
Optimization-based data analysis Fall 2017

Lecture Notes 1: Vector spaces

In this chapter we review certain basic concepts of linear algebra, highlighting their ap-
plication to signal processing.

1 Vector spaces

Embedding signals in a vector space essentially means that we can add them up or scale
them to produce new signals.

Definition 1.1 (Vector space). A vector space consists of a set V, a scalar field that is

usually either the real or the complex numbers and two operations + and · satisfying the

following conditions.

1. For any pair of elements ~x, ~y 2 V the vector sum ~x+ ~y belongs to V.

2. For any ~x 2 V and any scalar ↵, ↵ · ~x 2 V.

3. There exists a zero vector ~0 such that ~x+~0 = ~x for any ~x 2 V.

4. For any ~x 2 V there exists an additive inverse ~y such that ~x+~y = ~0, usually denoted

by �~x.

5. The vector sum is commutative and associative, i.e. for all ~x, ~y, ~z 2 V

~x+ ~y = ~y + ~x, (~x+ ~y) + ~z = ~x+ (~y + ~z). (1)

6. Scalar multiplication is associative, for any scalars ↵ and � and any ~x 2 V

↵ (� · ~x) = (↵�) · ~x. (2)

7. Scalar and vector sums are both distributive, i.e. for any scalars ↵ and � and any

~x, ~y 2 V

(↵ + �) · ~x = ↵ · ~x+ � · ~x, ↵ · (~x+ ~y) = ↵ · ~x+ ↵ · ~y. (3)

A subspace of a vector space V is any subset of V that is also itself a vector space.

From now on, for ease of notation we ignore the symbol for the scalar product ·, writing
↵ · ~x as ↵~x.

Depending on the signal of interest, we may want to represent it as an array of real
or complex numbers, a matrix or a function. All of these mathematical objects can be
represented as vectors in a vector space.
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Example 1.2 (Real-valued and complex-valued vectors). Rn with R as its associated
scalar field is a vector space where each vector consists of a set of n real-valued numbers.
This is by far the most useful vector space in data analysis. For example, we can represent
images with n pixels as vectors in Rn, where each pixel is assigned to an entry.

Similarly, Cn with C as its associated scalar field is a vector space where each vector
consists of a set of n complex-valued numbers. In both Rn and Cn, the zero vector is a
vector containing zeros in every entry. 4

Example 1.3 (Matrices). Real-valued or complex-valued matrices of fixed dimensions
form vector spaces with R and C respectively as their associated scalar fields. Adding
matrices and multiplying matrices by scalars yields matrices of the same dimensions. In
this case the zero vector corresponds to a matrix containing zeros in every entry. 4

Example 1.4 (Functions). Real-valued or complex-valued functions form a vector space
(with R and C respectively as their associated scalar fields), since we can obtain new
functions by adding functions or multiplying them by scalars. In this case the zero vector
corresponds to a function that maps any number to zero. 4

Linear dependence indicates when a vector can be represented in terms of other vectors.

Definition 1.5 (Linear dependence/independence). A set of m vectors ~x1, ~x2, . . . , ~xm is

linearly dependent if there exist m scalar coe�cients ↵1,↵2, . . . ,↵m which are not all equal

to zero and such that

mX

i=1

↵i ~xi = ~0. (4)

Otherwise, the vectors are linearly independent. Equivalently, any vector in a linearly

dependent set can be expressed as a linear combination of the rest, which is not the case

for linearly independent sets.

We define the span of a set of vectors {~x1, . . . , ~xm} as the set of all possible linear combi-
nations of the vectors:

span (~x1, . . . , ~xm) :=

(
~y | ~y =

mX

i=1

↵i ~xi for some scalars ↵1,↵2, . . . ,↵m

)
. (5)

It is not di�cult to check that the span of any set of vectors belonging to a vector space
V is a subspace of V .
When working with a vector space, it is useful to consider the set of vectors with the
smallest cardinality that spans the space. This is called a basis of the vector space.

Definition 1.6 (Basis). A basis of a vector space V is a set of independent vectors

{~x1, . . . , ~xm} such that

V = span (~x1, . . . , ~xm) (6)
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An important property of all bases in a vector space is that they have the same cardinality.

Theorem 1.7 (Proof in Section 8.1). If a vector space V has a basis with finite cardinality

then every basis of V contains the same number of vectors.

This result allows us to define the dimension of a vector space.

Definition 1.8 (Dimension). The dimension dim (V) of a vector space V is the cardinality

of any of its bases, or equivalently the number of linearly independent vectors that span

V.

This definition coincides with the usual geometric notion of dimension in R2 and R3:
a line has dimension 1, whereas a plane has dimension 2 (as long as they contain the
origin). Note that there exist infinite-dimensional vector spaces, such as the continuous
real-valued functions defined on [0, 1] (we will define a basis for this space later on).

The vector space that we use to model a certain problem is usually called the ambient
space and its dimension the ambient dimension. In the case of Rn the ambient dimension
is n.

Lemma 1.9 (Dimension of Rn). The dimension of Rn
is n.

Proof. Consider the set of vectors ~e1, . . . ,~en ✓ Rn defined by

~e1 =

2

6664

1
0
...
0

3

7775
, ~e2 =

2

6664

0
1
...
0

3

7775
, . . . , ~en =

2

6664

0
0
...
1

3

7775
. (7)

One can easily check that this set is a basis. It is in fact the standard basis of Rn.

