper localization but suffers from spurious spikes produced by the side lobes of the sinc
function. When the minimum separation is small, it is impossible to super-resolve many of
the spikes, which is not surprising: the problem becomes very ill-conditioned as discussed in
Section 2.

To conclude, the periodogram is a useful method to obtain a general idea of the spectral
structure of the signal and can provide insight as to the number of sources and their approx-
imate location, especially if the data is processed with a suitable window function and the
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Periodogram Windowed periodogram

∆ = 0.6
fc

∆ = 1.2
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Figure 10: Periodogram (left) and windowed periodogram (right) for two signals with identical
amplitudes but different minimum separations.
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support of the signal is not too clustered together. However, the method does not provide a
precise estimate of the support even in the absence of noise. This is the aim of the techniques
described in the following sections.

3.2 Local fitting

If we have low-resolution measurements of the form (4) and the signal consists of a single
blurred source then

xLR (t) := c1φ (t− t1) . (29)

In this case, it seems reasonable to estimate the location of the source by fitting the shifted
PSF to the data, for instance, by minimizing a least-squares cost function. For a single
source, performing a least-squares fit amounts to finding the shift that maximizes the inner
product between the data and the PSF φ shifted by t̃, which is denoted by φt̃. Let us assume
that xLR and φt̃ are in L2 and that ||φt̃||L2 = 1. For a fixed t̃ the best coefficient is obtained
by projecting xLR onto φt̃

〈xLR, φt̃〉 = arg min
t̃,α∈C

||xLR − αφt̃||2 . (30)

As a result, choosing the first shift is equivalent to maximizing the inner product

test = arg min
t̃

min
α∈C
||xLR − αφt̃||2

= arg min
t̃
||xLR − 〈xLR, φt̃〉 φt̃||2

= arg min
t̃
−2 |〈xLR, φt̃〉|2

= arg max
t̃
|〈xLR, φt̃〉| . (31)

This procedure is known as matched filtering in the signal-processing literature.

When more than one point source is present, the overlap between neighboring blurred sources
may be negligible if the sources are far enough with respect to the decay of the PSF. In this
case, one can just fit the PSF locally to each of them. The approach is essentially equivalent
to applying matching pursuit (Algorithm 3.2 in Lecture Notes 4) with a dictionary of shifted
copies of φ. This method is quite popular in fluorescence microscopy. However, if there is
interference between the blurred sources, then the problem becomes much more challenging.
As a result, in fluorescence microscopy the data is usually measured at a rate that ensures
a certain separation between the active fluorophores.
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4 Parametric methods for spectral super-resolution

In this section we review parametric methods for spectral super-resolution based on Prony’s
method. These algorithms take the number of line spectra of the original signal as input
and return an estimate of their location. As in our description of the periodogram, we use
the variable t to denote frequency for the sake of consistency with other sections.

4.1 Prony’s method

Prony’s method solves the spectral super-resolution problem by encoding the position of s
sources T = {t1, . . . , ts} as the zeros of a trigonometric polynomial of order s. In the absence
of noise, it turns out that we can always find such a polynomial and achieve perfect spectral
super-resolution by locating its roots.

We consider a signal x

x :=
∑
tj∈T

cjδtj , (32)

and data that correspond to the n first Fourier coefficients of x

yk := x̂ (k) , 0 ≤ k ≤ n− 1. (33)

If we set n := 2fc + 1, this model is essentially equivalent to (6).

The following lemma shows that for any x of the form (32) there exists a nonzero polynomial
of order s which is exactly zero on the support of the x.

Lemma 4.1 (Existence of Prony polynomial). Assume that x is as in (3) and |T | = s, then

Pprony(t) :=
s∏
j=1

(1− exp (i2π(t− tj))) (34)

= 1 +
s∑
l=1

vl exp (i2πlt) , v0 := 1, (35)

is a nonzero polynomial of order s with roots located exactly on T .

Proof. Since v0 = 1 the polynomial is nonzero. By construction Pprony(tj) = 0 for every
tj ∈ T .

If we are able to compute such a polynomial, then finding its roots immediately reveals the
support of x. The problem is how to compute Pprony from the available data y. Prony’s
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method consists of setting up a system of linear equations that only depends on y such that
the solution is equal to the coefficients of Pprony.

Since Pprony is zero wherever x is nonzero, the inner product of x and Pprony is equal to zero,

〈Pprony, x〉 =

∫ 1

0

Pprony(t)x(dt) (36)

=
s∑
j=0

cj exp (−i2πltj) (1− exp (i2π(tj − tj))) (37)

= 0. (38)

By Parseval’s Theorem this inner product equals the inner product between the Fourier
coefficients of x and Pprony which implies

〈v, x̂〉 = 〈Pprony, x〉 = 0. (39)

We can use this identity to obtain an equation tying the coefficient vector v to the data.

0 = 〈v, x̂〉 =
∞∑

k=−∞
vk x̂ (k) (40)

=
s∑
l=0

vl x̂ (k) (41)

=
s∑
l=0

vl y (k) if s+ 1 ≤ n. (42)

In order to estimate v we need at least s − 1 other equations. Consider taking the inner
product between the coefficients of Pprony and x̂ shifted by k′, which we denote by

x̂k′ := x̂ (k + k′) . (43)

By basic Fourier identities, x̂k′ is the Fourier representation of exp (2πk′t)x. This measure
has exactly the same support as x. As a result, we can repeat the same argument as above
to conclude that

0 = 〈Pprony, exp (2πk′t)x〉 (44)

= 〈v, x̂k′〉 (45)

=
s∑
l=0

vk y (k + k′) if s+ k′ ≤ n− 1 (46)

= 0. (47)

If we select k′ to be between 0 and s − 1 we obtain a system of s equations. This system
only involves the data y and the unknown coefficients v as long as n ≥ 2s.
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No noise SNR = 140 dB

Signal (magnitude)

Prony polynomial (magnitude)

Signal (magnitude)

Prony polynomial (magnitude)

Figure 11: Prony polynomial applied on noiseless data (left). The image on the right shows the
effect of adding a very small quantity of noise to the data. The roots of the polynomial no longer
coincide with the support of the original signal. Note that the vertical axis is scaled differently in
the two images.

Prony’s method consists of solving this system and then decoding the support of the signal
by rooting the corresponding polynomial. For simplicity we assume that n = 2s.

Algorithm 4.2 (Prony’s method). The input to the algorithm is the cardinality of the
support s and the data y, which are assumed to be of the form (33).

1. Form the system of equations
y1 y2 · · · ys
y2 y3 · · · ys+1

· · · · · · · · · · · ·
ys ys+1 · · · yn−1



ṽ1
ṽ2
· · ·
ṽs

 = −


y0
y1
· · ·
ys−1

 . (48)

2. Solve the system to obtain v1, . . . , vs and set v0 = 1.

3. Root the polynomial corresponding to v0, . . . , vs to obtain its s roots z1, . . . , zs.

4. For every root on the unit circle zj = exp (i2πτ) include τ in the estimated support.

This procedure is guaranteed to achieve exact recovery of the original signal.

Lemma 4.3. In the absence of noise, the output of Prony’s method is equal to the support
of the original signal.
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Proof. The coefficients of the polynomial (35) are a feasible solution for the system of equa-
tions (48). In fact, they are the unique solution. To show this we compute the factorization

y1 y2 · · · ys

y2 y3 · · · ys+1

· · · · · · · · · · · ·
ys ys+1 · · · yn−1

 = (49)


e−i2πt1 e−i2πt2 · · · e−i2πts

e−i2π2t1 e−i2π2t2 · · · e−i2π2ts

· · · · · · · · · · · ·
e−i2πst1 e−i2πst2 · · · e−i2πsts




c1 0 · · · 0

0 c2 · · · 0

· · · · · · · · · · · ·
0 0 · · · cs




1 e−i2πt1 · · · e−i2π(s−1)t1

1 e−i2πt2 · · · e−i2π(s−1)t2

· · · · · · · · · · · ·
1 e−i2πts · · · e−i2π(s−1)ts

 .
(50)

The diagonal matrix is full rank as long as all the coefficients cj are nonzero, whereas the
two remaining matrices are full rank by the following lemma, proved in Section A.1 of the
appendix (set zj := exp (−i2πtj)).
Lemma 4.4 (Vandermonde matrix). For any distinct set of s nonzero complex numbers
z1, z2, . . . , zs and any positive integers m1,m2, s such that m2−m1 +1 ≥ s the Vandermonde
matrix 

zm1
1 zm1

2 · · · zm1
s

zm1+1
1 zm1+1

2 · · · zm1+1
s

zm1+2
1 zm1+2

2 · · · zm1+2
s

· · ·
zm2
1 zm2

2 · · · zm2
s


(51)

is full rank.

As a result, the matrix in (48) is full rank, so the system of equations has a unique solution
equal to (35). This completes the proof, as rooting (35) obviously yields the support of the
signal.

Unfortunately, Prony’s method as presented above cannot be applied to real data even if the
signal-to-noise ratio is exceptionally high. The image on the left of Figure 11 shows how the
Prony polynomial allows to super-resolve the support to very high accuracy from noiseless
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data. However, on the right we see the result of applying the method to data that have a
very small amount of noise (the ratio between the `2 norm of the noise and the noiseless
data is around 10−8!). The roots of the Prony polynomial are perturbed away from the
points of the unit circle that correspond to the support, so that it is no longer possible to
accurately locate the support of the signal. It is consequently necessary to adapt the method
to deal with noisy data if there is to be any hope of applying it in any realistic scenario. The
following sections discuss such extensions.

4.2 Subspace methods

In order to motivate subspace-based methods to tackle noisy data, we first describe an
alternative interpretation of Prony’s method.

Solving the system (48) is essentially a way to find a nonzero vector in the null space of
Y (s+ 1)T , where Y (m) is defined for any integer m as the Hankel matrix

Y (m) :=


y0 y1 · · · yn−m
y1 y2 · · · yn−m+1

· · · · · · · · · · · ·
ym−1 ym · · · yn−1

 . (52)

The vector in the null space of Y (s+ 1)T corresponds to the coefficients of the Prony poly-
nomial, which we can root to find the support of the signal.

Recall that in the absence of noise the data are of the form

yk := x̂ (k) (53)

=
∑
tj∈T

cje
−i2πktj , 0 ≤ k ≤ n− 1. (54)

Consider the decomposition

Y (m) =
[
a0:m−1 (t1) a0:m−1 (t2) · · · a0:m−1 (ts)

]

c1 0 · · · 0

0 c2 · · · 0

· · · · · · · · · · · ·
0 0 · · · cs




a0:n−m (t1)

T

a0:n−m (t2)
T

· · ·
a0:n−m (ts)

T


= A0:m−1 (T ) C A0:m (T )T , (55)
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where for k > 0 we define

a0:k (t) :=



1

e−i2πt

e−i2π2t

· · ·
e−i2πkt


, A0:k (T ) :=

[
a0:k (t1) a0:k (t2) · · · a0:k (ts)

]
. (56)

This decomposition suggests an alternative way of estimating the support T from Y (m):
finding sinusoidal atoms a0:m−1 (t) that are in the column space of Y (m+ 1). Lemma 4.5
below proves that the only atoms of this form that belong to the column space of Y (m) are
precisely a0:m−1 (t1), a0:m−1 (t2), . . . , a0:m−1 (ts).

In order to make this procedure robust to noise, in practice we check what atoms are close
to the column space of Y (m). To quantify this we compute the orthogonal complement N
of the column space of Y (m) and construct the pseudospectrum

PN (t) = log
1

|PN (a0:m−1 (t))|2
, (57)

where PN denotes a projection onto N . If an atom is almost orthogonal to N then PN will
have a very large value at that point.

In order to find the subspace N , one possibility is computing the null space of the empirical
covariance matrix

Σ (m) =
1

n−m+ 1
Y Y ∗ (58)

=
1

n−m+ 1

n−m∑
j=0


yj
yj+1

· · ·
yj+m−1

 [yj yj+1 · · · yj+m−1
]
. (59)

The following lemma shows that the maxima of the pseudospectrum reveal the support of
the signal in the noiseless case.

Lemma 4.5. Let N be the null space of the empirical covariance matrix Σ (m) for m ≥ s.
If the data are of the form (53),

PN (tj) =∞, for tj ∈ T, (60)

PN (t) <∞, for t /∈ T. (61)
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No noise SNR = 140 dB

Figure 12: Pseudospectrum corresponding to the data used to construct the Prony polynomials
in Figure 11. The true location of the support is marked with red circles.

Proof. By (55) the atoms a0:m−1(t1), . . . , a0:m−1(ts) span the column space of Y (m) and
Σ (m). As a result they are orthogonal to the null space N of the empirical covariance
matrix, which proves (60).

We prove (61) by contradiction. The atoms a0:m−1 (t1), . . . , a0:m−1 (ts) span the orthogonal
complement to N . As a result, if a0:m−1 (t) is orthogonal to N for some t then a0:m−1 (t) is
in the span of a0:m−1 (t1), . . . , a0:m−1 (ts). This would imply that AT0:m−1 (T ∪ {t}) is not full
rank, which can only hold if t ∈ T by Lemma 4.4.

Figure 12 shows the pseudospectrum corresponding to the data used to construct the Prony
polynomials in Figure 11 when n = 2s− 1. In the noiseless case, the pseudospectrum allows
to locate the support T perfectly. Unfortunately, the locations of the local maxima are
severely perturbed by even a very small amount of noise.

In order to obtain an estimate that is robust to noise, we need to use more data to estimate
the support of the signal. The definition of the empirical covariance matrix Σ (m) in (58)
provides a way to do this, we can just average over more data. If we fix m and increase
n, the column space of Σ (m) remains the same, but the averaging process may cancel out
the noise to some extent. This is the principle underlying the multiple-signal classification
(MUSIC) [1, 11].

Algorithm 4.6 (Multiple-signal classification (MUSIC)). The input is the cardinality of the
support s, the data y, which are assumed to be generated as in (66) and the value of the
parameter m ≥ s.
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SNR = 40 dB SNR = 1 dB

Figure 13: Pseudospectrum constructed by the MUSIC algorithm with n = 81 and m = 30 for
the same signal used in Figure 11 and different noise levels. The true location of the support is
marked with red circles.

1. Build the empirical covariance matrix Σ (m) defined in (58).

2. Compute the eigendecomposition of Σ (m) to select the subspace N corresponding to
the m− s smallest eigenvalues.

3. Output an estimate of s estimated positions for the support by locating the s highest
peaks of the pseudospectrum

PN (t) = log
1

|PN (a0:m−1)|2
, (62)

By Lemma 4.5, in the absence of noise MUSIC allows to estimate the support of the signal
perfectly. When additive Gaussian noise is present in the data, MUSIC is much more robust
than Prony’s method. Figure 13 shows the result of applying MUSIC algorithm with n = 81
and m = 30 to the same data used in Figure 11 and different noise levels. The method is
able to locate the support of the signal at a noise level of 40 dB. At 1 dB the pseudospectrum
does not detect the smaller spikes (the true magnitudes are shown in Figure 11), but the
estimate for the rest is still rather accurate.

In order to provide a theoretical justification of why MUSIC is stable we study the method
in an asymptotic regime where the two following assumptions on the signal and the noise
are met:
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• Assumption 1: The original signal,

x =
∑
tj∈T

cjδtj =
∑
tj∈T
|cj| exp (iφj) δtj , (63)

follows a probabilistic model where the phases φj are independent and uniformly dis-
tributed in the interval [0, 2π], whereas the amplitudes are arbitrary and deterministic.
Note that this implies that the expectation of x is equal to zero and that the covariance
matrix equals

E [cc∗] = Dc :=


|c1|2 0 · · · 0

0 |c2|2 · · · 0
· · · · · · · · · · · ·
0 0 · · · |cs|2

 . (64)

• Assumption 2: The measurements are corrupted by white Gaussian noise with zero
mean and standard deviation σ, which is independent from the signal. At time k we
measure

yk :=

∫ 1

0

exp (−i2πkt)x(dt) + zk (65)

=
∑
tj∈T

cj exp (−i2πktj) + zk, (66)

where z ∼ N(0, σ2I) is a zero-mean Gaussian random vector with covariance matrix
σ2I.

Under these assumptions, a sequence of m measurements y0, y1, . . . , ym−1 is a random vector
of the form

ỹ = A0:m−1 (T ) c+ z, (67)

The following proposition, proved in Section A.2 of the appendix, characterizes the covariance
matrix of ỹ.

Proposition 4.7. Let ỹ be an m dimensional vector of data satisfying Assumptions 1 and
2. The eigendecomposition of the covariance matrix of ỹ is equal to

E [ỹỹ∗] =
[
US UN

] [Λ + σ2Is 0
0 σ2In−s

] [
U∗S
U∗N

]
. (68)

The eigenvectors are divided into two unitary matrices.

• US ∈ Cm×s contains an orthonormal basis of the signal subspace which corresponds to
the span of a0:m−1 (t1), . . . , a0:m−1 (ts).
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Figure 14: Result of applying MUSIC to data with an SNR of 20 dB for two different minimum
separations. In both cases, fc = 40 (so n = 81) and m = 40.

• UN ∈ Cm×(m−s) is a unitary matrix spanning the noise subspace, which is the orthog-
onal complement of the signal subspace.

In addition, all eigenvalues are positive: σ2Ik ∈ Ck×k is a diagonal matrix with diagonal
entries equal to σ2 and Λ is another diagonal matrix with positive entries.

This proposition provides a rather intuitive interpretation of the MUSIC algorithm. The
eigendecomposition of the covariance matrix of the data allows to estimate a signal subspace
and a noise subspace. As a result, the term subspace methods is often used to describe MUSIC
and related algorithms. Computing the pseudospectrum from these subspaces allows us to
locate the support of the signal.

In practice, we approximate the covariance matrix using the empirical covariance matrix
Σ (m) defined in (58). Asymptotically, if we fix s and m and let n→∞, Σ (m) converges to
the true covariance matrix (see Section 4.9.1 in [13]). However that this does not necessarily
imply that MUSIC will allow to find the support! To ensure that we can actually identify the
noise subspace correctly, the eigenvalues in Λ must all be large with respect to the variance
of the noise σ2. In the case of signals that have a small separation (with respect to n),
some of these eigenvalues may be small due to the correlation between the atoms a0:m−1 (t1),
. . . , a0:m−1 (ts). This is not surprising because at small separations the inverse problem is ill
posed, as explained in Section 2. Figure 14 shows the result of applying MUSIC to data with
the same noise level for two different minimum separations. When the minimum separation
is too small the method fails to detect some of the smaller spikes.