2 Inner product

Up to now, the only operations we have considered are addition and multiplication by
a scalar. In this section, we introduce a third operation, the inner product between two
vectors.

Definition 2.1 (Inner product). An inner product on a vector space V is an operation

h·, ·i that maps a pair of vectors to a scalar and satisfies the following conditions.

• If the scalar field associated to V is R, it is symmetric. For any ~x, ~y 2 V

h~x, ~yi = h~y, ~xi . (8)

If the scalar field is C, then for any ~x, ~y 2 V

h~x, ~yi = h~y, ~xi, (9)

where for any ↵ 2 C ↵ is the complex conjugate of ↵.
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• It is linear in the first argument, i.e. for any ↵ 2 R and any ~x, ~y, ~z 2 V

h↵~x, ~yi = ↵ h~x, ~yi , (10)

h~x+ ~y, ~zi = h~x, ~zi+ h~y, ~zi . (11)

Note that if the scalar field is R, it is also linear in the second argument by symmetry.

• It is positive definite: h~x, ~xi is nonnegative for all ~x 2 V and if h~x, ~xi = 0 then

~x = 0.

Definition 2.2 (Dot product). The dot product between two vectors ~x, ~y 2 Rn

~x · ~y :=
X

i

~x [i] ~y [i] , (12)

where ~x [i] is the ith entry of ~x, is a valid inner product. Rn
endowed with the dot product

is usually called a Euclidean space of dimension n.

Similarly, the dot product between two vectors ~x, ~y 2 Cn

~x · ~y :=
X

i

~x [i] ~y [i] (13)

is a valid inner product.

Definition 2.3 (Sample covariance). In statistics and data analysis, the sample covari-

ance is used to quantify the joint fluctuations of two quantities or features. Let (x1, y1),
(x2, y2), . . . , (xn, yn) be a data set where each example consists of a measurement of the

two features. The sample covariance is defined as

cov ((x1, y1) , . . . , (xn, yn)) :=
1

n� 1

nX

i=1

(xi � av (x1, . . . , xn)) (yi � av (y1, . . . , yn)) (14)

where the average or sample mean of a set of n numbers is defined by

av (a1, . . . , an) :=
1

n

nX

i=1

ai. (15)

Geometrically the covariance is the scaled dot product of the two feature vectors after

centering. The normalization constant is set so that if the measurements are modeled as

independent samples (x1,y1), (x2,y2), . . . , (xn,yn) following the same distribution as

two random variables x and y, then the sample covariance of the sequence is an unbiased

estimate of the covariance of x and y,

E (cov ((x1,y1) , . . . , (xn,yn))) = Cov (x,y) := E ((x� E (x)) (y � E (y))) . (16)
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Definition 2.4 (Matrix inner product). The inner product between two m ⇥ n matrices

A and B is

hA,Bi := tr
�
ATB

�
(17)

=
mX

i=1

nX

j=1

AijBij, (18)

where the trace of an n⇥ n matrix is defined as the sum of its diagonal

tr (M) :=
nX

i=1

Mii. (19)

The following lemma shows a useful property of the matrix inner product.

Lemma 2.5. For any pair of m⇥ n matrices A and B

tr
�
BTA

�
:= tr

�
ABT

�
. (20)

Proof. Both sides are equal to (18).

Note that the matrix inner product is equivalent to the inner product of the vectors with
mn entries obtained by vectorizing the matrices.

Definition 2.6 (Function inner product). A valid inner product between two complex-

valued square-integrable functions f , g defined in an interval [a, b] of the real line is

~f · ~g :=

Z b

a

f (x) g (x) dx. (21)

3 Norms

The norm of a vector is a generalization of the concept of length in Euclidean space.

Definition 3.1 (Norm). Let V be a vector space, a norm is a function ||·|| from V to R
that satisfies the following conditions.

• It is homogeneous. For any scalar ↵ and any ~x 2 V

||↵~x|| = |↵| ||~x|| . (22)

• It satisfies the triangle inequality

||~x+ ~y||  ||~x||+ ||~y|| . (23)

In particular, it is nonnegative (set ~y = �~x).
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• ||~x|| = 0 implies that ~x is the zero vector ~0.

A vector space equipped with a norm is called a normed space. Inner-product spaces are
normed spaces because we can define a valid norm using the inner product.

Definition 3.2 (Inner-product norm). The norm induced by an inner product is obtained

by taking the square root of the inner product of the vector with itself,

||~x||h·,·i :=
p

h~x, ~xi. (24)

Definition 3.3 (`2 norm). The `2 norm is the norm induced by the dot product in Rn
or

Cn
,

||~x||2 :=
p
~x · ~x =

vuut
nX

i=1

~x[i]2. (25)

In the case of R2
or R3

it is what we usually think of as the length of the vector.

Definition 3.4 (Sample variance and standard deviation). Let {x1, x2, . . . , xn} be a set

of real-valued data. The sample variance is defined as

var (x1, x2, . . . , xn) :=
1

n� 1

nX

i=1

(xi � av (x1, x2, . . . , xn))
2 (26)

The sample standard deviation is the square root of the sample variance

std (x1, x2, . . . , xn) :=
p

var (x1, x2, . . . , xn). (27)

Definition 3.5 (Sample variance and standard deviation). In statistics and data analysis,

the sample variance is used to quantify the fluctuations of a quantity around its average.

Assume that we have n real-valued measurements x1, x2, . . . , xn. The sample variance

equals

var (x1, x2, . . . , xn) :=
1

n� 1

nX

i=1

(xi � av (x1, x2, . . . , xn))
2 (28)

The normalization constant is set so that if the measurements are modeled as independent

samples x1, x2, . . . , xn following the same distribution as a random variable x then the

sample variance is an unbiased estimate of the variance of x,

E (var (x1,x2, . . . ,xn)) = Var (x) := E
�
(x� E (x))2

�
. (29)

The sample standard deviation is the square root of the sample variance

std (x1, x2, . . . , xn) :=
p

var (x1, x2, . . . , xn). (30)
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⇢~x,~y 0.50 0.90 0.99

⇢~x,~y 0.00 -0.90 -0.99

Figure 1: Scatter plot of the points (~x1, ~y1), (~x2, ~y2), . . . , (~xn, ~yn) for vectors with di↵erent

correlation coe�cients.

Definition 3.6 (Correlation coe�cient). When computing the sample covariance of two

features the unit in which we express each quantity may severely a↵ect the result. If one

of the features is a distance, for example, expressing it in meters instead of kilometers

increases the sample covariance by a factor of 1000! In order to obtain a measure of

joint fluctuations that is invariant to scale, we normalize the covariance using the sam-

ple standard deviation of the features. This yields the correlation coe�cient of the two

quantities

⇢(x1,y1),...,(xn,yn) :=
cov ((x1, y1) , . . . , (xn, yn))

std (x1, . . . , xn) std (y1, . . . , yn)
. (31)

As illustrated in Figure 1 the correlation coe�cient quantifies to what extent the entries of
the two vectors are linearly related. Corollary 3.12 below shows that it is always between
-1 and 1. If it is positive, we say that the two quantities are correlated. If it is negative,
we say they are negatively correlated. If it is zero, we say that they are uncorrelated. In
the following example we compute the correlation coe�cient of some temperature data.

Example 3.7 (Correlation of temperature data). In this example we analyze temperature
data gathered at a weather station in Oxford over 150 years.1 We first compute the
correlation between the temperature in January and the temperature in August. The
correlation coe�cient is ⇢ = 0.269. This means that the two quantities are positively
correlated: warmer temperatures in January tend to correspond to warmer temperatures

1
The data is available at http://www.metoffice.gov.uk/pub/data/weather/uk/climate/
stationdata/oxforddata.txt.
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⇢ = 0.269 ⇢ = 0.962

Figure 2: Scatterplot of the temperature in January and in August (left) and of the maximum

and minimum monthly temperature (right) in Oxford over the last 150 years.

in August. The left image in Figure 2 shows a scatter plot where each point represents
a di↵erent year. We repeat the experiment to compare the maximum and minimum
temperature in the same month. The correlation coe�cient between these two quantities
is ⇢ = 0.962, indicating that the two quantities are extremely correlated. The right image
in Figure 2 shows a scatter plot where each point represents a di↵erent month. 4

Definition 3.8 (Frobenius norm). The Frobenius norm is the norm induced by the matrix

inner product. For any matrix A 2 Rm⇥n

||A||F :=
p
tr (ATA) =

vuut
mX

i=1

nX

j=1

A2
ij. (32)

It is equal to the `2 norm of the vectorized matrix.

Definition 3.9 (L2 norm). The L2 norm is the norm induced by the dot product in the

inner-product space of square-integrable complex-valued functions defined on an interval

[a, b],

||f ||L2
:=
p
hf, fi =

sZ b

a

|f (x)|2 dx. (33)

The inner-product norm is clearly homogeneous by linearity and symmetry of the inner
product. ||~x||h·,·i = 0 implies ~x = 0 because the inner product is positive semidefinite. We
only need to establish that the triangle inequality holds to ensure that the inner-product
is a valid norm. This follows from a classic inequality in linear algebra, which is proved
in Section 8.2.
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Theorem 3.10 (Cauchy-Schwarz inequality). For any two vectors ~x and ~y in an inner-

product space

|h~x, ~yi|  ||~x||h·,·i ||~y||h·,·i . (34)

Assume ||~x||h·,·i 6= 0, then

h~x, ~yi = � ||~x||h·,·i ||~y||h·,·i () ~y = �
||~y||h·,·i
||~x||h·,·i

~x, (35)

h~x, ~yi = ||~x||h·,·i ||~y||h·,·i () ~y =
||~y||h·,·i
||~x||h·,·i

~x. (36)

Corollary 3.11. The norm induced by an inner product satisfies the triangle inequality.

Proof.

||~x+ ~y||2h·,·i = ||~x||2h·,·i + ||~y||2h·,·i + 2 h~x, ~yi (37)

 ||~x||2h·,·i + ||~y||2h·,·i + 2 ||~x||h·,·i ||~y||h·,·i by the Cauchy-Schwarz inequality

=
⇣
||~x||h·,·i + ||~y||h·,·i

⌘2
. (38)

Another corollary of the Cauchy-Schwarz theorem is that the correlation coe�cient is
always between -1 and 1 and that if it equals either 1 or -1 then the two vectors are
linearly dependent.