Figure 15 compares the performance of MUSIC for different noise levels and different values
of the parameter m. On the left column, we see the decay of the eigenvalues of the empirical
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Figure 15: Eigenvalues of the empirical covariance matrix Σ (m) used by MUSIC (left) and corre-
sponding estimates (right) for different values of the parameter m and of the SNR. The cardinality
of the true support is s = 7.
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Figure 16: Line-spectra estimates obtained by Root MUSIC when the estimated number of sources
is equal to s− 1 (left) and s + 1 (right) for the same data as in Figure 15.

covariance matrix. At high signal-to-noise ratios (SNR) there is a clear transition between the
eigenvalues corresponding to the signal subspace (in this case s = 7) and the noise subspace,
but this is no longer necessarily the case when the noise is increased. On the right column,
we see the performance of the algorithm for different values of the SNR and the parameter
m. At relatively high SNRs MUSIC is an effective algorithm as long as the assumptions
on the signal (random phases), noise (Gaussian) and measurement model (equispaced time
samples) are satisfied. In Figure 16 we show the result of running the algorithm for the
wrong value of the parameter s. If the value is not too different to s and the SNR not too
low, the method is still capable of approximately locating the support.

4.3 Matrix-pencil methods

In this section we describe an alternative approach to perform spectral super-resolution. In
the previous section, we saw that MUSIC exploits the fact that in the absence of noise the
matrix

Y0 =


y0 y1 · · · yn−m
y1 y2 · · · yn−m+1

· · · · · · · · · · · ·
ym−1 ym · · · yn−1

 (69)
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has the rank-s factorization

Y0 = A0:m−1 (T ) C A0:n−m (T )T (70)

=
∑
tj∈T

cj a0:m−1 (tj) a0:n−m (tj)
T (71)

by computing the eigendecomposition of the empirical covariance matrix. Recall that

Am1:m2 (T ) :=
[
am1:m2 (t1) am1:m2 (t2) · · · am1:m2 (ts)

]
. (72)

Matrix-pencil methods make use of this factorization in a different way.

Let us begin by defining a matrix pencil and its rank-reducing values.

Definition 4.8 (Matrix pencil). The matrix pencil of two matrices M1 and M2 is the matrix-
valued function

LM1,M2 (µ) := M2 − µM1 (73)

where µ ∈ C.

The set of rank-reducing values R of a matrix pencil satisfy

rank (LM1,M2 (µ)) = rank (LM1,M2 (µj)) + 1 for all µj ∈ R and µ /∈ R. (74)

Now consider the matrix

Y1 =


y1 y2 · · · yn−m+1

y2 y3 · · · yn−m+2

· · · · · · · · · · · ·
ym ym+1 · · · yn

 (75)

which can be written as

Y1 = A1:m (T ) C A0:n−m (T )T (76)

=
∑
tj∈T

cj a1:m (tj) a0:n−m (tj)
T . (77)

The insight behind matrix-pencil methods for spectral super-resolution is that exp (i2πt1),
exp (i2πt2), . . . , exp (i2πts) are all rank-reducing values of the matrix pencil LY0,Y1 .

Lemma 4.9. exp (i2πτ) is a rank-reducing value of LY0,Y1 if and only if τ ∈ T .

This lemma, proved in Section A.3 of the appendix implies that we can estimate the support
of the signal by finding the rank-reducing numbers of the matrix pencil LY0,Y1 . The following
lemma, proved in Section A.4 of the appendix, shows how to compute them.
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Lemma 4.10. Let Y0 = U0 Σ0 V
∗
0 be the singular-value decomposition of Y0. The s eigenval-

ues of the matrix

M = V0 Σ−10 U∗0 Y1 (78)

are equal to exp (i2πtj) for 1 ≤ j ≤ s.

The matrix-pencil algorithm [7] estimates the rank-reducing values from the noisy data,
hoping that the noise will not disrupt the eigenvalues of M too much.

Algorithm 4.11 (Matrix-pencil method). The input is the cardinality of the support s, the
data y, which are assumed to be generated as in (66) and the value of the parameter m.

1. Build the matrices Y0 and Y1.

2. Compute the singular-value decomposition of Y0 = U0 Σ0 V
∗
0 .

3. Compute the s largest eigenvalues λ1, λ2, . . . , λs of the matrix

M = V0 Σ−10 U∗0 Y1. (79)

4. Output τ such that λj = exp (i2πτ) for 1 ≤ j ≤ s.

For more information we refer the interested reader to Chapter 4 of [13], where it is re-
ported that matrix-pencil algorithms exhibit a similar performance to subspace methods.
For theoretical guarantees under a minimum-separation condition see [9].

5 Super-resolution via convex programming

In this section we describe how to perform super-resolution by penalizing a sparsity-inducing
norm. This is reminiscent of compressed sensing, which consists of estimating sparse signals
from randomized measurements via `1-norm minimization. As we have explained in the
previous sections, in super-resolution problem the signal is of the form

x :=
∑
tj∈T

cjδtj , (80)

and the measurements are given by

y = Fn x. (81)

Since the signal can be supported anywhere in the unit interval, we cannot use the `1 norm
to induce sparsity, as it is only defined for finite-dimensional vectors. In order to promote
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Original signal Min. `2-norm estimate Min. `1-norm estimate

Figure 17: Results of applying `2 and `1-norm minimization to the inverse problem described in
Figure 5. `1-norm minimization achieves exact recovery.

sparsity within a continuous interval, we resort to a continuous counterpart of the `1 norm:
the total-variation (TV) norm. The total-variation norm of a measure x is defined as

||x||TV = sup
||f ||∞≤1,f∈C(T)

∫
T
f (t)x (dt) . (82)

For a superposition of Dirac deltas
∑

j ajδtj , this norm is equal to the `1 norm of the co-
efficients, i.e. ||x||TV =

∑
j |aj|. The term total-variation norm is somewhat unfortunate

because total variation may also refer to the `1 norm of the discontinuities of a piecewise-
constant function, as we have seen in previous lectures.

Super-resolution via TV-norm minimization requires solving the optimization problem

minimize ||x̃||TV (83)

subject to Fn x̃ = y, (84)

where the minimization is carried out over the set of all finite complex measures x̃ supported
on [0, 1]. This infinite-dimensional convex problem can be solved by recasting it into a finite-
dimensional problem involving matrices (more specifically a semidefinite program), as we
will see later on in the course.

If the support of the signal is restricted to lie on a grid, problem 83 is equivalent to `1-norm
minimization, exactly as in compressed sensing. Figure 17 shows the result of applying this
algorithm to the reflection-seismography inverse problem described in Figure 5, where `1-
norm minimization achieves exact recovery. In fact, it was geophysicists working in this area
who first suggested using `1-norm minimization to tackle underdetermined linear inverse
problems. Figure 18 shows results on real seismography data from a paper in 1979 [14].
These results spurred the interest of statisticians like David Donoho, who would eventually
spearhead the use of `1-norm minimization in other areas of signal processing and compressed
sensing.
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Figure 18: Result of applying `1-norm minimization to real seismography data from a paper in
1979 [14].
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Figure 19: Interpolating kernel K used in the proof of Theorem 5.1 (left), along with its asymptotic
decay (center) and its low-pass spectrum (right).

5.1 Exact recovery

The following theorem establishes that TV-norm minimization succeeds for signals that have
a minimum separation of 1.26/fc, very near the limit of 1/fc at which the problem becomes
ill posed.

Theorem 5.1 (Total-variation minimization). Let T be the support of a signal x. If the
minimum separation obeys

∆(T ) ≥ 1.26 /fc (85)

then x is the unique solution to (83).

The proof of this theorem is based on the construction of a dual certificate for the TV norm.
To simplify matters, while still conveying the main ideas, let us assume that the signal lies
on a grid and we are minimizing the `1 norm. In that case, as we saw in the lecture on
compressed sensing, a dual certificate is a vector v such that q = F∗nv interpolates the sign
pattern of the signal on its support and has magnitude smaller than one on its off-support.
In compressed sensing q is a superposition of random vectors, whereas in super-resolution
q is a superposition of low-pass trigonometric polynomials (the rows of the linear operator
Fn). This difference is crucial: if the support of the signal is cluttered together and the sign
of its coefficients varies rapidly, it may not be possible to achieve the interpolation with a
bounded polynomial.

We will sketch the proof of Theorem 5.1, which can be found in [2, 4]. The construction
of dual certificates for compressed sensing typically relies on concentration arguments from
probability theory. However there is nothing random about Theorem 5.1. We resort to a
different approach: interpolating the sign of the signal using a low-pass kernel K to construct
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Figure 20: Dual-polynomial if we only use K to interpolate the sign pattern (left), as opposed to
also incorporating its derivative into the construction and forcing the derivative of the polynomial
to be zero at the interpolation points (right).

q directly. Since any shift of a low-pass kernel is low pass, this means that q = F∗nv for some
v ∈ Cn. Figure 19 shows the kernel and its spectrum.

Interpolating the sign pattern with an adequately selected kernel is not sufficient to produce
a valid construction. The reason is that the magnitude of the polynomial tends to exceed one
near the elements of the support T . This can be avoided, however, by forcing the derivative
of the kernel to be zero at those points. As a result, the magnitude of the polynomial has
a local extremum at the interpolation point and its magnitude remains below one for a
sufficiently large minimum separation, as illustrated by Figure 20. In order to enforce the
extra constraint on the derivative of q, we need more degrees of freedom in the construction.
For this purpose, we incorporate the derivative of the kernel, so that the q is of the form

q(t) =
∑
tj∈T

αjKγ(t− tj) + βjK
′

γ(t− tj), (86)

where α, β ∈ C|T | are coefficient sequences satisfying

q(tk) =
∑
tj∈T

αjKγ (tk − tj) + βjK
′

γ (tk − tj) = vj, tk ∈ T, (87)

q
′

R(tk) + iq
′

I(tk) =
∑
tj∈T

αjK
′

γ (tk − tj) + βjK
′′

γ (tk − tj) = 0, tk ∈ T, (88)

and qR and qI are the real and imaginary parts of q. Since the derivative of a low-pass
function is still low pass, q is in the row space of the linear operator Fc. All is left is to show
that the system of equations has a solution and that the magnitude of q is indeed bounded
on the complement of T . We refer the interested reader to [2, 4] for the gory details.
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Figure 21: Result of applying TV-norm minimization to super-resolve data with an SNR of 20
dB for two different minimum separations. In both cases, fc = 40.

5.2 Super-resolution from noisy data

Consider the additive-noise model

y = Fnx+ z (89)

where z is a noise term. In order to account for the perturbation, we can adapt Problem (83)
by using an inequality constraint to quantify the uncertainty,

min
x̃
||x̃||TV subject to ||Fnx̃− y||22 ≤ δ, (90)

where δ is an estimate of the noise level. Alternatively, we could also consider a Lagrangian
formulation of the form

min
x̃
||x̃||TV + γ ||Fnx̃− y||22 , (91)

where the regularization parameter γ > 0 governs the tradeoff between data fidelity and
the sparsity of the estimate. Figure 21 shows the result of applying TV-norm minimization
to super-resolve data with an SNR of 20 dB for two different minimum separations. For a
theoretical analysis of the performance of Problem 90 see [3].

References
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A Proofs

A.1 Proof of Lemma 4.4

Let us define

Z :=



1 1 · · · 1

z1 z2 · · · zs

z21 z22 · · · z2s

· · ·
zs−11 zs−12 · · · zs−1s


. (92)

The determinant of the first s rows of our matrix of interest is equal to

|Z|
∏

1≤i≤s
zi =

∏
1≤j<k≤s

(zj − zk)
∏

1≤i≤s
zi 6= 0 (93)

This implies that the first s rows are linearly independent and consequently that the whole
matrix is full rank.

A.2 Proof of Proposition 4.7

Due to the assumptions,

E [yy∗] = E
[
A0:m−1cc

∗A∗0:m−1 + A0:m−1cz
∗ + zc∗A∗0:m−1 + zz∗

]
(94)

= A0:m−1E [cc∗]A∗0:m−1 + A0:m−1E [c] E [z∗] + E [z] E [c∗]A∗0:m−1 + E [zz∗] (95)

= A0:m−1DcA
∗
0:m−1 + σ2I. (96)

We begin by writing the full eigendecomposition of A0:m−1DcA
∗
0:m−1, which is a positive

semidefinite symmetric matrix of rank s. By the spectral theorem, this matrix has a singular
value decomposition of the form

A0:m−1DcA
∗
0:m−1 =

[
US UN

]Λ 0

0 0

U∗S
U∗N

 , (97)

where US and UN are as defined in the statement of the proposition. Λ is a diagonal matrix
with positive entries, because A0:m−1DcA

∗
0:m−1 is positive semidefinite. Indeed if we define
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√
Dc, a diagonal matrix with |c| in the diagonal, we have that for any nonzero vector u

u∗A0:m−1DcA
∗
0:m−1u = u∗A0:m−1

√
Dc

√
DcA

∗
0:m−1u (98)

=
∣∣∣∣∣∣√DcA

∗
0:m−1u

∣∣∣∣∣∣2
2

(99)

> 0, (100)

where the inequality is strict because
√
DcA

∗
0:m−1 is full rank.

To complete the proof, we decompose the identity matrix using US and UN to obtain

E [yy∗] = A0:m−1DcA
∗
0:m−1 + σ2I (101)

=
[
US UN

]Λ 0

0 0

U∗S
U∗N

+
[
US UN

]σ2Is 0

0 σ2In−s

U∗S
U∗N

 . (102)

A.3 Proof of Lemma 4.9

For any τ ∈ T

a1:m (τ) = exp (i2πτ) a0:m−1 (τ) (103)

so

LY0,Y1 (exp (i2πτ)) = Y1 − exp (i2πτ)Y0 (104)

=
∑
tj∈T

cj (a1:m (tj)− exp (i2πτ) a0:m−1 (tj)) a0:n−m (tj)
T (105)

=
∑

tj∈T/{τ}
cj (a1:m (tj)− exp (i2πτ) a0:m−1 (tj)) a0:n−m (tj)

T , (106)

which has rank s− 1.

If τ /∈ T the column space of LY0,Y1 (exp (i2πτ)) is spanned by exp (i2πt1), . . . , exp (i2πts)
and exp (i2πτ). By Lemma 4.4 these vectors are linearly independent, so the matrix pencil
has rank s.

A.4 Proof of Lemma 4.10

From (103) we have

A0:m−1 (T ) = A0:m−1 (T ) Φ, (107)
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where

Φ :=


exp (i2πt1) 0 · · · 0

0 exp (i2πt2) · · · 0

· · · · · · · · · · · ·
0 0 · · · exp (i2πts)

 . (108)

Y0 can be decomposed as

Y0 = A0:m−1 (T )CA0:n−m (T )T . (109)

Let U ΣV ∗ be the singular value decomposition of C A0:n−m (T )T , where U ∈ Cs×s, Σ ∈ Cs×s

and V ∈ Cn−m+1×s. If the coefficients c1, . . . , cs are nonzero then C is full rank. A0:n−m (T )T

is full rank by Lemma 4.4. This implies that V Σ−1 U∗ is a right inverse of C A0:n−m (T )T ,

C A0:n−m (T )T V Σ−1 U∗ = I. (110)

We now use these facts to decompose Y1,

Y1 = A1:m (T ) C A0:n−m (T )T (111)

= A0:m−1 (T ) ΦC A0:n−m (T )T by (107) (112)

= A0:m−1 (T ) C A0:n−m (T )T V Σ−1 U∗ΦC A0:n−m (T )T by (110) (113)

= Y0 V Σ−1 U∗ΦU ΣV ∗. (114)

The row space of Y0 is the same as the row space of CA0:n−m (T )T because A0:m−1 (T )T is
full rank by Lemma 4.4. This implies that

V0 Σ−10 U∗0 Y0V = V0V
∗
0 V (115)

= V. (116)

As a consequence

V0 Σ−10 U∗0 Y1 = V0 Σ−10 U∗0Y0 V Σ−1 U∗ΦU ΣV ∗ (117)

= V Σ−1 U∗ΦU ΣV ∗ (118)

= P−1

Φ 0

0 0

P, (119)

where

P :=

U 0

0 I

Σ 0

0 I

V ∗
V ∗⊥

 (120)

and V⊥ is any orthogonal matrix whose column space is the orthogonal complement to the
column space of V . This establishes that the nonzero eigenvalues of the matrix V0 Σ−10 U∗0 Y1
correspond to the diagonal entries of Φ.
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Lecture notes 7 March 28, 2016

Sparse regression

1 Linear regression

In statistics, the problem of regression is that of learning a function that allows to estimate
a certain quantity of interest, the response or dependent variable, from several observed
variables, known as covariates, features or independent variables. For example, we might be
interested in estimating the price of a house based on its extension, the number of rooms,
the year it was built, etc. The function that models the relation between the response and
the predictors is learnt from training data and can then be used to predict the response for
new examples.

In linear regression, we assume that the response is well modeled as a linear combination of
the predictors. The model is parametrized by an intercept β0 ∈ R and a vector of weights
β ∈ Rp, where p is the number of predictors. Let us assume that we have n data points
consisting of a value of the response yi and the corresponding values of the predictors Xi1,
Xi2, . . . , Xip, 1 ≤ i ≤ n. The linear model is given by

yi ≈ β0 +

p∑
j=1

βjXij, 1 ≤ i ≤ n, (1)
y1

y2

· · ·
yn

 ≈


1
1
· · ·
1

 β0 +


X11 X12 · · · X1p

X21 X22 · · · X2p

· · ·
Xn1 Xn2 · · · Xnp



β1

β2

· · ·
βp

 =


1
1
· · ·
1

 β0 +Xβ. (2)

We have already encountered linear models that arise in inverse problems such as compressed
sensing or super-resolution. A major difference between statistics and those applications is
that in statistics the ultimate aim is to predict y accurately for new values of the predictors,
not to estimate β. The role of β is merely to quantify the linear relation between the response
and the predictors. In contrast, when solving an inverse problems the main objective is to
determine β, which has a physical interpretation: an image of a 2D slice of a body in MRI,
the spectrum of multisinusoidal signal in spectral super-resolution, reflection coefficients of
strata in seismography, etc.

1.1 Least-squares estimation

To calibrate the linear regression model, we estimate the weight vector from the training
data. By far the most popular method to compute the estimate is to minimize the `2 norm



of the fitting error on the training set. In more detail, the weight estimate βls is the solution
of the least-squares problem

minimize
∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣

2
. (3)

The least-squares cost function is convenient from a computational view, since it is convex
and can be minimized efficiently (in fact, as we will see in a moment it has a closed-form
solution). In addition, as detailed in Proposition 1.3 below, it has a reasonable probabilistic
interpretation.

The following proposition, proved in Section 1.1, shows that the solution to the least-squares
problem has a closed form solution.

Proposition 1.1 (Least-squares solution). For p ≥ n, if X is full rank then the solution to
the least-squares problem (3) is

βls :=
(
XTX

)−1
XTy. (4)

A corollary to this result provides a geometric interpretation for the least-squares estimate
of y: it is obtained by projecting the response onto the column space of the matrix formed
by the predictors.