Corollary 3.12. The correlation coe�cient of two vectors ~x and ~y in Rn
satisfies

�1  ⇢(x1,y1),...,(xn,yn)  1. (39)

In addition,

⇢~x,~y = �1 () yi = av (y1, . . . , yn)�
std (y1, . . . , yn)

std (x1, . . . , xn)
(xi � av (x1, . . . , xn)) , (40)

⇢~x,~y = 1 () yi = av (y1, . . . , yn) +
std (y1, . . . , yn)

std (x1, . . . , xn)
(xi � av (x1, . . . , xn)) . (41)

Proof. The result follows from applying the Cauchy-Schwarz inequality to the vectors

~a :=
⇥
x1 � av (x1, . . . , xn) x2 � av (x1, . . . , xn) · · · xn � av (x1, . . . , xn)

⇤
, (42)

~b :=
⇥
y1 � av (y1, . . . , yn) y2 � av (y1, . . . , yn) · · · yn � av (y1, . . . , yn)

⇤
, (43)

since

std (x1, x2, . . . , xn) = ||~a||2 , (44)

std (y1, y2, . . . , yn) = ||~b||2, (45)

cov ((x1, y1) , . . . , (xn, yn)) =
D
~a,~b
E
. (46)

9



Norms are not always induced by an inner product. The parallelogram law provides a
simple identity that allows to check whether this is the case.

Theorem 3.13 (Parallelogram law). A norm k · k on a vector space V is induced by an

inner product if and only if

2k~xk2 + 2k~yk2 = k~x� ~yk2 + k~x+ ~yk2, (47)

for any ~x, ~y 2 V.

Proof. If the norm is induced by an inner product then

k~x� ~yk2 + k~x+ ~yk2 = h~x� ~y, ~x� ~yi+ h~x+ ~y, ~x+ ~yi (48)

= 2k~xk2 + 2k~yk2 � (~x, ~y)� (~y, ~x) + (~x, ~y) + (~y, ~x) (49)

= 2k~xk2 + 2k~yk2. (50)

If the identity holds then it can be shown that

h~x, ~yi := 1

4

�
k~x+ ~yk2 � k~x� ~yk2

�
(51)

is a valid inner product for real scalars and

h~x, ~yi := 1

4

�
k~x+ ~yk2 � k~x� ~yk2 � i

�
k~x+ i~yk2 � k~x� i~yk2

��
(52)

is a valid inner product for complex scalars.

The following two norms do not satisfy the parallelogram identity and therefore are not
induced by an inner product. Figure 3 compares their unit-norm balls with that of the
`2 norm. Recall that the unit-norm ball of a norm ||·|| is the set of vectors ~x such that
||~x||  1.

Definition 3.14 (`1 norm). The `1 norm of a vector in Rn
or Cn

is the sum of the

absolute values of the entries,

||~x||1 :=
nX

i=1

|~x[i]| . (53)

Definition 3.15 (`1 norm). The `1 norm of a vector in Rn
or Cn

is the maximum

absolute value of its entries,

||~x||1 := max
i

|~x[i]| . (54)

Although they do not satisfy the Cauchy-Schwarz inequality, as they are not induced by
any inner product, the `1 and `1 norms can be used to bound the inner product between
two vectors.
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`1 `2 `1

Figure 3: Unit `1, `2 and `1 norm balls.

Theorem 3.16 (Hölder’s inequality). For any two vectors ~x and ~y in Rn
or Cn

|h~x, ~yi|  ||~x||1 ||~y||1 . (55)

Proof.

|h~x, ~yi| 
nX

i=1

|~x[i]| |~y[i]| (56)

 max
i

|~y[i]|
nX

i=1

|~x[i]| (57)

= ||~x||1 ||~y||1 . (58)

Distances in a normed space can be measured using the norm of the di↵erence between
vectors.

Definition 3.17 (Distance). The distance between two vectors ~x and ~y induced by a norm

||·|| is

d (~x, ~y) := ||~x� ~y|| . (59)

4 Nearest-neighbor classification

If we represent signals as vectors in a vector space, the distance between them quantifies
their similarity. In this section we show how to exploit this to perform classification.

Definition 4.1 (Classification). Given a set of k predefined classes, the classification

problem is to decide what class a signal belongs to. The assignment is done using a

training set of examples, each of which consists of a signals and its corresponding label.
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nearest neighbor

Figure 4: The nearest neighbor algorithm classifies points by assigning them the class of the

closest point. In the diagram, the black point is assigned the red circle class because its nearest

neighbor is a red circle.

Figure 5: Training examples for four of the people in Example 4.3.
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Test image

Closest image

Figure 6: Results of nearest-neighbor classification for four of the people in Example 4.3. The

assignments of the first three examples are correct, but the fourth is wrong.

The nearest-neighbor algorithm classifies signals by looking for the closest signal in the
training set. Figure 4 shows a simple example.

Algorithm 4.2 (Nearest-neighbor classification). Assume that the signals of interest can

be represented by vectors in a vector space endowed with a norm denoted by ||·||. The

training set consequently consists of n pairs of vectors and labels: {~x1, l1}, . . . , {~xn, ln}.
To classify a test signal ~y we find the closest signal in the training set in terms of the

distance induced by the norm,

i⇤ := arg min
1in

||~y � ~xi|| , (60)

and assign the corresponding label li⇤ to ~y.