Corollary 1.2. For p ≥ n, if X is full rank then Xβls is the projection of y onto the column
space of X.

Proof. Let X = UΣV T be the singular-value decomposition of X. Since X is full rank and
p ≥ n we have UTU = I, V TV = I and Σ is a square invertible matrix, which implies

Xβls = X
(
XTX

)−1
XTy (5)

= UΣV T
(
V ΣUTUΣV T

)
V ΣUTy (6)

= UUTy. (7)

Proposition 1.3 (Least-squares solution as maximum-likelihood estimate). If we model y
as

y = Xβ + z (8)

where X ∈ Rn×p, p ≥ n, β ∈ Rp and y ∈ Rn are fixed and the entries of z ∈ Rn are
iid Gaussian random variables with mean zero and the same variance, then the maximum-
likelihood estimate of β given y is equal to βls.

The proposition is proved in Section A.2 of the appendix.
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1.2 Preprocessing

The careful reader might notice that we have not explained how to fit the intercept β0. Before
fitting a linear regression model, we typically perform the following preprocessing steps.

1. Centering each predictor column Xi subtracting its mean

µj :=
n∑
i=1

Xij (9)

so that each column of X has mean zero.

2. Normalizing each predictor column Xj by dividing by

σj :=

√√√√ n∑
i=1

(Xij − µj)2 (10)

so that each column of X has `2 norm equal to one. The objective is to make the
estimate invariant to the units used to measure each predictor.

3. Centering the response vector y by subtracting its mean

µy :=
n∑
i=1

yi. (11)

By the following lemma, the intercept of the linear model once we have centered the data is
equal to zero.

Lemma 1.4 (Intercept). If the mean of y and of each of the columns of X is zero, then the
intercept in the least-squares solution is also zero.

The lemma is proved in Section A.3 of the appendix.

Once have solved the least-squares problem using the centered and normalized data to obtain
βls, we can use the model to estimate the response corresponding to a new vector of predictors
x ∈ Rp by computing

f (x) := µy +

p∑
i=1

βls,i
xi − µi
σi

. (12)

3



1.3 Overfitting

Imagine that a friend tells you:

I found a cool way to predict the temperature in New York: It’s just a linear combination of
the temperature in every other state. I fit the model on data from the last month and a half
and it’s perfect!

Your friend is not lying, but the problem is that she is using a number of data points to fit
the linear model that is roughly the same as the number of parameters. If n = p we can find
a β such that y = Xβ exactly, even if y and X have nothing to do with each other! This is
called overfitting and is usually caused by using a model that is too flexible with respect to
the number of data that are available.

To evaluate whether a model suffers from overfitting we separate the data into a training set
and a test set. The training set is used to fit the model and the test set is used to evaluate
the error. A model that overfits the training set will have a very low error when evaluated
on the training examples, but will not generalize well to the test examples.

Figure 1 shows the result of evaluating the training error and the test error of a linear model
with p = 50 parameters fitted from n training examples. The training and test data are
generated by fixing a vector of weights β and then computing

ytrain = Xtrain β + ztrain, (13)

ytest = Xtest β, (14)

where the entries of Xtrain, Xtest, ztrain and β are sampled independently at random from a
Gaussian distribution with zero mean and unit variance. The training and test errors are
defined as

errortrain =
||Xtrain βls − ytrain||2

||ytrain||2
, (15)

errortest =
||Xtest βls − ytest||2

||ytest||2
. (16)

Note that even the true β does not achieve zero training error because of the presence of the
noise, but the test error is actually zero if we manage to estimate β exactly.

The training error of the linear model grows with n. This makes sense as the model has to fit
more data using the same number of parameters. When n is close to p (50), the fitted model
is much better than the true model at replicating the training data (the error of the true
model is shown in green). This is a sign of overfitting: the model is adapting to the noise
and not learning the true linear structure. Indeed, in that regime the test error is extremely
high. At larger n, the training error rises to the level achieved by the true linear model and
the test error decreases, indicating that we are learning the underlying model.

4
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Figure 1: Relative `2-norm error in estimating the response achieved using least-squares regression
for different values of n (the number of training data). The training error is plotted in blue, whereas
the test error is plotted in red. The green line indicates the training error of the true model used
to generate the data.

1.4 Theoretical analysis of linear regression

In this section we analyze the solution of the least-squares regression fit to understand
its dependence with the number of training examples. The following theorem, proved in
Section A.4 of the appendix, characterizes the error in estimating the weights under the
assumption that the data are indeed generated by a linear model with additive noise.

Theorem 1.5. Assume the data y are generated according to a linear model with additive
noise,

y = Xβ + z, (17)

where X ∈ Rn×p and β ∈ Rp, and that the entries of z ∈ Rn are drawn independently at
random from a Gaussian distribution with zero mean and variance σ2

z . The least-squares
estimate

βls := arg min
β̃

∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣
2

(18)

satisfies

p σ2
z (1− ε)
σ2

max

≤ ||β − βls||22 ≤
p σ2

z (1 + ε)

σ2
min

(19)
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with probability 1 − 2 exp
(
−pε2

8

)
. σmin and σmax denote the smallest and largest singular

value of X respectively.

The bounds in the theorem are in terms of the singular values of the predictor matrix
X ∈ Rn×p. To provide some intuition as to the scaling of these singular values when we fix
p and increase n, let us assume that the entries of X are drawn independently at random
from a standard Gaussian distribution. Then by Proposition 3.4 in Lecture Notes 5 both
σmin and σmax are close to

√
n with high probability as long as n > C p for some constant

C. This implies that if the variance of the noise z equals one,

||β − βls||2 ≈
√
p

n
. (20)

If each of the entries of β has constant magnitude the `2 norm of β is approximately equal
to
√
p. In this case, the theoretical analysis predicts that the normalized error

||β − βls||2
||β||2

≈ 1√
n
. (21)

Figure 2 shows the result of a simulation where the entries of X, β and z are all generated by
sampling independently from standard Gaussian random variables. The relative error scales
precisely as 1/

√
n.

For a fixed number of predictors, this analysis indicates that the least-squares solution con-
verges to the true weights as the number of data n grows. In statistics jargon, the estimator
is consistent. The result suggests two scenarios in which the least-squares estimator may not
yield a good estimate: when p is of the same order as n and when some of the predictors are
highly correlated, as some of the singular values of X may be very small.

1.5 Global warming

In this section we describe the application of linear regression to climate data. In particular,
we analyze temperature data taken in a weather station in Oxford over 150 years.1 Our
objective is not to perform prediction, but rather to determine whether temperatures have
risen or decreased during the last 150 years in Oxford.

In order to separate the temperature into different components that account for seasonal
effects we use a simple linear with three predictors and an intercept

y ≈ β0 + β1 cos

(
2πt

12

)
+ β2 cos

(
2πt

12

)
+ β3 t (22)

1The data is available at http://www.metoffice.gov.uk/pub/data/weather/uk/climate/

stationdata/oxforddata.txt.
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Figure 2: Relative `2-norm error of the least-squares estimate as n grows. The entries of X, β
and z are all generated by sampling independently from standard Gaussian random variables. The
simulation is consistent with 21.

where t denotes the time in months. The corresponding matrix of predictors is

X :=


1 cos

(
2πt1
12

)
sin
(

2πt1
12

)
t1

1 cos
(

2πt2
12

)
sin
(

2πt2
12

)
t2

· · · · · · · · · · · ·

1 cos
(

2πtn
12

)
sin
(

2πtn
12

)
tn

 . (23)

The intercept β0 represents the mean temperature, β1 and β2 account for periodic yearly
fluctuations and β3 is the overall trend. If β3 is positive then the model indicates that tem-
peratures are increasing, if it is negative then it indicates that temperatures are decreasing.

The results of fitting the linear model are shown in Figures 3 and 4. The fitted model
indicates that both the maximum and minimum temperatures have an increasing trend of
about 0.8 degrees Celsius (around 1.4 degrees Fahrenheit).

7



Maximum temperature Minimum temperature

1860 1880 1900 1920 1940 1960 1980 2000

0

5

10

15

20

25

30

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Data

Model

1860 1880 1900 1920 1940 1960 1980 2000
10

5

0

5

10

15

20

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Data

Model

1900 1901 1902 1903 1904 1905
0

5

10

15

20

25

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Data

Model

1900 1901 1902 1903 1904 1905
2

0

2

4

6

8

10

12

14

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Data

Model

1960 1961 1962 1963 1964 1965
5

0

5

10

15

20

25

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Data

Model

1960 1961 1962 1963 1964 1965
10

5

0

5

10

15

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s)

Data

Model

Figure 3: Temperature data together with the linear model described by (22) for both maximum
and minimum temperatures.
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Figure 4: Temperature trend obtained by fitting the model described by (22) for both maximum
and minimum temperatures.

1.6 Logistic regression

The problem of classification in statistics and machine learning is very related to regression.
The only difference is that in classification the response is binary: it is equal to either 0 or 1.
Of course, the labels 0 and 1 are arbitrary, they represent two distinct classes into which we
aim to classify our data. For example, the predictors might be pictures and the two classes
cats and dogs.

In linear regression, we use a linear model to predict the response from the predictors. In
logistic regression, we use a linear model to predict how likely it is for the response to equal
0 or 1. This requires mapping the output of the linear model to the [0, 1] interval, which is
achieved by applying the logistic function or sigmoid,

g (t) :=
1

1 + exp−t
, (24)

to a linear combination of the predictors. In more detail, we model the probability that
yi = 1 by

P (yi = 1|Xi1, Xi2, . . . , Xip) ≈ g

(
β0 +

p∑
j=1

βjXij

)
(25)

=
1

1 + exp
(
−β0 −

∑p
j=1 βjXij

) . (26)
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In Proposition 1.3 we established that least-squares fitting computes a maximum-likelihood
estimate in the case of linear models with additive Gaussian noise. The following proposition
derives a cost function to calibrate a logistic-regression model by maximizing the likelihood
under the assumption that the response is a Bernouilli random variable parametrized by the
linear model.

Proposition 1.6 (Logistic-regression cost function). If we assume that the response values
y1, y2, . . . , yn in the training data are independent samples from Bernouilli random variables
y̌1, y̌2, . . . , y̌n such that

P (y̌i = 1|Xi1, Xi2, . . . , Xip) := g

(
β0 +

p∑
j=1

βjXij

)
, (27)

P (y̌i = 0|Xi1, Xi2, . . . , Xip) := 1− g

(
β0 +

p∑
j=1

βjXij

)
, (28)

then the maximum-likelihood estimate of the intercept and the weights β0 and β0 are obtained
by maximizing the function

logL
(
β̃0, β̃

)
:=

n∑
i=1

yi log g

(
β̃0 +

p∑
j=1

β̃jXij

)
+ (1− yi) log

(
1− g

(
β̃0 +

p∑
j=1

β̃jXij

))
.

(29)

Proof. Due to the independence assumption, the joint probability mass function (pmf) of
the random vector y̌ equals

py̌ (y) :=
n∏
i=1

g

(
β̃0 +

p∑
j=1

β̃jXij

)yi (
1− g

(
β̃0 +

p∑
j=1

β̃jXij

))1−yi

. (30)

The likelihood is defined as the joint pmf parametrized by the weight vectors,

L
(
β̃0, β̃

)
:=

n∏
i=1

g

(
β̃0 +

p∑
j=1

β̃jXij

)yi (
1− g

(
β̃0 +

p∑
j=1

β̃jXij

))1−yi

. (31)

Taking the logarithm of this nonnegative function completes the proof.

The log-likelihood function is strictly concave, so the logistic-regression estimate is well
defined. Although the cost function is derived by assuming that the data follow a certain
probabilistic model, logistic regression is widely deployed in situations where the probabilistic
assumptions do not hold. The model will achieve high prediction accuracy on any dataset
where the predictors are linearly separable, as long as sufficiently data is available.
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2 Sparse regression

2.1 Model selection

In Section 1.4 we establish that linear regression allows to learn a linear model when the
number of available examples n is large with respect to the number of predictors p. However,
in many modern applications, the number of predictors can be extremely large. An example
is computational genomics, where the predictors may correspond to gene-expression mea-
surements from thousands of genes, whereas n is the number of patients which might only
be in the hundreds.

It is obviously impossible to fit a linear model when p > n, or even when p ≈ n without
overfitting (depending on the noise level), but it may still be possible to fit a sparse linear
model that only depends on a subset of s < p predictors. Selecting the relevant predictors
to include in the model is called model selection in statistics.

2.2 Best subset selection and forward stepwise regression

A possible way to select a small number of relevant predictors from a training set is to fix the
order of the sparse model s < p and then evaluate the least-squares fit of all possible s-sparse
models in order to select the one that provides the best fit. This is called the best-subset
selection method. Unfortunately it is computationally intractable even for small values of s
and p. For instance, there are more than 1013 possible models if s = 10 and p = 100.

An alternative to an exhaustive evaluation of all possible sparse models is to select the
predictors greedily in the spirit of signal-processing methods such as orthogonal matching
pursuit. In forward stepwise regression we select the predictor that is most correlated with
the response and then project the rest of predictors onto its orthogonal complement. Iterating
this procedure allows to learn an s-sparse model in s steps.

Algorithm 2.1 (Forward stepwise regression). Given a matrix of predictors X ∈ Rn×p and
a response y ∈ Rn, we initialize the residual and the subset of relevant predictors S by setting,

j0 := arg max
j
|〈y,Xj〉| (32)

S0 := {j0} (33)

βls := arg min
β̃

∣∣∣∣∣∣y −XS0 β̃∣∣∣∣∣∣
2

(34)

r(0) := y −XS0 βls. (35)
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Then for k = 2, 3, . . . , s we compute

jk := arg max
j /∈Sj−1

∣∣∣∣〈y,Pcol(XSj−1)
⊥ Xj

〉∣∣∣∣ (36)

Sj := Sj−1 ∪ {jk} (37)

βls := arg min
β̃

∣∣∣∣∣∣y −XSj β̃∣∣∣∣∣∣
2

(38)

r(k) := r(k−1) −XSj βls. (39)

The algorithm is very similar to orthogonal matching pursuit. The only difference is the
orthogonalization step in which we project the remaining predictors onto the orthogonal
complement of the span of the predictors that have been selected already.

2.3 The lasso

Fitting a sparse model that uses a subset of the available predictors is equivalent to learning
a weight vector β that only contains a small number of nonzeros. As we saw in the case of
sparse signal representations and underdetermined inverse problems, penalizing the `1 norm
is an efficient way of promoting sparsity. In statistics, `1-norm regularized least squares is
known as the lasso,

minimize
1

2n

∣∣∣∣∣∣y − β̃0 −Xβ̃
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣∣∣β̃∣∣∣∣∣∣
1

(40)

(41)

λ > 0 is a regularization parameter that controls the tradeoff between the fit to the data
and the `1 norm of the weights. Figure 5 shows the values of the coefficients obtained by the
lasso for a linear regression problem with 50 predictors where the response only depends on
3 of them. If λ is very large, all coefficients are equal to zero. If λ is very small, then the
lasso estimate is equal to the least-squares estimate. For values in between, the lasso yields
a sparse model containing the coefficients corresponding to the relevant predictors.

A different formulation for the lasso, which is the one that appeared in the original paper [4],
incorporates a constraint on the `1 norm of the weight vector, instead of an additive term.

minimize
∣∣∣∣∣∣y −Xβ̃ − β̃0

∣∣∣∣∣∣2
2

(42)

subject to
∣∣∣∣∣∣β̃∣∣∣∣∣∣

1
≤ τ (43)

The two formulations are equivalent, but the relation between λ and τ depends on X and y.
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Figure 5: Magnitude of the lasso coefficients for different value of the regularization parameter.
The number of predictors is 50, but the response only depends on 3 of them, which are marked in
red.

To compare the performance of the lasso, forward stepwise regression and least-squares
regression on a dataset that follows a sparse linear model we generate simulated data by
computing

ytrain = Xtrain β + ztrain, (44)

ytest = Xtest β, (45)

where the entries of Xtrain, Xtest and ztrain and β are sampled independently at random from
a Gaussian distribution with zero mean and unit variance. 10 entries of β are also sampled
iid from a standard normal, but the rest are set to zero. As a result the response only
depends on 10 predictors out of a total of 50. The training and test errors were computed
as in (15) and (16).

Figure 6 shows the results for different values of n (to be clear we compute the estimates
once at each value of n). As expected, the least-squares estimator overfits the training data
and performs very badly on the test set for small values of n. In contrast, the lasso and
forward stepwise regression do not overfit and achieve much smaller errors on the test set,
even when n is equal to p.

In our implementation of forward stepwise regression we set the number of predictors in the
sparse model to the true number. On real data we would need to also estimate the order of
the model. The greedy method performs very well in some instances because it manages to

13



select the correct sparse model. However, in other cases, mistakes in selecting the relevant
predictors produce high fit errors, even on the training set. In contrast, the lasso achieves
accurate fits for every value of n.

2.4 Theoretical analysis of the lasso

Assume that we have data that follow a sparse linear model of the form

y = Xβ + z (46)

where the weight vector β is sparse, so that the response y only depends on s < p predictors.
By Theorem 1.5, if the noise has variance σ2, least-squares regression yields an estimate of
the weight vector that satisfies

||β − βls||2 ≈ σz

√
p

n
. (47)

as long as the matrix of predictors X is well conditioned and has entries with constant
amplitudes. When p is close to n this indicates that least-squares regression does not yield
a good estimate.

In order to characterize the error achieved by the lasso, we introduce the restricted-eigenvalue
property (REP), which is similar to the restricted-isometry property (RIP) that we studied
in Lecture Notes 5.

Definition 2.2 (Restricted-eigenvalue property). A matrix M ∈ Rn×p satisfies the restricted-
eigenvalue property with parameter s if there exists γ > 0 such that for any v ∈ Rp if

||vT c||1 ≤ ||vT ||1 (48)

for any subset T with cardinality s then

1

n
||M v||22 ≥ γ ||v||22 . (49)

Just like the RIP, the REP states that the matrix preserves the norm of a certain class
of vectors. In this case, the vectors are not necessarily sparse, but rather have `1-norm
concentrated on a sparse subset of the entries, which can be interpreted as a robustified
notion of sparsity. The property may hold even if p > n, i.e. when we have more predictors
than examples. The following theorem provides guarantees for the lasso under the REP.