Example 4.3 (Face recognition). The problem of face recognition consists of classifying
images of faces to determine what person they correspond to. In this example we consider
the Olivetti Faces data set2. The training set consists of 360 64 ⇥ 64 images taken from
40 di↵erent subjects (9 per subject). Figure 5 shows some of the faces in the training
set. The test set consists of an image of each subject, which is di↵erent from the ones in
the training set. We apply nearest-neighbor algorithm to classify the faces in the test set,
modeling each image as a vector in R4096 and using the distance induced by the `2 norm.
The algorithm classifies 36 of the 40 subjects correctly. Some of the results are shown in
Figure 6. 4

5 Orthogonality

When the inner product between two vectors is zero, we say that the vectors are orthog-
onal.
2
Available at http://www.cs.nyu.edu/~roweis/data.html
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Definition 5.1 (Orthogonality). Two vectors ~x and ~y are orthogonal if and only if

h~x, ~yi = 0. (61)

A vector ~x is orthogonal to a set S, if

h~x,~si = 0, for all ~s 2 S. (62)

Two sets of S1,S2 are orthogonal if for any ~x 2 S1, ~y 2 S2

h~x, ~yi = 0. (63)

The orthogonal complement of a subspace S is

S? := {~x | h~x, ~yi = 0 for all ~y 2 S} . (64)

Distances between orthogonal vectors measured in terms of the norm induced by the inner
product are easy to compute.

Theorem 5.2 (Pythagorean theorem). If ~x and ~y are orthogonal vectors

||~x+ ~y||2h·,·i = ||~x||2h·,·i + ||~y||2h·,·i . (65)

Proof. By linearity of the inner product

||~x+ ~y||2h·,·i = ||~x||2h·,·i + ||~y||2h·,·i + 2 h~x, ~yi (66)

= ||~x||2h·,·i + ||~y||2h·,·i . (67)

If we want to show that a vector is orthogonal to a certain subspace, it is enough to show
that it is orthogonal to every vector in a basis of the subspace.

Lemma 5.3. Let ~x be a vector and S a subspace of dimension n. If for any basis

~b1,~b2, . . . ,~bn of S,
D
~x,~bi

E
= 0, 1  i  n, (68)

then ~x is orthogonal to S.

Proof. Any vector v 2 S can be represented as v =
P

i ↵
n
i=1

~bi for ↵1, . . . ,↵n 2 R, from (68)

h~x, vi =
*
~x,
X

i

↵n
i=1

~bi

+
=
X

i

↵n
i=1

D
~x,~bi

E
= 0. (69)
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If the vectors in a basis are normalized and mutually orthogonal, then the norm is said
to be orthonormal.

Definition 5.4 (Orthonormal basis). A basis of mutually orthogonal vectors with inner-

product norm equal to one is called an orthonormal basis.

It is very easy to find the coe�cients of a vector in an orthonormal basis: we just need
to compute the dot products with the basis vectors.

Lemma 5.5 (Coe�cients in an orthonormal basis). If {~u1, . . . , ~un} is an orthonormal

basis of a vector space V, for any vector ~x 2 V

~x =
nX

i=1

h~ui, ~xi ~ui. (70)

Proof. Since {~u1, . . . , ~un} is a basis,

~x =
mX

i=1

↵i ~ui for some ↵1,↵2, . . . ,↵m 2 R. (71)

Immediately,

h~ui, ~xi =
*
~ui,

mX

i=1

↵i ~ui

+
=

mX

i=1

↵i h~ui, ~uii = ↵i (72)

because h~ui, ~uii = 1 and h~ui, ~uji = 0 for i 6= j.

We can construct an orthonormal basis for any subspace in a vector space by applying the
Gram-Schmidt method to a set of linearly independent vectors spanning the subspace.

Algorithm 5.6 (Gram-Schmidt). Consider a set of linearly independent vectors ~x1, . . . ,

~xm in Rn
. To obtain an orthonormal basis of the span of these vectors we:

1. Set ~u1 := ~x1/ ||~x1||2.

2. For i = 1, . . . ,m, compute

~vi := ~xi �
i�1X

j=1

h~uj, ~xii ~uj. (73)

and set ~ui := ~vi/ ||~vi||2.

It is not di�cult to show that the resulting set of vectors ~u1, . . . , ~um is an orthonormal
basis for the span of ~x1, . . . , ~xm: they are orthonormal by construction and their span is
the same as that of the original set of vectors.
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6 Orthogonal projection

If two subspaces are disjoint, i.e. their only common point is the origin, then a vector
that can be expressed as a sum of a vector from each subspace is said to belong to their
direct sum.

Definition 6.1 (Direct sum). Let V be a vector space. For any subspaces S1,S2 ✓ V such

that

S1 \ S2 = {0} (74)

the direct sum is defined as

S1 � S2 := {~x | ~x = ~s1 + ~s2 ~s1 2 S1,~s2 2 S2} . (75)

The representation of a vector in the direct sum of two subspaces as the sum of vectors
from the subspaces is unique.

Lemma 6.2. Any vector ~x 2 S1 � S2 has a unique representation

~x = ~s1 + ~s2 ~s1 2 S1,~s2 2 S2. (76)

Proof. If ~x 2 S1�S2 then by definition there exist ~s1 2 S1,~s2 2 S2 such that ~x = ~s1+~s2.
Assume ~x = ~v1 + ~v2, ~v1 2 S1,~v2 2 S2, then ~s1 � ~v1 = ~s2 � ~v2. This implies that ~s1 � ~v1
and ~s2 �~v2 are in S1 and also in S2. However, S1 \ S2 = {0}, so we conclude ~s1 = ~v1 and
~s2 = ~v2.

Given a vector x and a subspace S, the orthogonal projection of ~x onto S is the vector
that we reach when we go from x to S following a direction that is orthogonal to S. This
allows to express ~x as the sum of a component that belongs to S and another that belongs
to its orthogonal complement. This is illustrated by a simple example in Figure 7.

Definition 6.3 (Orthogonal projection). Let V be a vector space. The orthogonal pro-

jection of a vector ~x 2 V onto a subspace S ✓ V is a vector denoted by PS ~x such that

~x� PS ~x 2 S?
.

Theorem 6.4 (Properties of the orthogonal projection). Let V be a vector space. Every

vector ~x 2 V has a unique orthogonal projection PS ~x onto any subspace S ✓ V of finite

dimension. In particular ~x can be expressed as

~x = PS ~x+ PS? ~x. (77)

For any vector s 2 S

h~x, si = hPS ~x, si . (78)
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Figure 7: Orthogonal projection of a vector ~x 2 R2
on a two-dimensional subspace S.

For any orthonormal basis ~b1, . . . ,~bm of S,

PS ~x =
mX

i=1

D
~x,~bi

E
~bi. (79)

The orthogonal projection is a linear operation. For any vectors ~x and ~y and any subspace

S
PS (~x+ ~y) = PS ~x+ PS ~y. (80)

Proof. Let us denote the dimension of S by m. Since m is finite, there exists an orthonor-
mal basis of S: ~b01, . . . ,~b0m. Consider the vector

~p :=
mX

i=1

D
~x,~b0i

E
~b0i. (81)

It turns out that ~x� ~p is orthogonal to every vector in the basis. For 1  j  m,

D
~x� ~p,~b0j

E
=

*
~x�

mX

i=1

D
~x,~b0i

E
~b0i,~b

0
j

+
(82)

=
D
~x,~b0j

E
�

mX

i=1

D
~x,~b0i

ED
~b0i,~b

0
j

E
(83)

=
D
~x,~b0j

E
�
D
~x,~b0j

E
= 0, (84)

so ~x � ~p 2 S? and ~p is an orthogonal projection. Since S \ S? = {0} 3 there cannot be
two other vectors ~x1 2 S, ~x1 2 S? such that ~x = ~x1 + ~x2 so the orthogonal projection is
unique.

3
For any vector ~v that belongs to both S and S? h~v,~vi = ||~v||22 = 0, which implies ~v = 0.
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Notice that ~o := ~x�~p is a vector in S? such that ~x�~o = ~p is in S and therefore in
�
S?�?.

This implies that ~o is the orthogonal projection of ~x onto S? and establishes (77).

Equation (78) follows immediately from the orthogonality of any vector in S and PS? ~x.

Equation (79) follows from (78).

Finally, linearity follows from (79) and linearity of the inner product

PS (~x+ ~y) =
mX

i=1

D
~x+ ~y,~bi

E
~bi (85)

=
mX

i=1

D
~x,~bi

E
~bi +

mX

i=1

D
~y,~bi

E
~bi (86)

= PS ~x+ PS ~y. (87)

The following corollary relates the dimensions of a subspace and its orthogonal comple-
ment within a finite-dimensional vector space.

Corollary 6.5 (Dimension of orthogonal complement). Let V be a finite-dimensional

vector space, for any subspace S ✓ V

dim (S) + dim
�
S?� = dim (V) . (88)

Proof. Consider a set of vectors B defined as the union of a basis of S, which has dim (S)
elements, and a basis of S?, which has dim

�
S?� elements. Due to the orthogonality of

S and S? all the dim (S) + dim
�
S?� vectors in B are linearly independent and by (77)

they span the whole space, which establishes the result.

Computing the inner-product norm of the projection of a vector onto a subspace is easy
if we have access to an orthonormal basis.

Lemma 6.6 (Norm of the projection). The norm of the projection of an arbitrary vector

~x 2 V onto a subspace S ✓ V of dimension d can be written as

||PS ~x||h·,·i =

vuut
dX

i

D
~bi, ~x

E2
(89)

for any orthonormal basis ~b1, . . . ,~bd of S.
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Proof. By (79)

||PS ~x||2h·,·i = hPS ~x,PS ~xi (90)

=

*
dX

i

D
~bi, ~x

E
~bi,

dX

j

D
~bj, ~x

E
~bj

+
(91)

=
dX

i

dX

j

D
~bi, ~x

ED
~bj, ~x

ED
~bi,~bj

E
(92)

=
dX

i

D
~bi, ~x

E2
. (93)

The orthogonal projection of a vector ~x onto a subspace S has a very intuitive interpreta-
tion that generalizes to other sets: it is the vector in S that is closest to ~x in the distance
associated to the inner-product norm.

Theorem 6.7 (The orthogonal projection is closest). The orthogonal projection PS ~x of

a vector ~x onto a subspace S is the solution to the optimization problem

minimize
~u

||~x� ~u||h·,·i (94)

subject to ~u 2 S. (95)

Proof. Take any point ~s 2 S such that ~s 6= PS ~x

||~x� ~s||2h·,·i = ||~x� PS ~x+ PS ~x� ~s||2h·,·i (96)

= ||~x� PS ~x||2h·,·i + ||PS ~x� ~s||2h·,·i (97)

> ||~x� PS ~x||2h·,·i because ~s 6= PS ~x, (98)

where (97) follows from the Pythagorean theorem since because PS? ~x = ~x�PS ~x belongs
to S? and PS ~x� ~s to S.

7 Denoising

In this section we consider the problem of denoising a signal that has been corrupted by
an unknown perturbation.