Theorem 2.3. Assume that the data y are generated according to a linear model with additive
noise,

y = Xβ + z, (50)
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Figure 6: Comparison of the training and test error of the lasso, forward stepwise regression and
least-squares regression for simulated data where the number of predictors is equal to 50 but only
10 are used to generate the response.
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where X ∈ Rn×p and β ∈ Rp, and that the entries of z ∈ Rn are drawn independently at
random from a Gaussian distribution with zero mean and variance σ2

z . If β has s nonzero
entries and X satisfies the restricted-eigenvalue property, the solution βlasso to

minimize
∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣2

2
(51)

subject to
∣∣∣∣∣∣β̃∣∣∣∣∣∣

1
≤ τ (52)

if we set τ := ||β||1 satisfies

||β − βlasso||2 ≤
σz
√

32 α s log p

γ n
max
i
||Xi||2 (53)

with probability 1− 2 exp (− (α− 1) log p) for any α > 2.

The result establishes that the lasso achieves an error that scales as σz
√
s/n, which is the

same rate achieved by least squares if the true sparse model is known!

In this section we have focused on the estimation of the weight vector. This is important
for model selection, as the sparsity pattern and the amplitude of the weights reveals the
sparse model used to predict the response. However, in statistics the main aim is often to
predict the response. For this purpose, in principle, conditions such as the REP should not
be necessary. For results on the prediction error of the lasso we refer the interested reader to
Chapter 11 of [3]. In Section 3 we discuss the performance of the lasso and related methods
when the predictor matrix does not satisfy the REP.

2.5 Sparse logistic regression

An advantage of the lasso over greedy methods to learn sparse linear models is that it can be
easily applied to logistic regression. All we need to do is add an `1-norm regularization term
to the cost function derived in Section 1.6. In detail, to learn a sparse logistic-regression
model we minimize the function

−
n∑
i=1

yi log g

(
β̃0 +

p∑
j=1

β̃jXij

)
− (1− yi) log

(
1− g

(
β̃0 +

p∑
j=1

β̃jXij

))
+ λ

∣∣∣∣∣∣β̃∣∣∣∣∣∣
1
.

This version of the lasso can be used to obtain a sparse logistic model for prediction of
binary responses. To illustrate this, we consider a medical dataset2. The response indicates
whether 271 patients suffer from arrhythmia or not. The predictors contain information
about each patient, such as age, sex, height and weight, as well as features extracted from

2The data can be found at https://archive.ics.uci.edu/ml/datasets/Arrhythmia

16

https://archive.ics.uci.edu/ml/datasets/Arrhythmia


-10 -8 -6 -4 -2

0
.2

5
0

.3
5

0
.4

5

log(Lambda)

M
is

c
la

s
s
ifi

c
a

tio
n

 E
rr

o
r

182 172 174 159 107 62 18 5
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electrocardiogram recordings. The total number of predictors is 182. We use the glmnet
package in R [2] to fit the sparse logistic regression model.

Figure 7 shows the distribution of the test error achieved after repeatedly fitting the model
using a random subset of 90% of the examples; a procedure known as cross-validation in
statistics. The number of predictors included in the sparse model is indicated above the
graph. The best results are obtained by a model containing 62 predictors, but a model
containing 18 achieves very similar accuracy (both are marked with a dotted line).

3 Correlated predictors

In many situations, some of the predictors in a dataset may be highly correlated. As a result,
the predictor matrix is ill conditioned, which is problematic for least squares regression, and
also for the lasso. In this section, we discuss this issue and show how it can be tackled
through regularization of the regression cost function.

3.1 Ridge regression

When the data in a linear regression problem is of the form y = Xβ+z, we can write the error
of the least-squares estimator in terms of the singular-value decomposition of X = UΣV T ,

||β − βls||2 =

√√√√ p∑
j=1

(
UT
j z

σj

)2

, (54)

see (102) in Section 1.5. If a subset of the predictors are highly correlated, then some of
the singular values will have very small values, which results in noise amplification. Ridge
regression is an estimation technique that controls noise amplification by introducing an
`2-norm penalty on the weight vector,

minimize
∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣2

2
+ λ

∣∣∣∣∣∣β̃∣∣∣∣∣∣2
2
, (55)

where λ > 0 is a regularization parameter that controls the weight of the regularization
term as in the lasso. In inverse problems, `2-norm regularization is often known as Tikhonov
regularization.

The following proposition shows that, under the assumption that the data indeed follow a
linear model, the error of the ridge-regression estimator can be decomposed into a term that
depends on the signal and a term that depends on the noise.
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Proposition 3.1 (Ridge-regression error). If y = Xβ + z and X ∈ Rn×p, n ≥ p, is full
rank, then the solution of Problem (55) can be written as

βridge = V



σ2
1

σ2
1+λ

0 · · · 0

0
σ2
2

σ2
2+λ

· · · 0

· · ·

0 0 · · · σ2
p

σ2
p+λ

V
Tβ + V


σ1

σ2
1+λ

0 · · · 0

0 σ2
σ2
2+λ

· · · 0

· · ·

0 0 · · · σp
σ2
p+λ

U
T z. (56)

We defer the proof to Section A.6 in the appendix.

Increasing the value of the regularization parameter λ allows to control the noise term when
some of the predictors are highly correlated. However, this also increases the error term that
depends on the original signal; if z = 0 then we don’t recover the true weight vector β unless
λ = 0. Calibrating the regularization parameter allows to adapt to the conditioning of the
predictor matrix and the noise level in order to achieve a good tradeoff between both terms.

3.2 The elastic net

Figure 8 shows the coefficients of the lasso and ridge regression learnt from a dataset where
the response follows a sparse regression model. The model includes 50 predictors but only
12 are used to generate the response. These 12 predictors are divided into two groups of 6
that are highly correlated3.

The model obtained using ridge regression assigns similar weights to the correlated variables.
This is a desirably property since all of these predictors are equally predictive of the response
value. However, the learnt model is not sparse for any value of the regularization parameter,
which means that it selects all of the irrelevant predictors. In contrast, the lasso produces a
sparse model, but the coefficients of the relevant predictors are very erratic. In fact, in the
regime where the coefficients are sparse not all the relevant predictors are included in the
model (two from the second group are missing).

The following lemma, proved in gives some intuition as to why the coefficient path for the
lasso tends to be erratic when some predictors are highly correlated. When two predictors
are exactly the same, then the lasso chooses arbitrarily between the two, instead of including
both in the model with similar weights.

Lemma 3.2. If two columns of the predictor matrix X are identical Xi = Xj, i 6= j, and

3In more detail, the predictors in each group are sampled from a Gaussian distribution with zero mean
and unit variance such that the covariance between each pair of predictors is equal to 0.95.
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Figure 8: Coefficients of the lasso, ridge-regression and elastic-net estimate for a linear regression
problem where the response only depends on two groups of 6 predictors each out of a total of 50
predictors. The predictors in each group are highly correlated.
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βlasso is a solution of the lasso, then

β (α)i := αβlasso,i + (1− α) βlasso,j, (57)

β (α)j := (1− α) βlasso,i + αβlasso,j, (58)

β (α)k := βlasso,k, k /∈ {i, j} , (59)

is also a solution for any 0 < α < 1.

The following lemma, which we have borrowed from [6], provides some intuition as to why
strictly convex regularization functions such as ridge regression tend to weigh highly corre-
lated predictors in a similar way. This does not contradict the previous result because the
lasso is not strictly convex. The result is proved in Section A.8 of the appendix.

Lemma 3.3 (Identical predictors). Let us consider a regularized least squares problem of
the form

minimize
1

2n

∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣2
2

+ λ R
(
β̃
)

(60)

where R is an arbitrary regularizer, which is strictly convex and invariant to the ordering
of its argument. If two columns of the predictor matrix X are identical Xi = Xj then the
corresponding coefficients in the solution βR of the optimization problem are also identical:
βR,i = βR,j.

For sparse regression problems where some predictors are highly correlated ridge regression
weighs correlated predictors similarly, as opposed to the lasso, but does not yield a sparse
model. The elastic net combines the lasso and ridge-regression cost functions introducing
an extra regularization parameter α,

minimize
∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣2

2
+ λ

(
1− α

2

∣∣∣∣∣∣β̃∣∣∣∣∣∣2
2

+
α

2

∣∣∣∣∣∣β̃∣∣∣∣∣∣
1

)
. (61)

For α = 0 the elastic net is equivalent to ridge regression, whereas for α = 1 it’s equivalent to
the lasso. For intermediate values of α the cost function yields sparse linear models where the
coefficients corresponding to highly correlated predictors have similar amplitudes, as shown
in Figure 8.

Figure 9 plots the training and test error achieved by least squares, ridge regression, the
lasso and the elastic net on a dataset where the response only depends on two groups of
highly correlated predictors. The total number of predictors in the dataset is p = 50 and the
number of training examples is n = 100. Least squares overfits the data, yielding the best
error for the training set. Ridge regression has a significantly lower test error, but does not
achieve the performance of the lasso because it does not yield a sparse model as can be seen
in Figure 8. The elastic net achieves the lowest test error.
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Figure 9: Training and test error achieved by least squares, ridge regression, the lasso and the elas-
tic net on a dataset where the response only depends on two groups of highly correlated predictors.
The coefficient paths are shown in Figure 8.
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4 Group sparsity

4.1 Introduction

Group sparsity is a generalization of sparsity that allows us to design models that incorporate
prior information about the data. If the entries of a vector are partitioned into several groups,
then the vector is group sparse if only the entries corresponding to a small number of groups
are nonzero, no matter how many entries are zero or nonzero within the groups. We have
already exploited group sparsity in the context of denoising in Lecture Notes 4. There we
used block thresholding to enforce the prior assumption that the STFT coefficients in a
speech signal tend to have significant amplitude in contiguous areas. In this section, we
will focus on the application of group-sparsity assumptions to regression models, where the
groups are used to encode information about the structure of the predictors.

We consider a linear regression model where the predictors are partitioned into k groups G1,
G2, . . . , Gk,

y ≈ β0 +Xβ = β0 +
[
XG1 XG2 · · · XGm

]

βG1

βG2

· · ·

βGk

 . (62)

A group-sparse regression model is a model in which only the predictors corresponding to a
small number of groups are used to predict the response. For such models, the coefficient
vector β has a group-sparse structure, since the entries corresponding to the rest of the groups
are equal to zero. For example, if the predictors include the temperature, air pressure and
other weather conditions at several locations, it might make sense to assume that the response
will only depend on the predictors associated to a small number of locations. This implies
that the β should be group sparse, where each group contains the predictors associated to a
particular location.

4.2 Multi-task learning

Multi-task learning is a problem in machine learning and statistics which consists of learning
models for several learning problems simultaneously, exploiting common structure. In the
case of regression, an important example is when we want to estimate several responses Y1,
Y2, . . . , Yk ∈ Rn that depend on the same predictors X1, X2, . . . , Xp ∈ Rn. To learn a linear
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model for this problem we need to fit a matrix of coefficients B ∈ Rp×k,

Y =
[
Y1 Y2 . . . Yk

]
≈ B0 +XB (63)

= B0 +X
[
B1 B2 · · · Bk

]
. (64)

If we estimate B by solving a least-squares problem, then this is exactly equivalent to learning
k linear regression separately, one for each response. However, a reasonable assumption
in many cases is that the different responses depend on the same predictors, albeit with
with different coefficients. This corresponds exactly to a group-sparse assumption on the
coefficient matrix B: B should have a small number of nonzero rows.

4.3 Mixed `1/`2 norm

In order to promote group-sparse structure, a popular approach is to penalize the `1/`2 norm,
which corresponds to the sum of the `2-norms of the entries in the different groups. The
intuition is that minimizing the `1 norm induces sparsity, so minimizing the `1 norm of the
`2-norms of the groups should induce sparsity at the group level.

Definition 4.1 (`1/`2 norm). The `1/`2 norm of a vector β with entries divided into k
groups G1, G2, . . . , Gk is defined as

||β||1,2 :=
k∑
i=1

||βGi ||2 . (65)

In the case of multitask learning, where the groups correspond to the rows of a matrix, the
`1/`2 norm of the matrix corresponds to the sum of the `2 norms of the rows,

||B||1,2 :=
k∑
i=1

||B:i||2 , (66)

where B:i denotes the ith row of B.

Let us give a simple example that shows why penalizing the `1/`2 norm induces group
sparsity. Let us define two groups G1 := {1, 2} and G1 := {3}. The corresponding `1/`2

norm is given by ∣∣∣∣∣∣
∣∣∣∣∣∣
β1

β2

β3

∣∣∣∣∣∣
∣∣∣∣∣∣
1,2

=
√
β2

1 + β2
2 + |β3| (67)

24



Our aim is to fit a regression model. Let us imagine that most of the response can be
explained by the first predictor, so that

y ≈ X

β1

0
0

 , (68)

but the fit can be improved in two ways, by setting either β2 or β3 to a certain value α.
The question is which of the two options is cheaper in terms of `1/`2 norm, since this is the
option that will be chosen if we use the `1/`2 norm to regularize the fit. The answer is that
modifying β2 has much less impact on the `1/`2 norm∣∣∣∣∣∣

∣∣∣∣∣∣
β1

0
0

+

0
α
0

∣∣∣∣∣∣
∣∣∣∣∣∣
1,2

=
√
β2

1 + α2, (69)

∣∣∣∣∣∣
∣∣∣∣∣∣
β1

0
0

+

0
0
α

∣∣∣∣∣∣
∣∣∣∣∣∣
1,2

=
√
β2

1 + α2 + 2 |β1|α, (70)

especially if α is small or β1 is large. The `1/`2 norm induces a group-sparse structure by
making it less costly to include entries that belong to groups which already have nonzero
entries, with respect to groups where all the entries are equal to zero.

The following lemma derives the subgradient of the `1/`2 norm. We defer the proof to
Section A.9 in the appendix.

Lemma 4.2 (Subgradient of the `1/`2 norm). A vector g ∈ Rp is a subgradient of the `1/`2

norm at β ∈ Rp if and only if

gGi =
βGi
||βGi ||2

for βGi 6= 0, (71)

||gGi ||2 ≤ 1 for βGi = 0. (72)

4.4 Group and multitask lasso

The group lasso [5] combines a least-squares term with an `1/`2-norm regularization term to
fit a group-sparse linear regression model,

minimize
∣∣∣∣∣∣Y − β̃0 −Xβ̃

∣∣∣∣∣∣2
F

+ λ
∣∣∣∣∣∣β̃∣∣∣∣∣∣

1,2
, (73)

where λ > 0 is a regularization parameter. Applying the exact same idea to the multi-task
regression problem yields the multi-task lasso

minimize
∣∣∣∣∣∣Y − B̃0 −XB̃

∣∣∣∣∣∣2
F

+ λ
∣∣∣∣∣∣B̃∣∣∣∣∣∣

1,2
, (74)
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Figure 10: Errors achieved by the lasso and the multitask lasso on a multitask regression problem
where the same s predictors (out of a total of p = 100 predictors) are used to produce the response
in k sparse linear regression models. The training data is equal to n = 50.
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Figure 11: Coefficients for the lasso and the multitask lasso when s = 30 and k = 40 in the
experiment described in Figure 10. The first 30 rows contain the relevant features.

where the Frobenius norm ||·||F is equivalent to the `2 norm of the matrix once it is vectorized.

Figure 10 shows a comparison between the errors achieved by the lasso and the multitask
lasso on a multitask regression problem where the same s predictors (out of a total of
p = 100 predictors) are used to produce the response in k sparse linear regression models.
The training data is equal to n = 50. The lasso fits each of the models separately, whereas
the multitask lasso produces a joint fit. This allows to learn the model more effectively and
achieve a lower error, particularly when the number of predictors is relatively large (s = 30).
Figure 11 shows the actual coefficients fit by the lasso and the multitask lasso when s = 30
and k = 40. The multitask lasso is able to promote a group sparse structure which results in
the correct identification of the relevant predictors. In contrast, the lasso fits sparse models
that do not necessarily contain the same predictors, making it easier to include irrelevant
predictors that seem relevant for a particular response because of the noise.

4.5 Proximal-gradient algorithm

In order to apply the group or the multitask lasso we need to solve a least-squares problem
with an `1/`2-norm. In this section we adapt the proximal-gradient algorithm described in
Lectures Notes 3 to this setting. The first step is to derive the proximal operator of this
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norm.

Proposition 4.3 (Proximal operator of the `1/`2 norm). The solution to the optimization
problem

minimize
1

2

∣∣∣∣∣∣β − β̃∣∣∣∣∣∣2
2

+ α
∣∣∣∣∣∣β̃∣∣∣∣∣∣

1,2
, (75)

where α > 0, is obtained by applying a block soft-thresholding operator to β

proxα ||·||1,2 (β) = BSα (β) , (76)

where

BSα (β)Gi :=

βGi − α
βGi

||βGi ||2
if ||βGi ||2 ≥ α

0 otherwise.
(77)

The proof of this result is in Section A.10 of the appendix.

The proximal-gradient method alternates between block-thresholding and taking a gradient
step to minimize the least-squares fit.

Algorithm 4.4 (Iterative Block-Thresholding Algorithm). We set the initial point x(0) to
an arbitrary value in Rn. Then we compute

x(k+1) = BSαk λ

(
x(k) − αk AT

(
Ax(k) − y

))
, (78)

until a convergence criterion is satisfied.

Convergence may be accelerated using the ideas discussed in Lecture Notes 3 to motivate
the FISTA method.
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A Proofs

A.1 Proof of Proposition 1.1

Let X = UΣVT be the singular-value decomposition (SVD) of X. Under the conditions of

the proposition,
(
XTX

)−1
XTy = V ΣUT . We begin by separating y into two components

y = UUTy +
(
I − UUT

)
y (79)

where UUTy is the projection of y onto the column space of X. Note that
(
I − UUT

)
y is

orthogonal to the column space of X and consequently to both UUTy and Xβ̃ for any β̃.
By Pythagoras’s Theorem∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣2

2
=
∣∣∣∣(I − UUT

)
y
∣∣∣∣2

2
+
∣∣∣∣∣∣UUTy −Xβ̃

∣∣∣∣∣∣2
2
. (80)

The minimum value of this cost function that can be achieved by optimizing over ˜beta is
||yX⊥ ||22. This can be achieved by solving the system of equations

UUTy = Xβ̃ = UΣVT β̃. (81)

Since UTU = I because p ≥ n, multiplying both sides of the equality yields the equivalent
system

UTy = ΣVT β̃. (82)

Since X is full rank, Σ and V are square and invertible (and by definition of the SVD
V −1 = V T ), so

βls = V ΣUTy (83)

is the unique solution to the system and consequently also of the least-squares problem.
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A.2 Proof of Proposition 1.3

We model the noise as a random vector ž which has entries that are independent Gaussian
random variables with mean zero and a certain variance σ. Note that ž is a random vector,
whereas z is the realization of the random vector. Similarly, the data y that we observe is
interpreted as a realization of a random vector y̌. The ith entry of

y̌ = Xβ + ž (84)

is a Gaussian random variable with mean (Xβ)i and variance σ2. The pdf of y̌i is conse-
quently of the form

fy̌i (t) :=
1√
2πσ

exp

−
(
t−
(
Xβ̃
)
i

)2

2σ2

 . (85)

By assumption, the entries of ž are independent, so the joint pdf of y̌ is equal to

fy̌ (ỹ) :=
n∏
i=1

1√
2πσ

exp

−
(
ỹi −

(
Xβ̃
)
i

)2

2σ2

 (86)

:=
1√

(2π)nσn
exp

(
− 1

2σ2

∣∣∣∣∣∣ỹ −Xβ̃∣∣∣∣∣∣2
2

)
. (87)

The likelihood is the probability density function of y̌ evaluated at the observed data y and
interpreted as a function of β̃.

L
(
β̃
)

=
1√

(2π)n
exp

(
−1

2

∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣2
2

)
. (88)

Since the function is nonnegative and the logarithm is a monotone function, we can take
optimize over the logarithm of the likelihood to find the maximum-likelihood estimate. We
conclude that it is given by the solution to the least-squares problem, since

βML = arg max
β̃
L
(
β̃
)

(89)

= arg max
β̃

logL
(
β̃
)

(90)

= arg min
β̃

∣∣∣∣∣∣y −Xβ̃∣∣∣∣∣∣
2

(91)
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A.3 Proof of Lemma 1.4

Let 1 denote an n-dimensional vector of ones. The model with an intercept is equivalent to

y ≈
[
X 1

] [ β̃
β̃0

]
. (92)

Applying Proposition 1.1 the least-squares fit is β
β0


ls

=

([
X 1

]T [
X 1

])−1 [
X 1

]T
y (93)

=

XTX XT1

1TX n

−1 XTy

1Ty

 (94)

=

XTX 0

0 n

−1 XTy

0

 (95)

=

(XTX
)−1

0

0 1
n

XTy

0

 (96)

=

(XTX
)−1

XTy

0

 , (97)

where have used the fact that 1Ty = 0 and XT1 = 0 because the mean of y and of each of
the columns of X is equal to zero.

A.4 Proof of Theorem 1.5

By Proposition 1.1

||β − βls||22 =
∣∣∣∣β − V Σ−1UTy

∣∣∣∣2
2

(98)

=
∣∣∣∣β − V Σ−1UT (Xβ + z)

∣∣∣∣2
2

(99)

=
∣∣∣∣V Σ−1UT z

∣∣∣∣2
2

(100)

=
∣∣∣∣Σ−1UT z

∣∣∣∣2
2

(101)

=

p∑
j=1

(
UT
j z

σj

)2

, (102)
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which implies ∣∣∣∣UT z
∣∣∣∣2

2

σ2
max

≤ ||β − βls||22 ≤
∣∣∣∣UT z

∣∣∣∣2
2

σ2
min

. (103)

The distribution of the p-dimensional vector UT z is Gaussian with mean zero and covariance
matrix

UT Σz U = σ2
zI, (104)

where Σz = σ2
zI is the covariance of matrix of z. As a result, 1

σ2
z

∣∣∣∣UT z
∣∣∣∣2

2
is a chi-square

random variable with p degrees of freedom. By Proposition A.2 in Lecture Notes 5 and the
union bound

pσ2
z (1− ε) ≤

∣∣∣∣UT z
∣∣∣∣2

2
≤ pσ2

z (1 + ε) (105)

with probability at least 1− exp
(
−pε2

8

)
− exp

(
−pε2

2

)
≥ 1− 2 exp

(
−pε2

8

)
.

A.5 Proof of Theorem 2.3

We define the error

h := β − βlasso. (106)

The following lemma shows that the error satisfies the robust-sparsity condition in the defi-
nition of the restricted-eigenvalue property.

Lemma A.1. In the setting of Theorem 2.3 h := β − βlasso satisfies

||hT c||1 ≤ ||hT ||1 (107)

where T is the support of the nonzero entries of β.

Proof. Since βlasso is feasible and β is supported on T

τ = ||β||1 ≥ ||βlasso||1 (108)

= ||β + h||1 (109)

= ||β + hT ||1 + ||hT c ||1 (110)

≥ ||β||1 − ||hT ||1 + ||hT c ||1 . (111)
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This implies that by the restricted-eigenvalue property we have

||h||22 ≤
1

γn
||X h||22 . (112)

The following lemma allows to bound the right-hand side.

Lemma A.2. In the setting of Theorem 2.3

||Xh||22 ≤ 2 zTXh. (113)

Proof. Because βlasso is the solution to the constrained optimization problem and β is also
feasible we have

||y −Xβlasso||22 ≥ ||y −Xβlasso||22 . (114)

Substituting y = Xβ + z,

||z −Xh||22 ≥ ||z||
2
2 (115)

which implies the result.

Since ||hT c ||1 ≤ ||hT ||1 and hT only has s nonzero entries

||h||1 ≤ 2
√
s ||h||2 (116)

so by Lemma A.2, Hölder’s inequality and (112)

||h||22 ≤
2 zTXh

γn
(117)

≤
2
∣∣∣∣XT z

∣∣∣∣
∞ ||h||1

γn
(118)

≤
4
√
s ||h||2

∣∣∣∣XT z
∣∣∣∣
∞

γn
. (119)

The proof of the theorem is completed by the following lemma, that uses the assumption on
the noise z to bound

∣∣∣∣XT z
∣∣∣∣
∞.

Lemma A.3. In the setting of Theorem 2.3

P
(∣∣∣∣XT z

∣∣∣∣
∞ > σz

√
2α n log p

)
≤ 2 exp (− (α− 1) log p) (120)

for any α > 2.
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Proof. XT
i z is Gaussian with variance σ2

z ||Xi||22, so for t > 0 by Lemma 3.5 in Lecture Notes
5

P
(∣∣XT

i z
∣∣ > tσz ||Xi||2

)
≤ 2 exp

(
−t

2

2

)
(121)

By the union bound,

P
(∣∣∣∣XT z

∣∣∣∣
∞ > tσz max

i
||Xi||2

)
≤ 2 p exp

(
−t

2

2

)
(122)

= 2 exp

(
−t

2

2
+ log p

)
(123)

Choosing t =
√

2α log p for α > 2 we obtain the desired result.

A.6 Proof of Proposition 3.1

The ridge-regression cost function is equivalent to the least-squares cost function

minimize

∣∣∣∣∣∣∣∣[y0
]
−
[
X
λI

]
β̃

∣∣∣∣∣∣∣∣2
2

. (124)

By Proposition 1.1 the solution to this problem is

βridge :=

([
X
λI

]T [
X
λI

])−1 [
X
λI

]T [
y
0

]
(125)

=
(
XTX + λ2I

)−1
XT (Xβ + z) (126)

=
(
V Σ2V T + λ2V V T

)−1 (
V Σ2V Tβ + V ΣUT z

)
(127)

= V
(
Σ2 + λ2I

)−1
V T
(
V Σ2V Tβ + V ΣUT z

)
. (128)

A.7 Proof of Lemma 3.2

Since Xi = Xj,

Xβ (α) = (αβlasso,i + (1− α) βlasso,j)Xi + ((1− α) βlasso,i + αβlasso,j)Xj +
∑
k/∈{i,j}

βlasso,kXk

= βlasso,iXi + βlasso,jXj +
∑
k/∈{i,j}

βlasso,kXk (129)

= Xβlasso, (130)
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which implies ||y −Xβ (α)||2 = ||y −Xβlasso||2. Similarly,

||β (α)||1 = |αβlasso,i + (1− α) βlasso,j|+ |(1− α) βlasso,i + αβlasso,j|+
∑
k/∈{i,j}

|βlasso,k| (131)

≤ α |βlasso,i|+ (1− α) |βlasso,j|+ (1− α) |βlasso,i|+ α |βlasso,j|+
∑
k/∈{i,j}

|βlasso,k|

= ||βlasso||1 . (132)

This implies that β (α) must also be a solution.

A.8 Proof of Lemma 3.3

Consider

β (α)i := αβR,i + (1− α) βR,j, (133)

β (α)j := (1− α) βR,i + αβR,j, (134)

β (α)k := βR,k, k /∈ {i, j} . (135)

for 0 < α < 1. By the same argument in (130) ||y −Xβ (α)||2 = ||y −XβR||2. We define

β′R,i := βR,j, (136)

β′R,j := βR,i, (137)

β′R,k := βR,k, k /∈ {i, j} . (138)

Note that because R is invariant to the ordering of its argument R (βR) = R (β′R). Since
β (α) = αβR + (1− α) β′R, by strict convexity of R

R (β (α)) < α R (βR) + (1− α)R (β′R) (139)

= R (βR) (140)

if βR,i 6= βR,j. Since this would mean that βR is not a solution to the regularization problem,
this implies that βR,i = βR,j.

A.9 Proof of Lemma 4.2

We have that

||β + h||1,2 ≥ ||β||1,2 + gTh (141)
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for all possible h ∈ Rp if and only if

||βGi + hGi ||2 ≥ ||βGi ||2 + gTGihGi (142)

for all possible hGi ∈ R|Gi|, for 1 ≤ i ≤ k.

If βGi 6= 0 the only vector gGi that satisfies (142) is the gradient of the `2 norm at βGi

∇ ||·||2 (βGi) =
βGi
||βGi ||2

. (143)

The fact that the gradient is of this form follows from the chain rule.

If βGi = 0 any vector gGi with `2 norm bounded by one satisfies (142) by the Cauchy-Schwarz
inequality.

A.10 Proof of Lemma 4.3

We can separate the minimization problem into the different groups

min
β̃

1

2

∣∣∣∣∣∣β − β̃∣∣∣∣∣∣2
2

+ α
∣∣∣∣∣∣β̃∣∣∣∣∣∣

1,2
=

k∑
i=1

min
β̃Gi

1

2

∣∣∣∣∣∣βGi − β̃Gi∣∣∣∣∣∣2
2

+ α
∣∣∣∣∣∣β̃Gi∣∣∣∣∣∣

2
. (144)

We can therefore minimize the different terms of the sum separately. Each term

1

2

∣∣∣∣∣∣βGi − β̃Gi∣∣∣∣∣∣2
2

+ α
∣∣∣∣∣∣β̃Gi∣∣∣∣∣∣

2
(145)

is convex and has subgradients of the form

g
(
β̃Gi

)
:= β̃Gi − βGi + α q

(
β̃Gi

)
, (146)

q
(
β̃Gi

)
:=


β̃Gi

||β̃Gi ||2
if β̃Gi 6= 0,

0 if β̃Gi 6= 0.
(147)

This follows from Lemma 4.2 and the fact that the sum of subgradients of several functions
is a subgradient of their sum.

Any minimizer β̂Gi of (145) must satisfy

g
(
β̂Gi

)
= 0. (148)
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This implies that if β̂Gi 6= 0 then

βGi = β̂Gi +
α β̂Gi∣∣∣∣∣∣β̂Gi∣∣∣∣∣∣

2

(149)

=
(∣∣∣∣∣∣β̂Gi∣∣∣∣∣∣

2
+ α

) β̂Gi∣∣∣∣∣∣β̂Gi∣∣∣∣∣∣
2

. (150)

As a result, βGi and β̂Gi are collinear and∣∣∣∣∣∣β̂Gi∣∣∣∣∣∣
2

= ||βGi ||2 − α, (151)

which can only hold if ||βGi ||2 ≥ α. In that case,

β̂Gi = βGi −
α β̂Gi∣∣∣∣∣∣β̂Gi∣∣∣∣∣∣

2

(152)

= βGi −
αβGi
||βGi ||2

. (153)

This establishes that as long as ||βGi ||2 ≥ α (153) is a solution to the proximal problem.

If β̂Gi = 0 then by (148)

α ≥
∣∣∣∣∣∣β̂Gi − βGi∣∣∣∣∣∣

2
(154)

= ||βGi ||2 . (155)

This establishes that as long as ||βGi ||2 ≤ α β̂Gi = 0 is a solution to the proximal problem.
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Lecture notes 8 April 11, 2016

Learning signal representations

1 Introduction

In Lecture Notes 4 we described how to design representations that allow to represent signals
with a small number of coefficients and how these sparse representation can be leveraged
to compress and denoise signals. In these notes, we will consider the problem of learning
a representation from a set of signals. In more detail, we assume that we have available a
dataset of n signals x1, x2, . . . , xn ∈ Rd and our goal is to compute a small set of atoms Φ1,
. . . , Φk ∈ Rd that allow to build a linear model for each signal

xj ≈
k∑
i=1

Φi Aij, 1 ≤ j ≤ n, (1)

where A1, . . . , An ∈ Rk are coefficient vectors. Ideally, k should be significantly smaller than
n, which means that the atoms are able to capture the common structure of the n signals.
The learned atoms can be used for compression, denoising or as features for classification,
whereas the coefficients in A may allow to cluster the different signals, as we will discuss
later on.

If we group the signals into a matrix X :=
[
x1 x2 · · · xn

]
, learning the atoms and the

corresponding coefficients is equivalent to a matrix-factorization problem,

X ≈
[
Φ1 Φ2 · · · Φk

] [
A1 A2 · · · An

]
= ΦA (2)

where Φ ∈ Rd×k, A ∈ Rk×n. The assumption that k is smaller than n means that our goal
is to approximate X with a low-rank matrix.

Learning signal representation is significantly more challenging than fitting models once the
atoms are known. The reason is that any optimization problem of the form

minimize
Φ̃,Ã

∣∣∣∣∣∣X − Φ̃ Ã
∣∣∣∣∣∣+R1

(
Φ̃
)

+R2

(
Ã
)
, (3)

where ||·|| is an arbitrary norm and R1 and R2 are regularization terms, is nonconvex due to
the product between the variables. Figure 1 illustrates this by plotting the function f (φ, a) =
(1− φa)2 (i.e. there is only one 1D atom and one coefficient) which has minima along two
separate lines: (α, 1/α) and (−α,−1/α) for any α > 0. In higher dimensions, the number of
local minima grows. Interestingly, if no regularization is added, it is possible to find a global
minimum for the nonconvex problem by computing the singular-value decomposition, as we



Figure 1: The function f (φ, a) = (1− φa)2 has minima at (α, 1/α) and (−α,−1/α) for any α > 0.

Figure 2: Examples from the face dataset. The dataset contains 10 face pictures of 40 different
people.
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discuss below, but this is no longer the case when we add regularization terms to the cost
function.

Figure 2 shows some examples from a dataset that we will use to illustrate different models.
It contains 10 face pictures of 40 different people, which were taken between April 1992 and
April 1994 at AT&T Laboratories Cambridge1.

2 K means

A possible way of representing a set of signals using a small number of atoms is to cluster
the signals into several groups and assign an atom to each group. This clustering problem
is typically known as k-means clustering. The aim is to learn k atoms Φ1, . . . , Φk that
minimize the cost function

n∑
i=1

∣∣∣∣xi − Φc(i)

∣∣∣∣2
2
, (4)

c (i) := arg min
1≤j≤k

||xi − Φj||2 . (5)

In words, c (i) denotes the index of the atom that is assigned to the signal xi.

After carrying out the clustering, the learned model can be expressed as factorization of the
matrix X where the coefficients for each signal are restricted to just select one of the atoms,

X ≈
[
Φ1 Φ2 · · · Φk

] [
ec(1) ec(2) · · · ec(n)

]
, (6)

where ej is the standard-basis vector (all its entries are zero, except the jth entry which
equals one).

Minimizing the cost function (4) over the choice of atoms and coefficients is computationally
hard (NP-hard). However minimizing the cost function if the atoms or the coefficients are
known is very easy. If the atoms are known, for each signal we just need to select the atom
that is nearest. If the coefficients are known then the following lemma, proved in Section A.1
of the appendix, shows that the optimal atoms just correspond to the mean of each cluster.

Lemma 2.1. For any x1, x2, . . . , xn ∈ Rd the solution to the optimization problem

minimize
φ

n∑
i=1

||xi − φ||22 (7)

is equal to

φ̂ =
1

n

n∑
i=1

xi. (8)

1See http://scikit-learn.org/stable/datasets/olivetti_faces.html
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Iteration 1 Iteration 2

Iteration 3 Iteration 4

Iteration 5 Iteration 6

Figure 3: Iterations of Lloyd’s algorithm for k = 3 clusters which are colored orange, blue and
green. The stars indicate the atoms corresponding to each cluster. The original dataset corresponds
to three clusters represented by the circles, triangles and squares.
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k = 2 k = 3 k = 4

Figure 4: Results of applying k means for different values of k to neural data measured by the
Chichilnisky lab at Stanford.

Lloyd’s algorithm is a heuristic for the k-means problem that alternates between solving the
two subproblems.

Algorithm 2.2 (Lloyd’s algorithm). We initialize the atoms randomly and then alternate
between updating the coefficients and the atoms.

• The assignment step selects the closest atom to each signal,

c (i) := arg min
1≤j≤k

||xi − Φj||2 . (9)

• The averaging step computes the mean of each cluster,

Φj :=

∑n
i=1 δ (c ( j) = i) xi∑n
i=1 δ (c ( j) = i)

, (10)

where δ (c ( j) = i) equals one if c ( j) = i and zero otherwise.

In practice, Lloyd’s algorithm often finds a satisfactory solution to the k-means problem,
although for some initializations it might get stuck in a bad local minimum (an atom may
end up with no assignments for example). To avoid such situations we can run the method
several times, using different random initializations, and select the best solution. Figure 3
illustrates Lloyd’s algorithm by showing several iterations.

We end this section describing two applications of k means: one in neuroscience and another
in image processing.
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Figure 5: Atoms obtained by solving the k means problem superposed on the original neural data.
The data was obtained by the Chichilnisky lab at Stanford.

In neuroscience, data is often collected by placing an array of electric sensors on tissue
containing neurons. Each sensors measures the electric activity of several neurons that can
be well modeled as sequences of spikes. These spikes have different shapes depending on
what neuron generated them. The spike-sorting problem consists of clustering the measured
spikes to assign them to the different cells. If we extract all spiking events from the data
and align them adequately, we can apply solve the k means problem for these signals to sort
the spikes (note that we have to fix the number of neurons k beforehand). Figure 4 shows
the results of applying this procedure with different values of k to some real data measured
by the Chichilnisky lab at Stanford. The atoms learnt using k means can then be used to
obtain a fit to the original data as shown in Figure 5

Figures 6 and 7 show the results of solving the k means problem for the faces dataset from
Figure 2 with different values of k. If k is small with respect to the number of different
people in the dataset, which is equal to 40, then the atoms learnt by k means correspond to
averaging the faces of different people. As we increase k, the atoms become sharper because
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k = 5

k = 15

Figure 6: Atoms obtained by solving the k means problem for the faces dataset from Figure 2
with k = 5 and k = 15.

they are obtained by averaging less images, and some of them correspond to just one person.