Definition 7.1 (Denoising). The aim of denoising is to estimate a signal from perturbed

measurements. If the noise is assumed to be additive, the data are modeled as the sum of

the signal ~x and a perturbation ~z

~y := ~x+ ~z. (99)

The goal is to estimate ~x from ~y.
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error

0

S

PS~y

~y

~x ~z

PS?~x

PS~z

Figure 8: Illustration of the two terms in the error decomposition of Lemma 7.3 for a simple

denoising example, where the data vector is denoised by projecting onto a 1D subspace.

In order to denoise a signal, we need to have some prior information about its structure.
For instance, we may suspect that the signal is well approximated as belonging to a
predefined subspace. This suggests estimating the signal by projecting the noisy data
onto the subspace.

Algorithm 7.2 (Denoising via orthogonal projection). Denoising a data vector ~y via

orthogonal projection onto a subspace S, consists of setting the signal estimate to PS ~y,
the projection of the noisy data onto S.

The following lemma gives a simple decomposition of the error incurred by this denoising
technique, which is illustrated in Figure 8.

Lemma 7.3. Let ~y := ~x+ ~z and let S be an arbitrary subspace, then

||~x� PS ~y||22 = ||PS? ~x||22 + ||PS ~z||22 . (100)

Proof. By linearity of the orthogonal projection

~x� PS ~y = ~x� PS ~x� PS ~z (101)

= PS? ~x� PS ~z, (102)

so the result follows by the Pythagorean theorem.

The error is divided into two terms. The first term is the projection of the signal onto the
orthogonal complement of the chosen subspace S. For this term to be small, the signal
must be well represented by its projection onto S. The second term is the projection of
the noise onto S. This term will be small if the noise is mostly orthogonal to S. This
makes sense: denoising via projection will only be e↵ective if the projection preserves the
signal but eliminates the noise.
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S1 := span

 !

Projection

onto S1

Projection

onto S?
1

Signal

~x
= 0.993 + 0.114

+

Noise

~z
= 0.007 + 0.150

=

Data

~y
= +

Estimate

Figure 9: Denoising of the image of a face by projection onto the span of 9 other images of

the same person, denoted by S1. The original image is normalized to have `2 norm equal to

one. The noise has `2 norm equal to 0.1. The `2 norms of the projections of the original image

and of the noise onto S1 and its orthogonal complement are indicated beside the corresponding

images. The estimate is the projection of the noisy image onto S1.
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S2 := span

 

· · · !

Projection

onto S2

Projection

onto S?
2

Signal

~x
= 0.998 + 0.063

+

Noise

~z
= 0.043 + 0.144

=

Data

~y
= +

Estimate

Figure 10: Denoising of the image of a face by projection onto the span of 360 other images

of di↵erent people (including 9 of the same person), denoted by S2. The original image is

normalized to have `2 norm equal to one. The noise has `2 norm equal to 0.1. The `2 norms of

the projections of the original image and of the noise onto S2 and its orthogonal complement are

indicated beside the corresponding images. The estimate is the projection of the noisy image

onto S2.
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Example 7.4 (Denoising of face images). In this example we again consider the Olivetti
Faces dataset4, with a training set of 360 64⇥ 64 images taken from 40 di↵erent subjects
(9 per subject). The goal is to denoise a test image ~x of the same dimensions that is
not in the training set. The data ~y are obtained by adding noise to the test image. The
entries of the noise vector z are sampled independently from a Gaussian distribution and
scaled so that the signal-to-noise ratio equals 10,

SNR :=
||~x||2
||~z||2

= 6.67. (103)

We denoise the image by projecting onto two subspaces:

• S1: the span of the 9 images in the training set that correspond to the same subject.

• S2: the span of the 360 images in the training set.

Figure 9 and 10 show the results for S1 and S2 respectively. The relative `2-norm error
of both estimates is:

||~x� PS1 ~y||2
||~x||2

= 0.114, (104)

||~x� PS2 ~y||2
||~x||2

= 0.078. (105)

The two estimates look very di↵erent. To interpret the results we separate the error into
two components, as in Lemma 7.3. The norm of the projection of the noise onto S1 is
smaller than its projection onto S2

0.007 =
||PS1 ~z||2
||~x||2

<
||PS2 ~z||2
||~x||2

= 0.043. (106)

The reason is that S1 has lower dimension. The ratio between the two projections
(0.043/0.007 = 6.14) is close to the square root of the ratio of the dimensions of the
subspaces (6.32). This is not a coincidence, as we will see later on. However, the projec-
tion of the signal onto S1 is not as close to ~x as the projection onto S2, which is particularly
obvious in the lower half of the face,

0.063 =

���
���PS?

2
~x
���
���
2

||~x||2
<

���
���PS?

1
~x
���
���
2

||~x||2
= 0.114. (107)

The conclusion is that the projection onto S2 produces a noisier looking image (because
the noise-component of the error is larger), which nevertheless looks more similar to the
original signal (because the signal-component of the error is smaller). This illustrates an
important tradeo↵ when using projection-based denoising: subspaces with larger dimen-
sion approximate the signal better, but don’t suppress the noise as much. 4
4
Available at http://www.cs.nyu.edu/~roweis/data.html

23

http://www.cs.nyu.edu/~roweis/data.html


8 Proofs

8.1 Proof of Theorem 1.7

We prove the claim by contradiction. Assume that we have two bases {~x1, . . . , ~xm} and
{~y1, . . . , ~yn} such that m < n (or the second set has infinite cardinality). The proof follows
from applying the following lemma m times (setting r = 0, 1, . . . ,m � 1) to show that
{~y1, . . . , ~ym} spans V and hence {~y1, . . . , ~yn} must be linearly dependent.