3 Principal-component analysis

We already discussed principal-component analysis (PCA) as a dimensionality-reduction
technique in Lecture Notes 5. In this section we review the method, providing a geometric
and probabilistic interpretation. Then we explain how to learn signal representations using
PCA and end by describing an application to collaborative filtering.
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k = 40

Figure 7: Atoms obtained by solving the k means problem for the faces dataset from Figure 2
with k = 40.
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3.1 Algorithm

PCA allows to find directions in this space along which the data have a high variation. This
is achieved by centering the data and then extracting the singular vectors corresponding to
the largest singular values.

Algorithm 3.1 (Principal component analysis). Given n data vectors x̃1, x̃2, . . . , x̃n ∈ Rd,
we apply the following steps.

1. Center the data,

xi = x̃i −
1

n

n∑
i=1

x̃i, 1 ≤ i ≤ n. (11)

2. Group the centered data in a data matrix X ∈ Rd×n

X =
[
x1 x2 · · · xn

]
. (12)

3. Compute the singular-value decomposition (SVD) of X and extract the left singular
vectors corresponding to the k largest singular values. These are the first k principal
components.

3.2 PCA: Geometric interpretation

Once the data are centered, the energy of the projection of the data points onto different di-
rections in the ambient space reflects the variation of the dataset along those directions. PCA
selects the directions that maximize the `2 norm of the projection and are mutually orthog-
onal. The sum of the squared `2 norms of the projection of the centered data x1, x2, . . . , xn
onto a 1D subspace spanned by a unit-norm vector u can be expressed as

n∑
i=1

∣∣∣∣Pspan(u) xi
∣∣∣∣2

2
=

n∑
i=1

uTxix
T
i u (13)

= uTXXTu (14)

=
∣∣∣∣XTu

∣∣∣∣2
2
. (15)

If we want to maximize the energy of the projection onto a subspace of dimension k, an
option is to choose orthogonal 1D projections sequentially. First we choose a unit vector

U1 that maximizes
∣∣∣∣XTu

∣∣∣∣2
2

and is consequently the 1D subspace that is better adapted to
the data. Then, we choose a second unit vector U2 orthogonal to the first which maximizes∣∣∣∣XTu

∣∣∣∣2
2

and hence is the 1D subspace that is better adapted to the data while being in

9



σ1/
√
n = 0.705,

σ2/
√
n = 0.690

σ1/
√
n = 0.9832,

σ2/
√
n = 0.3559

σ1/
√
n = 1.3490,

σ2/
√
n = 0.1438

U1

U2

U1

U2

U1

U2

Figure 8: PCA of a dataset with n = 100 2D vectors with different configurations. The two
first singular values reflect how much energy is preserved by projecting onto the two first principal
components.

the orthogonal complement of U1. We repeat this procedure until we have k orthogonal
directions, which are the first k principal components.

More formally, the left singular vectors U1, U2, . . . , Uk and the corresponding singular values
σ1 ≥ σ2 ≥ . . . ≥ σk, are given by

σ1 = max
||u||2=1

∣∣∣∣XTu
∣∣∣∣

2
, (16)

U1 = arg max
||u||2=1

∣∣∣∣XTu
∣∣∣∣

2
, (17)

σj = max
||u||2=1

u⊥u1,...,uj−1

∣∣∣∣XTu
∣∣∣∣

2
, 2 ≤ j ≤ k, (18)

Uj = arg max
||u||2=1

u⊥u1,...,uj−1

∣∣∣∣XTu
∣∣∣∣

2
, 2 ≤ j ≤ k. (19)

This is established in Lemma A.1 of Lecture Notes 5.

Figure 8 provides an example in 2D. Note how each singular value is proportional to the
energy that lies in the direction of the corresponding principal component.

PCA is equivalent to choosing the best (in terms of `2 norm) k 1D subspaces following a greedy
procedure, since at each step we choose the best 1D subspace orthogonal to the previous ones.
A natural question to ask is whether this method produces the best k-dimensional subspace.
A priori this is not necessarily the case; many greedy algorithms produce suboptimal results.
However, in this case the greedy procedure is indeed optimal: the subspace spanned by the
first k principal components is the best subspace we can choose in terms of the `2-norm of
the projections. The following result is borrowed from Lecture Notes 5 (Theorem 2.5).
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σ1/
√
n = 5.077 σ1/

√
n = 1.261

σ2/
√
n = 0.889 σ2/

√
n = 0.139

U1

U2

U2

U1

Uncentered data Centered data

Figure 9: PCA applied to n = 100 2D data points. On the left the data are not centered. As a
result the dominant principal component U1 lies in the direction of the mean of the data and PCA
does not reflect the actual structure. Once we center, U1 becomes aligned with the direction of
maximal variation.

Theorem 3.2. For any matrix X ∈ Rd×n with left singular vectors U1, U2, . . . , Un corre-
sponding to the singular values σ1 ≥ σ2 ≥ . . . ≥ σn, if we fix any k ≤ min {d, n}

n∑
i=1

∣∣∣∣Pspan(U1,U2,...,Uk) xi
∣∣∣∣2

2
≥

n∑
i=1

||PS xi||22 , (20)

for any subspace S of dimension k.

Figure 9 illustrates the importance of centering before applying PCA. Theorems ?? and 3.2
still hold if the data are not centered. However, the norm of the projection onto a certain
direction no longer reflects the variation of the data. In fact, if the data are concentrated
around a point that is far from the origin, the first principal component will tend be aligned
in that direction. This makes sense as projecting onto that direction captures more energy.
As a result, the principal components do not capture the directions of maximum variation
within the cloud of data.

3.3 PCA: Probabilistic interpretation

Let us interpret our data, x1, x2, . . . , xn in Rm, as samples of a random vector x of dimension
m. Recall that we are interested in determining the directions of maximum variation of the
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data in ambient space. In probabilistic terms, we want to find the directions in which the
data have higher variance. The covariance matrix of the data provides this information. In
fact, we can use it to determine the variance of the data in any direction.

Lemma 3.3. Let u be a unit vector,

Var
(
xTu

)
= uTΣxu. (21)

Proof.

Var
(
xTu

)
= E

((
xTu

)2
)
− E2

(
xTu

)
(22)

= E
(
uxxTu

)
− E

(
uTx

)
E
(
xTu

)
(23)

= uT
(

E
(
xxT

)
− E (x) E (x)T

)
u (24)

= uTΣxu. (25)

Of course, if we only have access to samples of the random vector, we do not know the co-
variance matrix of the vector. However we can approximate it using the empirical covariance
matrix.

Definition 3.4 (Empirical covariance matrix). The empirical covariance of the vectors
x1, x2, . . . , xn in Rm is equal to

Σn :=
1

n

n∑
i=1

(xi − xn) (xi − xn)T (26)

=
1

n
XXT , (27)

where xn is the sample mean, as defined in Definition 1.3 of Lecture Notes 4, and X is the
matrix containing the centered data as defined in (12).

If we assume that the mean of the data is zero (i.e. that the data have been centered using
the true mean), then the empirical covariance is an unbiased estimator of the true covariance
matrix:

E

(
1

n

n∑
i=1

xix
T
i

)
=

1

n

n∑
i=1

E
(
xix

T
i

)
(28)

= Σx. (29)
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n = 5 n = 20 n = 100

True covariance
Empirical covariance

Figure 10: Principal components of n data vectors samples from a 2D Gaussian distribution. The
eigenvectors of the covariance matrix of the distribution are also shown.

If the higher moments of the data E
(
X2
iX

2
j

)
and E (X4

i ) are finite, by Chebyshev’s inequality
the entries of the empirical covariance matrix converge to the entries of the true covariance
matrix. This means that in the limit

Var
(
xTu

)
= uTΣxu (30)

≈ 1

n
uTXXTu (31)

=
1

n

∣∣∣∣XTu
∣∣∣∣2

2
(32)

for any unit-norm vector u. In the limit the principal components correspond to the directions
of maximum variance of the underlying random vector. These directions correspond to
the eigenvectors of the true covariance matrix, which maximize the quadratic form uTΣxu.
Figure 10 illustrates how the principal components converge to the eigenvectors of Σx.

3.4 PCA as a matrix-approximation method

Let UΣV T denote the SVD of the data matrix X, which we assume to be centered for
simplicity. PCA allows us to obtain a rank k decomposition of the form (2) which is optimal
in a certain sense, as shown in the following proposition which is proved in Section A.2 of
the appendix.

Proposition 3.5 (Best rank-k approximation). Let UΣV T be the SVD of M . We denote
by U1:k the matrix that contains the first k left singular vectors of M , Σ1:k a k × k diagonal
matrix containing the k largest singular values of X and V1:k the matrix containing the first
k right singular vectors. U1:kΣ1:kV

T
1:k is the best rank-k approximation of M in Frobenius
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Figure 11: Principal components corresponding to the faces dataset from Figure 2.

norm,

U1:kΣ1:kV
T

1:k = arg min
{M̃ | rank(M̃)=k}

∣∣∣∣∣∣M − M̃ ∣∣∣∣∣∣2
F
. (33)

We can interpret the principal components Φ = U1:k as orthogonal atoms, whereas A =
Σ1:kV

T
1:k corresponds to the coefficient matrix. Figure 11 shows the result of applying PCA

to the faces dataset from Figure 2.

3.5 Collaborative filtering

We now describe an application of PCA to collaborative filtering, where the aim is to pool
together information from many users to obtain a model of their behavior. In particular, for
movie data, we consider the ratings given by a set of users to a set of movies. If the some
of the users have similar tastes, then the ratings will be correlated. PCA allows to uncover
this low-rank structure in the data. We demonstrate this through a simple example. Bob,
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Molly, Mary and Larry rate the following six movies from 1 to 5,

A :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2

(34)

We subtract the average rating,

µ :=
1

n

m∑
i=1

n∑
j=1

Aij, (35)

(36)

from each entry in the matrix and then compute its singular value decomposition

A− Ā = USV T = U


7.79 0 0 0

0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

V T , (37)

where

Ā :=


µ µ · · · µ
µ µ · · · µ
· · · · · · · · · · · ·
µ µ · · · µ

 . (38)

The fact that the first singular value is significantly larger than the rest suggests that the
matrix may be well approximated by a rank-1 matrix. This is the case (for ease of comparison
the values of A are shown in brackets):

Ā+ σ1U1V
T

1 =

Bob Molly Mary Larry


1.34 (1) 1.19 (1) 4.66 (5) 4.81 (4) The Dark Knight
1.55 (2) 1.42 (1) 4.45 (4) 4.58 (5) Spiderman 3
4.45 (4) 4.58 (5) 1.55 (2) 1.42 (1) Love Actually
4.43 (5) 4.56 (4) 1.57 (2) 1.44 (1) Bridget Jones’s Diary
4.43 (4) 4.56 (5) 1.57 (1) 1.44 (2) Pretty Woman
1.34 (1) 1.19 (2) 4.66 (5) 4.81 (5) Superman 2

(39)
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The first left singular vector is equal to

U1 =
D. Knight Spiderman 3 Love Act. B.J.’s Diary P. Woman Superman 2

( )−0.45 −0.39 0.39 0.39 0.39 −0.45 .

It can be interpreted as an atom in the sense that centered scores for each person are
proportional to U1. Alternatively, it can be interpreted as coefficients corresponding to the
atoms V1 below, which allow to cluster the movies into action (+) and romantic (-) movies.

The first right singular vector is equal to

V1 =
Bob Molly Mary Larry

( )0.48 0.52 −0.48 −0.52 . (40)

It can be interpreted as an atom in the sense that centered scores for each movie are propor-
tional to V1. Alternatively, it can be interpreted as coefficients corresponding to the atom
U1, which allow to cluster the users that have similar tastes (Bob and Molly vs Mary and
Larry).

This example is obviously very simple, but it illustrates the interest of low-rank models in
collaborative filtering. These models reveal the correlation structure of the data, uncovering
hidden factors that determine users’ preferences and can be used for clustering. Of course,
in practice there will be more than one factor.

4 Nonnegative matrix factorization

4.1 Optimization problem

As explained in the previous section, PCA computes the best low-rank approximation to the
data matrix in Frobenius norm. However, depending on the application the atoms obtained
from the decomposition are not very interpretable. For example, in Figure 11 the atoms may
have negative pixels and the coefficients negative values, so it is difficult to interpret them
as face atoms that can be added to form a face. This suggests computing a decomposition
where both atoms and coefficients are nonnegative, with the hope that this will allow us to
learn a more interpretable model.

A nonnegative matrix factorization of the data matrix may be obtained by solving the
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Figure 12: Atoms obtained by applying nonnegative matrix factorization to the faces dataset
from Figure 2.

optimization problem,

minimize
∣∣∣∣∣∣X − Φ̃ Ã

∣∣∣∣∣∣2
F

(41)

subject to Φ̃i,j ≥ 0, (42)

Ãi,j ≥ 0, for all i, j (43)

where Φ̃ ∈ Rd×k and Ã ∈ Rk×n for a fixed k. This is a nonconvex problem which is computa-
tionally hard, due to the nonnegative constraint. Several methods to compute local optima
have been suggested in the literature, as well as alternative cost functions to replace the
Frobenius norm. We refer interested readers to [2]. Figure 12 shows the atoms obtained by
applying this method to the faces dataset from Figure 2. Due to the nonnegative constraint,
the atoms resemble portions of faces (the black areas have very small values) which capture
features such as the eyebrows, the nose, the eyes, etc.

4.2 Topic modeling

Topic modeling aims to learn the thematic structure of a text corpus automatically. We
will illustrate this application with a simple example. We take six newspaper articles and
compute the frequency of a list of words in each of them. Our final goal is to separate the
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words into different clusters that hopefully correspond to different topics. The following
matrix contains the counts for each word and article. Each entry contains the number of
times that the word corresponding to column j is mentioned in the article corresponding to
row i.

A =

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f

Computing the singular-value decomposition of the matrix– after subtracting the mean of
each entry as in (37)– we determine that the matrix is approximately low rank

A− Ā = USV T = U


19.32 0 0 0

0 14.46 0 0 0 0
0 0 4.99 0 0 0
0 0 0 2.77 0 0
0 0 0 0 1.67 0
0 0 0 0 0 0.93

V
T . (44)

Unfortunately the singular vectors do not have an intuitive interpretation as in Section ??.
In particular, they do not allow to cluster the words

a b c d e f
( )U1 = −0.51 −0.40 −0.54 −0.11 −0.38 −0.38
( )U2 = 0.19 −0.45 −0.19 −0.69 −0.2 −0.46
( )U3 = 0.14 −0.27 −0.09 −0.58 −0.69 −0.29

(45)

or the articles

singer GDP senate election vote stock bass market band
( )V1 = −0.38 0.05 0.4 0.27 0.4 0.17 −0.52 0.14 −0.38
( )V2 = 0.16 −0.46 0.33 0.15 0.38− 0.49 0.1 −0.47 0.12
( )V3 = −0.18 −0.18 −0.04 −0.74 −0.05 0.11 −0.1 −0.43 −0.43

(46)

A problem here is that the singular vectors have negative entries that are difficult to interpret.
In the case of rating prediction, negative ratings mean that a person does not like a movie.
In contrast articles either are about a topic or they are not: it makes sense to add atoms
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corresponding to different topics to approximate the word count of a document but not to
subtract them. Following this intuition, we apply nonnegative matrix factorization to obtain
two matrices W ∈ Rm×k and H ∈ Rk×n such that

M ≈ WH, Wi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k, (47)

Hi,j ≥ 0, 1 ≤ i ≤ k, 1 ≤ i ≤ n. (48)

In our example, we set k = 3. H1, H2 and H3 can be interpreted as word-count atoms, but
also as coefficients that weigh the contribution of W1, W2 and W3.

singer GDP senate election vote stock bass market band
( )H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
( )H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
( )H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43

(49)

The latter interpretation allows to cluster the words into topics. The first topic corresponds
to the entries that are not zero (or very small) in H1: senate, election and vote. The second
corresponds to H2: GDP, stock and market. The third corresponds to H3: singer, bass and
band.

The entries of W allow to assign the topics to articles. b, e and f are about politics (topic
1), d and e about economics (topic 3) and a and c about music (topic 3)

a b c d e f
( )W1 = 0.03 2.23 0 0 1.59 2.24
( )W2 = 0.1 0 0.08 3.13 2.32 0
( )W3 = 2.13 0 2.22 0 0 0.03

(50)

Finally, we check that the factorization provides a good fit to the data. The product WH is
equal to

singer GDP senate election vote stock bass market band Art.


6.89 (6) 1.01 (1) 0.53 (1) 0.54 (0) 0.10 (0) 0.53 (1) 8.83 (9) 0.53 (0) 7.36 (8) a
0.75 (1) 0 (0) 8.32 (9) 5.66 (5) 8.18 (8) 1.15 (1) 0 (0) 0.78 (1) 0.78 (0) b
7.14 (8) 0.99 (1) 0.44 (0) 0.47 (1) 0 (0) 0.47 (0) 9.16 (9) 0.48 (1) 7.62 (7) c

0 (0) 7 (6.91) 0.67 (1) 1.41 (0) 0 (0) 8.28 (9) 0.65 (1) 7.60 (7) 0.69 (0) d
0.53 (0) 5.12 (5) 6.45 (6) 5.09 (7) 5.85 (5) 6.97 (6) 0.48 (0) 6.19 (7) 1.07 (2) e
0.86 (1) 0.01 (0) 8.36 (8) 5.69 (5) 8.22 (9) 1.16 (2) 0.14 (0) 0.79 (0) 0.9 (1) f

For ease of comparison the values of A are shown in brackets.

19



Figure 13: Atoms obtained by applying sparse PCA to the faces dataset from Figure 2.

5 Sparse principal-component analysis

In certain cases, it may be desirable to learn sparse atoms that are able to represent a set
of signals. In the case of the faces dataset, this may force the representation to isolate
specific face features such as the mouth, the eyes, etc. In order to fit such a model, we can
incorporate a sparsity constraint on the atoms by using the `1 norm

minimize
∣∣∣∣∣∣X − Φ̃ Ã

∣∣∣∣∣∣2
2

+ λ
k∑
i=1

∣∣∣∣∣∣Φ̃i

∣∣∣∣∣∣
1

(51)

subject to
∣∣∣∣∣∣Φ̃i

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k. (52)

Due to the sparsity-inducing constraint, this problem is computationally hard, as in the case
of nonnegative matrix factorization. We refer the interested reader to [6] for algorithms to
compute local minima. Figure 13 shows the atoms obtained by applying this method to the
faces dataset from Figure 2. The model indeed learns very localized atoms that represent
face features.
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Figure 14: Atoms (right) learnt from patches extracted from a natural image (left).

6 Sparse coding

In Lecture Notes 4 we studied several sparsifying transforms that allow to decompose data
into a small number of atoms in order to perform compression or denoising. Dictionary-
learning or sparse-coding techniques allow to learn these transforms directly from the data.
This is very useful in situations where a dataset with a large number of signals cannot
be compactly represented in any predefined dictionary. The aim is to learn a dictionary
Φ ∈ Rd×k such that X ≈ ΦA, where the matrix of coefficients A ∈ Rk×n is very sparse.
Following the heuristic that penalizing the `1 norm promotes sparse solutions, this may be
achieved by solving the following optimization program,

min
Φ̃, Ã

∣∣∣∣∣∣X − Φ̃Ã
∣∣∣∣∣∣2

F
+ λ

∣∣∣∣∣∣Ã∣∣∣∣∣∣
1

such that
∣∣∣∣∣∣Φ̃i

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k. (53)

Note that the formulation is very similar to sparse PCA, with the crucial difference that we
are promoting sparsity in the coefficient matrix, as opposed to in the atoms. An efficient
method to compute a local minimum of the nonconvex problem is to apply techniques based
on stochastic gradient descent [4].

Figure 14 shows patches learnt from a natural image. The corresponding dictionary can
be used to denoise other images quite effectively, as shown in Figure 15. See [3] for other
applications of dictionary learning in image processing. Finally, we note that interestingly
sparse coding was first proposed in neuroscience, as an explanation of the Gabor-like receptive
fields of neurons in the visual cortex [5].
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Noisy Estimate Original

Figure 15: Denoising results using the dictionary learnt from the image shown in Figure 14.
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A Proofs

A.1 Proof of Lemma 2.1

The function

f (φ) =
1

2

n∑
i=1

||xi − φ||22 (54)

is convex and its gradient is equal to

∇f (φ) =
n∑
i=1

φ− xi (55)

= nφ−
n∑
i=1

xi. (56)

Setting the gradient to zero yields the result.
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A.2 Proof of Proposition 3.5

Let M be an arbitrary rank k matrix with singular value decomposition UMΣMV
T
M . By

Pythagoras’ Theorem

||X −M ||2F =
∣∣∣∣X − UMUT

MX
∣∣∣∣2

F
+
∣∣∣∣M − UMUT

MX
∣∣∣∣2

F

because the column space of X − UMUT
MX is orthogonal to the column space of M . Now,

recall that by Theorem 3.2, ∣∣∣∣U1:kU
T
1:kX

∣∣∣∣2
F
≤
∣∣∣∣UMUT

MX
∣∣∣∣2

F

since UMU
T
M represents a projection onto a k-dimensional subspace. We conclude that

||X −M ||2F ≥
∣∣∣∣X − UMUT

MX
∣∣∣∣2

F

≥
∣∣∣∣U1:kU

T
1:kX

∣∣∣∣2
F
.
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Lecture notes 9 May 2, 2016

Low-rank models

1 Matrix completion

1.1 The matrix-completion problem

The Netflix Prize was a contest organized by Netflix from 2007 to 2009 in which teams of
data scientists tried to develop algorithms to improve the prediction of movie ratings. The
problem of predicting ratings can be recast as that of completing a matrix from some of its
entries, as illustrated in Figure 1. This problem is known as matrix completion.

At first glance, the problem of completing a matrix such as this one[
1 ? 5
? 3 2

]
(1)

may seem completely ill posed. We can just fill in the missing entries arbitrarily! In more
mathematical (and perhaps slightly pedantic) terms, the completion problem is equivalent
to an underdetermined system of equations


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





M11

M21

M12

M22

M13

M23


=


1

3

5

2

 . (2)

In order to solve the problem, we need to make an assumption on the structure of the matrix
that we aim to complete. Recall that in compressed sensing we made the assumption that
the original signal was sparse. Even though the recovery problem in compressed sensing
is also underdetermined, recovery is possible as long as the number of measurements is
proportional to the number of nonzero entries (up to logarithmic factors). In the case of
matrix completion, we will make the assumption that the original matrix is low rank. This
implies that there exists a high correlation between the entries of the matrix, which may
make it possible to infer the missing entries from the observations. As a very simple example,

http://en.wikipedia.org/wiki/Netflix_Prize


? ? ? ?

?

?

??

??

???

?

?

Figure 1: A depiction of the Netflix challenge in matrix form. Each row corresponds to a user
that ranks a subset of the movies, which correspond to the columns. The figure is due to Mahdi
Soltanolkotabi.

consider the following matrix 
1 1 1 1 ? 1
1 1 1 1 1 1
1 1 1 1 1 1
? 1 1 1 1 1

 . (3)

Setting the missing entries to 1 yields a rank 1 matrix, whereas setting them to any other
number yields a rank 2 or rank 3 matrix.

The low-rank assumption implies that if the matrix has dimensions m × n then it can be
factorized into two matrices that have dimensions m× r and r×n. This factorization allows
to encode the matrix using r (m+ n) parameters. If the number of observed entries is larger
than r (m+ n) parameters then it may be possible to recover the missing entries. However,
this is not enough to ensure that the problem is well posed, as we will see in the following
section.

1.2 When does matrix completion make sense?

The results of matrix completion will obviously depend on the subset of entries that are
observed. For example, completion is impossible unless we observe at least one entry in each
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row and column. To see why let us consider a rank 1 matrix for which we don’t observe the
second row, 

1 1 1 1
? ? ? ?
1 1 1 1
1 1 1 1

 =


1
?
1
1

 [1 1 1 1
]
. (4)

As long as we set the missing row to equal the same value, we will obtain a rank-1 matrix
consistent with the measurements. In this case, the problem is not well posed.

In general, we need samples that are distributed across the whole matrix. This may be
achieved by sampling entries uniformly at random. Although this model does not completely
describe matrix completion problems in practice (some users tend to rate more movies, some
movies are very popular and are rated by many people), making the assumption that the
revealed entries are random simplifies theoretical analysis and avoids dealing with adversarial
cases designed to make deterministic patterns fail.

We now turn to the question of what matrices can be completed from a subset of entries
samples uniformly at random. Intuitively, matrix completion can be achieved when the
information contained in the entries of the matrix is spread out across multiple entries. If
the information is very localized then it will be impossible to reconstruct the missing entries.
Consider a simple example where the matrix is sparse

0 0 0 0 0 0
0 0 0 23 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (5)

If we don’t observe the nonzero entry, we will naturally assume that it was equal to zero.

The problem is not restricted to sparse matrices. In the following matrix the last row does
not seem to be correlated to the rest of the rows,

M :=


2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
−3 3 −3 3

 . (6)

This is revealed by the singular-value decomposition of the matrix, which allows to decompose
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it into two rank-1 matrices.

M = U ΣV T (7)

=


0.5 0
0.5 0
0.5 0
0.5 0
0 1


[
8 0
0 6

] [
0.5 0.5 0.5 0.5
−0.5 0.5 −0.5 0.5

]
(8)

= 8


0.5
0.5
0.5
0.5
0

 [0.5 0.5 0.5 0.5
]

+ 6


0
0
0
0
1

 [−0.5 0.5 −0.5 0.5
]

(9)

= σ1U1V
T

1 + σ2U2V
T

2 . (10)

The first rank-1 component of this decomposition has information that is very spread out,

σ1U1V
T

1 =


2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
0 0 0 0

 . (11)

The reason is that most of the entries of V1 are nonzero and have the same magnitude, so
that each entry of U1 affects every single entry of the corresponding row. If one of those
entries is missing, we can still recover the information from the other entries.

In contrast, the information in the second rank-1 component is very localized, due to the
fact that the corresponding left singular vector is very sparse,

σ2U2V
T

2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−3 3 −3 3

 . (12)

Each entry of the right singular vector only affects one entry of the component. If we don’t
observe that entry then it will be impossible to recover.

This simple example shows that sparse singular vectors are problematic for matrix comple-
tion. In order to quantify to what extent the information is spread out across the low-rank
matrix we define a coherence measure that depends on the singular vectors.
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Definition 1.1 (Coherence). Let U ΣV T be the singular-value decomposition of an n × n
matrix M with rank r. The coherence µ of M is a constant such that

max
1≤j≤n

r∑
i=1

U2
ij ≤

nµ

r
(13)

max
1≤j≤n

r∑
i=1

V 2
ij ≤

nµ

r
. (14)

This condition was first introduced in [3]. Its exact formulation is not too important. The
point is that matrix completion from uniform samples only makes sense for matrices which
are incoherent, and therefore do not have spiky singular values. There is a direct analogy
with the super-resolution problem, where sparsity is not a strong enough constraint to make
the problem well posed and the class of signals of interest has to be further restricted to
signals with supports that satisfy a minimum separation.

1.3 The nuclear norm

In compressed sensing and super-resolution we penalize the `1 norm of the recovered signal
to promote sparse estimates. Similarly, for matrix completion we penalize a certain matrix
norm to promote low-rank structure.

First, let us introduce the trace operator and an inner product for matrices.

Definition 1.2 (Trace). The trace of an n× n matrix is defined as

trace (M) :=
n∑
i=1

Mii. (15)

Definition 1.3 (Matrix inner product). The inner product between two m × n matrices A
and B is

〈A,B〉 := trace
(
ATB

)
(16)

=
m∑
i=1

n∑
i=1

AijBij. (17)

Note that this inner product is equivalent to the inner product of the matrices if we vectorize
them.

We now define three matrix norms.
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Definition 1.4 (Matrix norms). Let σ1 ≥ σ2 ≥ . . . ≥ σn be the singular values of M ∈ Rm×n,
m ≥ n. The operator norm is equal to the maximum singular value

||M || := max
||u||2≤1

||M u||2 (18)

= σ1. (19)

The Frobenius norm is the norm induced by the inner product from Definition 1.3. It is equal
to the `2 norm of the vectorized matrix, or equivalently to the `2 norm of the singular values

||M ||F :=

√∑
i

M2
ij (20)

=
√

trace (MTM) (21)

=

√√√√ n∑
i=1

σ2
i . (22)

The nuclear norm is equal to the `1 norm of the singular values

||M ||∗ :=
n∑
i=1

σi. (23)

The following proposition, proved in Section A.1 of the appendix, is analogous to Hölder’s
inequality for vectors.

Proposition 1.5. For any matrix A ∈ Rm×n,

||A||∗ = sup
||B||≤1

〈A,B〉 . (24)

A direct consequence of the proposition is that the nuclear norm satisfies the triangle in-
equality. This implies that it is a norm (it clearly satisfies the other properties of a norm)
and hence a convex function.

Corollary 1.6. For any m× n matrices A and B

||A+B||∗ ≤ ||A||∗ + ||B||∗ . (25)

Proof.

||A+B||∗ = sup
{C | ||C||≤1}

〈A+B,C〉 (26)

= sup
||C||≤1

〈A,C〉+ sup
||D||≤1

〈B,D〉 (27)

= ||A||∗ + ||B||∗ . (28)
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1.0

1.5

2.0

2.5
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Operator norm

Frobenius norm

Nuclear norm

Figure 2: Values of different norms for the matrix M (t) defined by (29). The rank of the matrix
for each t is marked in orange.

Penalizing the nuclear norm induces low-rank structure, just like penalizing the `1 norm of
a vector induces sparse structure. A justification for this is that the nuclear norm is the `1

norm of the singular values and therefore minimizing it tends to set most of them to zero.
In order to provide a more concrete example, let us consider the following matrix

M (t) :=

0.5 + t 1 1
0.5 0.5 t
0.5 1− t 0.5

 , (29)

which is parametrized by the parameter t. In Figure 2 we compare the rank, the operator
norm, the Frobenius norm and the nuclear norm of M (t) for different values of t. The value
of t that minimizes the rank is the same as the one that minimizes the nuclear norm. In
contrast, the values of t that minimize the operator and Frobenius norms are different. This
justifies using the nuclear norm as a proxy for the rank.

As we discussed in the previous sections, we are interested in recovering low-rank matrices
from a subset of their entries. Let y be a vector containing the revealed entries and let Ω be
the corresponding entries. Ideally, we would like to select the matrix with the lowest rank
that corresponds to the measurements,

min
X̃∈Rm×n

rank
(
X̃
)

such that X̃Ω = y. (30)
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Unfortunately, this optimization problem is computationally hard to solve. Substituting the
rank with the nuclear norm yields a tractable alternative:

min
X̃∈Rm×n

∣∣∣∣∣∣X̃∣∣∣∣∣∣
∗

such that X̃Ω = y. (31)

The cost function is convex and the constraint is linear, so this is a convex program. In
practice, the revealed entries are usually noisy. They do not correspond exactly to entries
from a low-rank matrix. We take this into account by removing the equality constraint and
adding a data-fidelity term penalizing the `2-norm error over the revealed entries in the cost
function,

min
X̃∈Rm×n

1

2

∣∣∣∣∣∣X̃Ω − y
∣∣∣∣∣∣2

2
+ λ

∣∣∣∣∣∣X̃∣∣∣∣∣∣
∗
, (32)

where λ > 0 is a regularization parameter.

We now apply this method to the following completion problem:

Bob Molly Mary Larry


1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2

(33)

In more detail we apply the following steps:

1. We compute the average observed rating and subtract it from each entry in the matrix.
We denote the vector of centered ratings by y.

2. We solve the optimization problem (31).

3. We add the average observed rating to the solution of the optimization problem and
round each entry to the nearest integer.

The result is pretty good,

Bob Molly Mary Larry


1 2 (1) 5 4 The Dark Knight

2 (2) 1 4 5 Spiderman 3
4 5 2 2 (1) Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 (5) 5 Superman 2

(34)

For comparison the original ratings are shown in brackets.
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1.4 Theoretical guarantees

In this section we will explain how to establish theoretical guarantees for matrix completion
via nuclear norm minimization. The following theorem is proved in [6].

Theorem 1.7 (Matrix completion). If the matrix M has rank r and coherence µ, the solution
to the optimization problem

min
X̃∈Rm×n

∣∣∣∣∣∣X̃∣∣∣∣∣∣
∗

such that X̃Ω = y (35)

achieves exact recovery with high probability as long as the number of samples is proportional
to µr (n+m) (up to logarithmic terms).

For matrices that are incoherent, the coherence parameter is equal to a constant, so that
nuclear norm allows to reconstruct the matrix from a minimal number of measurements
(recall that a low-rank matrix depends on r (n+m) parameters), up to logarithmic factors1.

In order to prove that a certain matrix is the solution to the optimization problem we use
the same technique that we used to analyze compressed sensing and super-resolution: we
build a dual certificate. The dual certificate is a subgradient with a certain structure, so we
first define the subgradients of the nuclear norm.

Proposition 1.8 (Subgradients of the nuclear norm). Let M = UΣV T be the singular-value
decomposition of M . Any matrix of the form

G := UV T +W ||W || ≤ 1, (36)

UTW = 0, (37)

W V = 0 (38)

is a subgradient of the nuclear norm at M .

Proof. Note that by definition ||G|| ≤ 1. For any matrix H

||M +H||∗ ≥ 〈G,M +H〉 by Proposition 1.5 (39)

=
〈
UV T ,M

〉
+ 〈G,H〉 (40)

= ||M ||∗ + 〈G,H〉 as in (137). (41)

The following proposition provides a dual certificate for the nuclear-norm minimization prob-
lem.

1In fact, one can show that a multiplicative logarithmic factor is necessary in order to make sure that all
rows and columns are sampled. See [4].
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Proposition 1.9 (Dual certificate for nuclear-norm minimization). Let M = UΣV T be the
singular-value decomposition of M . A matrix Q supported on Ω, i.e. such that

QΩc = 0, (42)

is a dual certificate of the optimization problem

min
X̃∈Rm×n

∣∣∣∣∣∣X̃∣∣∣∣∣∣
∗

such that X̃Ω = y (43)

as long as

Q = UV T +W, ||W || < 1, (44)

UTW = 0, (45)

W V = 0. (46)

Proof. By Proposition 1.8 Q is a subgradient of the nuclear norm at M . Any matrix that
is feasible for the optimization problem can be expressed as M + H where HΩ = 0 because
the revealed entries must be equal to MΩ. This immediately implies that 〈Q,H〉 = 0. We
conclude that

||M +H||∗ ≥ ||M ||∗ + 〈Q,H〉 (47)

= ||M ||∗ . (48)

This proves that M is a solution. A variation of this argument that uses the strict inequality
in (44) establishes that if Q exists then M is the unique solution [3].

In order to show that matrix completion via nuclear-norm minimization succeeds, we need
to show that such a dual certificate exists with high probability. For this we will need the
matrix to be incoherent, since otherwise UV T may have large entries which are not in Ω.
This would make it very challenging to construct Q in a way that UV T = Q−W for a matrix
W with bounded operator norm. The first guarantees for matrix completion were obtained
by constructing such a certificate in [3] and [4]. Subsequently, the results were improved
in [6], where it is shown that an approximate dual certificate also allows to establish exact
recovery, and simplifies the proofs significantly.

1.5 Algorithms

In this section we describe a proximal-gradient method to solve Problem 32. Recall that
proximal-gradient methods allow to solve problems of the form

minimize f (x) + g (x) , (49)
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where f is differentiable and we can apply the proximal operator proxg efficiently.

Recall that the proximal operator norm of the `1 norm is a soft-thresholding operator. Analo-
gously, the proximal operator of the nuclear norm is applied by soft-thresholding the singular
values of the matrix. The result is proved in Section 1.10 of the appendix.

Proposition 1.10 (Proximal operator of the nuclear norm). The solution to

min
X̃∈Rm×n

1

2

∣∣∣∣∣∣Y − X̃∣∣∣∣∣∣2
F

+ τ
∣∣∣∣∣∣X̃∣∣∣∣∣∣

∗
(50)

is Dτ (Y ), obtained by soft-thresholding the singular values of Y = U ΣV T

Dτ (Y ) := U Sτ (Σ)V T , (51)

Sτ (Σ)ii :=

{
Σii − τ if Σii > τ,

0 otherwise.
(52)

Algorithm 1.11 (Proximal-gradient method for nuclear-norm regularization). Let Y be a

matrix such that YΩ = y and let us abuse notation by interpreting X
(k)
Ω as a matrix which is

zero on Ωc. We set the initial point X(0) to Y . Then we iterate the update

X(k+1) = Dαkλ

(
X(k) − αk

(
X

(k)
Ω − Y

))
, (53)

where αk > 0 is the step size.

1.6 Alternating minimization

Minimizing the nuclear norm to recover a low-rank matrix is an effective method but it has a
drawback: it requires repeatedly computing the singular-value decomposition of the matrix,
which can be computationally heavy for large matrices. A more efficient alternative is to
parametrize the matrix as AB where A ∈ Rm×k and B ∈ Rk×n, which requires fixing a
value for the rank of the matrix k (in practice this can be set by cross validation). The two
components A and B can then be fit by solving the optimization problem

min
Ã∈Rm×k,B̃∈Rk×n

∣∣∣∣∣∣(ÃB̃)
Ω
− y
∣∣∣∣∣∣

2
. (54)

This nonconvex problem is usually tackled by alternating minimization. Indeed, if we fix
B̃ = B the optimization problem over Ã is just a least-squares problem

min
Ã∈Rm×k

∣∣∣∣∣∣(ÃB)
Ω
− y
∣∣∣∣∣∣

2
(55)

and the same is true for the optimization problem over B̃ if we fix Ã = A. Iteratively
solving these least-squares problems allows to find a local minimum of the cost function.
Under certain assumptions, one can even show that a certain initialization coupled with this
procedure guaranteees exact recovery, see [8] for more details.
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Figure 3: Principal components of a dataset before and after the inclusion of an outlier.

2 Low rank + sparse model

2.1 The effect of outliers on principal-component analysis

It is well known that outliers may severely distort the results of applying principal-component
analysis to a dataset. Figure 3 shows the dramatic effect that just one outlier can have on the
principal components. Equivalently, if several entries of a matrix are entirely uncorrelated
with the rest, this may disrupt any low-rank structure that might be present. To illustrate
this consider a rank-1 matrix of movie ratings

Bob Molly Mary Larry


1 1 5 5 The Dark Knight
1 1 5 5 Spiderman 3
5 5 1 1 Love Actually
5 5 1 1 Bridget Jones’s Diary
5 5 1 1 Pretty Woman
1 1 5 5 Superman 2

(56)

12



Now imagine that Bob randomly assigns a 5 instead of a 1 to The Dark Knight by mistake
and that Larry hates Superman 2 because one of the actresses reminds him of his ex,

Bob Molly Mary Larry


5 1 5 5 The Dark Knight
1 1 5 5 Spiderman 3
5 5 1 1 Love Actually
5 5 1 1 Bridget Jones’s Diary
5 5 1 1 Pretty Woman
1 1 5 1 Superman 2

(57)

Now let us compare the singular-value decomposition after subtracting the mean rating with

UΣV T = U


8.543 0 0 0

0 4.000 0 0
0 0 2.649 0
0 0 0 0

V T (58)

and without outliers

A− Ā = UΣV T = U


9.798 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

V T . (59)

The matrix is now rank 3 instead of rank 1. In addition, the first left singular vector,

U1 =
D. Knight Sp. 3 Love Act. B.J.’s Diary P. Woman Sup. 2

( )−0.2610 −0.4647 0.4647 0.4647 0.4647 −0.2610 (60)

does not allow to cluster the movies as effectively as when there are no outliers

U1 =
D. Knight Sp. 3 Love Act. B.J.’s Diary P. Woman Sup. 2

( )−0.4082 −0.4082 0.4082 0.4082 0.4082 −0.4082 . (61)

2.2 Low rank + sparse model

In order to tackle situations where a low-rank matrix may be corrupted with outliers, we
define a low-rank + sparse model where the matrix is modeled as the sum of a low-rank
component L and a sparse component S. Figure 4 shows an example with simulated data. If
we are able to separate the two components from the data, we can apply PCA to L in order

13



+ =

L S M

Figure 4: M is obtained by summing a low-rank matrix L and a sparse matrix S.

to retrieve the low-rank structure that is distorted by the presence of S. The problem of
separating both components is very related to matrix completion: if we knew the location of
the outliers then we could just apply a matrix-completion method to the remaining entries
in order to recover the low-rank component.

We now consider under what assumptions the decomposition of a low rank and a sparse
component is unique. Clearly the low-rank component cannot be sparse, otherwise there
can be many possible decompositions

0 0 0 0 0 0
0 0 0 23 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 47 0

 (62)

= (63)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+


0 0 0 0 0 0
0 0 0 23 0 0
0 0 0 0 0 0
0 0 0 0 47 0

 . (64)

We can avoid this by considering low-rank components with low coherence.

Similarly, the sparse component cannot be low rank. This occurs when its support is highly
concentrated on a small number of columns or rows,

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

 (65)

= (66)
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
2 2 2 2 2 2

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (67)

14



A simple assumption that precludes the support of the sparse component from being too
concentrated is that it is distributed uniformly at random. As in the case of the revealed
entries in matrix completion, this assumption doesn’t usually hold in practice but it often
provides a good approximation.

2.3 Robust principal-component analysis

Following the ideas that we discussed in previous lecture notes and in Section 1.3, we compute
the decomposition by penalizing the nuclear norm of L, which induces low-rank structure,
and the `1 norm of S, which induces sparse structure.

min
L̃,S̃∈Rm×n

∣∣∣∣∣∣L̃∣∣∣∣∣∣
∗

+ λ
∣∣∣∣∣∣S̃∣∣∣∣∣∣

1
such that L̃+ S̃ = M, (68)

where M is the matrix of data. To be clear, ||·||1 is the `1 norm of the vectorized matrix and
λ > 0 is a regularization parameter. This algorithm introduced by [2,5] is often called robust
PCA, since it aims to obtain a low-rank component that is not affected by the presence of
outliers.

The regularization parameter λ determines the weight of the two structure-inducing norms.
It may be chosen by cross validation, but its possible values may be restricted by considering
some simple examples. If the matrix that we are decomposing is equal to a rank-1 matrix,
then the sparse component should be set to zero. Since∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∗

= n,

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
1

= n2, (69)

we must have λ > 1
n

for this to be the case. In contrast, if the matrix contains just one
nonzero entry then the low-rank component should be set to zero. Since∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∗

= 1,

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
1

= 1 (70)

this will be the case if λ < 1. Finally, if the matrix just has a row of ones it is unclear
whether we should assign it to the low-rank or the sparse component, so the value of the
two terms in the cost function should have a similar value. Since∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∗

=
√
n,

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
1

= n (71)
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Figure 5: Results of solving Problem (68) for different values of the regularization parameter.

this suggests setting λ ≈ 1√
n
.

Figure 5 shows the results of solving Problem (68) for different values of λ. If λ is too small,
then it is cheap to increase the content of the sparse component, which won’t be very sparse
as a result. Similarly, if λ is too large, then the low-rank component won’t be low-rank,
as the nuclear-norm term has less influence. Setting λ correctly allows to achieve a perfect
decomposition.
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2.4 Theoretical guarantees

The following theorem from [2] provides theoretical guarantees for the decomposition of low-
rank and sparse matrices using convex optimization. We omit some details in the statement
of the result, which can be found in [2].

Theorem 2.1 (Exact decomposition via convex programming). Let M = L+ S be a n× n
matrix where L is rank r and has coherence µ and the support of S is distributed uniformly
at random. Problem (68) with λ = 1/

√
n recovers L and S exactly as long as the rank of L

is of order n/µ up to logarithmic factors and the sparsity level of S is bounded by a certain
constant times n2.

As long as the low-rank component is incoherent and the support of the sparse component
is uniformly distributed, convex programming allows to obtain a perfect decomposition up
to values of the rank of L and the sparsity level of S that are essentially optimal.

The proof of this result is based on the construction of an approximate dual certificate. This
certificate approximates the certificate described in the following proposition.

Proposition 2.2 (Dual certificate for robust PCA). Let M = L + S, where L = UΣV T is
the singular-value decomposition of L and Ω is the support of S. A matrix Q of the form

Q = UV T +W = λ sign (S) + F (72)

where

||W || < 1, UTW = 0, W V = 0, (73)

FΩ = 0, ||F ||∞ < λ, (74)

is a dual certificate of the optimization problem

min
L̃,S̃∈Rm×n

∣∣∣∣∣∣L̃∣∣∣∣∣∣
∗

+ λ
∣∣∣∣∣∣S̃∣∣∣∣∣∣

1
such that L̃+ S̃ = M. (75)

Proof. Let us consider a feasible pair L+L′ and S+S ′. Since L+S = M , L+L′+S+S ′ = M
implies L′+ S ′ = 0. The conditions on Q imply that Q is a subgradient of the nuclear norm
at L and that 1

λ
Q is a subgradient of the `1 norm at S, which implies

||L+ L′||∗ + λ ||S + S ′||1 ≥ ||L||∗ + 〈Q,L′〉+ λ ||S||1 + λ

〈
1

λ
Q, S ′

〉
(76)

= ||L||∗ + λ ||S||1 + 〈Q,L′ + S ′〉 (77)

= ||L||∗ + λ ||S||1 . (78)

Modifying the argument slightly to use the strict inequalities in (73) and (74) allows to prove
that L and S are the unique solution.
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2.5 Algorithms

In order to derive an algorithm to solve Problem (68), we will begin by considering a canonical
problem with linear equality constraints

minimize f (x) (79)

subject to Ax = y. (80)

The Lagrangian of this problem is

L (x, z) := f (x) + 〈z, Ax− y〉 , (81)

where z is a Lagrange multiplier or dual variable. The dual function is obtained by mini-
mizing the Lagrangian over the primal variable x,

g (z) := inf
x
f (x) + 〈z, Ax− y〉 . (82)

If strong duality holds, for a primal solution x∗ and a dual solution z∗ we have

f (x∗) = g (z∗) (83)

= inf
x
L (x, z∗) (84)

≤ f (x∗) . (85)

This implies that if we know z∗, we can compute x∗ by solving

minimize L (x, z∗) . (86)

The dual-ascent method tries to find a solution to the dual problem by using gradient ascent
on the dual function. In more detail, to compute the gradient of the dual function at z
we first minimize the Lagrangian over the primal variable to obtain the minimizer x̂. The
gradient is then equal to

∇g (z) = Ax̂− y. (87)

Algorithm 2.3 (Dual ascent). We set an initial value z(0). Then we iterate between updating
the primal and the dual variables.

• Primal-variable update

x(k) = arg min
x
L
(
x, z(k)

)
. (88)

• Dual-variable update

z(k+1) = z(k) + α(k)
(
Ax(k) − y

)
(89)

for a step size α(k) ≥ 0.
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It turns out that the dual-ascent method is not very stable [1]. This may be tackled by
defining an augmented Lagrangian

Lρ (x, z) := f (x) + 〈z, Ax− y〉+
ρ

2
||Ax− y||22 , (90)

which corresponds to the Lagrangian of the modified (yet equivalent) problem

minimize f (x) +
ρ

2
||Ax− y||22 (91)

subject to Ax = y, (92)

where ρ > 0 is a parameter. Applying dual ascent using the augmented Lagrangian yields
the method of multipliers.

Algorithm 2.4 (Method of multipliers). We set an initial value z(0). Then we iterate
between updating the primal and the dual variables.

• Primal-variable update

x(k) = arg min
x
Lρ
(
x, z(k)

)
. (93)

• Dual-variable update

z(k+1) = z(k) + ρ
(
Ax(k)x− y

)
. (94)

Note that in the dual-variable update we have set the step size to ρ. This can be justified
as follows. Setting z(k+1) so that

∇xL
(
x(k), z(k+1)

)
= 0 (95)

means that the Lagrangian of the original problem is minimized in each iteration. Given
that

∇xLρ
(
x(k), z(k)

)
= ∇xf

(
x(k)
)

+ AT
(
z(k) + ρ (Ax− y)

)
(96)

and

∇xLρ
(
x(k), z(k)

)
= 0, (97)

setting z(k+1) as in (94) yields

∇xL
(
x(k), z(k+1)

)
= ∇xf

(
x(k)
)

+ AT
(
z(k) + ρ (Ax− y)

)
(98)

= 0. (99)

Applying the same ideas to a composite objective function

minimize f1 (x1) + f2 (x2) (100)

subject to Ax1 +Bx2 = y (101)

yields the alternating direction method of multipliers (ADMM).
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Algorithm 2.5 (Alternating direction method of multipliers). We set an initial value z(0).
Then we iterate between updating the primal and the dual variables.

• Primal-variable updates

x
(k)
1 = arg min

x
Lρ
(
x, x

(k−1)
2 , z(k)

)
, (102)

x
(k)
2 = arg min

x
Lρ
(
x

(k)
1 , x, z(k)

)
. (103)

• Dual-variable update

z(k+1) = z(k) + ρ
(
Ax

(k)
1 +Bx

(k)
2 − y

)
. (104)

This description of ADMM is drawn from the review article [1], to which we refer the
interested reader for more details. We now apply the method to Problem (68). In this case
the augmented Lagrangian is of the form

||L||∗ + λ ||S||1 + 〈Z,L+ S − Y 〉+
ρ

2
||L+ S −M ||2F . (105)

The primal update for the low-rank component is obtained by applying Proposition 1.10.

L(k) = arg min
L
Lρ
(
L, S(k−1), Z(k)

)
(106)

= arg min
L
||L||∗ +

〈
Z(k), L

〉
+
ρ

2

∣∣∣∣L+ S(k−1) −M
∣∣∣∣2

F
(107)

= D1/ρ

(
1

ρ
Z(k) + S(k−1) −M

)
. (108)

The primal update for the sparse component is obtained by recalling that softhresholding is
the proximal operator for the `1 norm.

S(k) = arg min
S
Lρ
(
S, L(k−1), Z(k)

)
(109)

= arg min
S
λ ||S||1 +

〈
Z(k), S

〉
+
ρ

2

∣∣∣∣L(k−1) + S −M
∣∣∣∣2

F
(110)

= Sλ/ρ
(

1

ρ
Z(k) + L(k) −M

)
. (111)

This yields ADMM for robust PCA, also described under the name ALM (augmented La-
grangian method) in the literature [9].

Algorithm 2.6 (ADMM for robust PCA). We set an initial value Z(0). Then we iterate
between updating the primal and the dual variables.
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Figure 6: Background subtraction results from a video. This example is due to Stephen Becker.
The code is available at http://cvxr.com/tfocs/demos/rpca.

• Primal-variable updates

L(k) = D1/ρ

(
1

ρ
Z(k) + S(k−1) −M

)
, (112)

S(k) = Sλ/ρ
(

1

ρ
Z(k) + L(k) −M

)
. (113)

• Dual-variable update

Z(k+1) = Z(k) + ρ
(
L(k) + S(k) −M

)
. (114)

2.6 Background subtraction

In computer vision, the problem of background subtraction is that of separating the back-
ground and foreground of a video sequence. Imagine that we take a video of a static back-
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ground. We then stack the video frames in a matrix M , where each column corresponds to
a vectorized frame. If the background is completely static, then all the frames are equal to
a certain vector f ∈ Rm (m is the number of pixels in each frame) and the matrix is rank 1

M =
[
f f · · · f

]
= f

[
1 1 · · · 1

]
. (115)

If the background is not completely static, but instead experiences gradual changes, then
the matrix containing the frames will be approximately low rank. Now, assume that there
are sudden events in the foreground. If these events occupy a small part of the field of view
and do not last very long, then the corresponding matrix can be modeled as sparse (most
entries are equal to zero). These observations motivate applying the robust PCA method
to background subtraction. We stack the frames as columns of a matrix and separate the
matrix into a low-rank and a sparse component. The results of applying this method to a
real video sequence are shown in Figure 6.
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A Proofs

A.1 Proof of Proposition 1.5

The following simple lemma will be very useful. We omit the proof.

Lemma A.1. For any m× n matrices A and B

trace (AB) = trace (BA) . (116)

The proof relies on the following two lemmas.

Lemma A.2. For any Q ∈ Rm×n, U ∈ Rm×m, V ∈ Rn×n, if UTU = I and V TV = I then

||UQV || = ||Q|| . (117)

Proof. By the definition of the operator norm,∣∣∣∣UQV T
∣∣∣∣ = sup

||x||2=1

||UQV x||2 (118)

= sup
||x||2=1

√
xTV TQTUTUQV x (119)

= sup
||x||2=1

√
xTV TQTQV x (120)

= sup
||y||2=1

√
yTQTQy because ||x||2 = ||V x||2 (121)

= ||Q|| . (122)

Lemma A.3. For any Q ∈ Rn×n

max
1≤i≤n

|Qii| ≤ ||Q|| . (123)
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Proof. We denote the standard basis vectors by ei, 1 ≤ i ≤ n. Since ||ei||2 = 1,

max
1≤i≤n

|Qii| ≤ max
1≤i≤n

√√√√ n∑
j=1

Q2
ji (124)

= max
1≤i≤n

||Qei||2 (125)

≤ sup
||x||2=1

||Qx||2 . (126)

By Lemma A.1, if the singular value decomposition of A is UΣV T then

sup
||B||≤1

tr
(
ATB

)
= sup
||B||≤1

tr
(
V ΣUTB

)
(127)

= sup
||B||≤1

tr
(
ΣBUTV

)
. (128)

By Lemma A.2 BUTV has operator norm equal to ||B|| = 1. By Lemma A.3 this implies
that its diagonal entries have magnitudes bounded by one. We conclude that

sup
||B||≤1

tr
(
ATB

)
≤ sup
{M | max1≤i≤n|Mii|≤1}

tr (ΣM) (129)

≤ sup
{M | max1≤i≤n|Mii|≤1}

n∑
i=1

Mii σi (130)

≤
n∑
i=1

σi (131)

= ||A||∗ . (132)

To complete the proof, we need to show that the equality holds. Note that UV T has operator
norm equal to one because its r singular values (recall that r is the rank of A) are equal to
one. We have 〈

A,UV T
〉

= trace
(
ATUV T

)
(133)

= trace
(
V ΣUTUV T

)
(134)

= trace
(
V TV Σ

)
by Lemma A.1 (135)

= trace (Σ) (136)

= ||A||∗ . (137)
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A.2 Proof of Proposition 1.10

Due to the Frobenius norm term, the cost function is strictly convex. This implies that
any point at which there exists a subgradient that is equal to zero is the solution to the
optimization problem. The subgradients of the cost function at X are of the form,

X − Y + τG, (138)

where G is a subgradient of the nuclear norm at X. If we can show that

1

τ
(Y −Dτ (Y )) (139)

is a subgradient of the nuclear norm at Dτ (Y ) then Dτ (Y ) is the solution.

Let us separate the singular-value decomposition of Y into the singular vectors corresponding
to singular values greater than τ , denoted by U0 and V0 and the rest

Y = U ΣV T (140)

=
[
U0 U1

] [Σ0 0
0 Σ1

] [
V0 V1

]T
. (141)

Note that Dτ (Y ) = U0 (Σ0 − τI)V T
0 , so that

1

τ
(Y −Dτ (Y )) = U0V

T
0 +

1

τ
U1Σ1V

T
1 . (142)

By construction all the singular values of U1Σ1V
T

1 are smaller than τ , so∣∣∣∣∣∣∣∣1τ U1Σ1V
T

1

∣∣∣∣∣∣∣∣ ≤ 1. (143)

In addition, by definition of the singular-value decomposition UT
0 U1 = 0 and V T

0 V1 = 0. As
a result, (142) is a subgradient of the nuclear norm at Dτ (Y ) and the proof is complete.
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