Lemma 8.1. Under the assumptions of the theorem, if {~y1, ~y2, . . . , ~yr, ~xr+1, . . . , ~xm} spans

V then {~y1, . . . , ~yr+1, ~xr+2, . . . , ~xm} also spans V (possibly after rearranging the indices

r + 1, . . . ,m) for r = 0, 1, . . . ,m� 1.

Proof. Since {~y1, ~y2, . . . , ~yr, ~xr+1, . . . , ~xm} spans V

~yr+1 =
rX

i=1

�i ~yi +
mX

i=r+1

�i ~xi, �1, . . . , �r, �r+1, . . . , �m 2 R, (108)

where at least one of the �j is non zero, as {~y1, . . . , ~yn} is linearly independent by assump-
tion. Without loss of generality (here is where we might need to rearrange the indices)
we assume that �r+1 6= 0, so that

~xr+1 =
1

�r+1

 
rX

i=1

�i ~yi �
mX

i=r+2

�i~xi

!
. (109)

This implies that any vector in the span of {~y1, ~y2, . . . , ~yr, ~xr+1, . . . , ~xm}, i.e. in V , can
be represented as a linear combination of vectors in {~y1, . . . , ~yr+1, ~xr+2, . . . , ~xm}, which
completes the proof.

8.2 Proof of Theorem 3.10

If ||~x||h·,·i = 0 then ~x = ~0 because the inner product is positive semidefinite, which implies
h~x, ~yi = 0 and consequently that (34) holds with equality. The same is true if ||~y||h·,·i = 0.

Now assume that ||~x||h·,·i 6= 0 and ||~y||h·,·i 6= 0. By semidefiniteness of the inner product,

0 
���
���||~y||h·,·i ~x+ ||~x||h·,·i ~y

���
���
2

= 2 ||~x||2h·,·i ||~y||
2
h·,·i + 2 ||~x||h·,·i ||~y||h·,·i h~x, ~yi , (110)

0 
���
���||~y||h·,·i ~x� ||~x||h·,·i ~y

���
���
2

= 2 ||~x||2h·,·i ||~y||
2
h·,·i � 2 ||~x||h·,·i ||~y||h·,·i h~x, ~yi . (111)

These inequalities establish (34).

Let us prove (40) by proving both implications.

( =) ) Assume h~x, ~yi = � ||~x||h·,·i ||~y||h·,·i. Then (110) equals zero, so ||~y||h·,·i ~x = � ||~x||h·,·i ~y
because the inner product is positive semidefinite.
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( (= ) Assume ||~y||h·,·i ~x = � ||~x||h·,·i ~y. Then one can easily check that (110) equals zero,
which implies h~x, ~yi = � ||~x||h·,·i ||~y||h·,·i.
The proof of (41) is identical (using (111) instead of (110)).
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Optimization-based data analysis Fall 2017

Lecture Notes 2: Matrices

Matrices are rectangular arrays of numbers, which are extremely useful for data analysis.
They can be interpreted as vectors in a vector space, linear functions or sets of vectors.

1 Basic properties

1.1 Column and row space

A matrix can be used to represent a set of vectors stored as columns or rows. The span
of these vectors are called the column and row space of the matrix respectively.

Definition 1.1 (Column and row space). The column space col (A) of a matrix A is the
span of its columns. The row space row (A) is the span of its rows.

Interestingly, the row space and the column space of all matrices have the same dimension.
We name this quantity the rank of the matrix.

Definition 1.2 (Rank). The rank of a matrix is the dimension of its column and of its
row space.

Theorem 1.3 (Proof in Section 5.1). The rank is well defined. For any matrix A

dim (col (A)) = dim (row (A)) . (1)

If the dimension of the row and column space of an m⇥ n matrix where m < n is equal
to m then the the rows are all linearly independent. Similarly, if m > n and the rank
is n then the columns are all linearly independent. In general, when the rank equals
min {n,m} we say that the matrix is full rank.

Recall that the inner product between two matrices A,B 2 Rm⇥n is given by the trace of
ATB, and the norm induced by this inner product is the Frobenius norm. If the column
spaces of two matrices are orthogonal, then the matrices are also orthogonal.

Lemma 1.4. If the column spaces of any pair of matrices A,B 2 Rm⇥n are orthogonal
then

hA,Bi = 0. (2)

Proof. We can write the inner product as a sum of products between the columns of A

1



and B, which are all zero under the assumption of the lemma

hA,Bi := tr
�
ATB

�
(3)

=
nX

i=1

hA:,i, B:,ii (4)

= 0. (5)

The following corollary follows immediately from Lemma 1.4 and the Pythagorean theo-
rem.

Corollary 1.5. If the column spaces of any pair of matrices A,B 2 Rm⇥n are orthogonal

||A+B||
2
F = ||A||2F + ||B||

2
F . (6)

1.2 Linear maps

A map is a transformation that assigns a vector to another vector, possible belonging to
a di↵erent vector space. The transformation is linear if it maps any linear combination
of input vectors to the same linear combination of the corresponding outputs.

Definition 1.6 (Linear map). Given two vector spaces V and R associated to the same
scalar field, a linear map f : V ! R is a map from vectors in V to vectors in R such that
for any scalar ↵ and any vectors ~x1, ~x2 2 V

f (~x1 + ~x2) = f (~x1) + f (~x2) , (7)

f (↵~x1) = ↵ f (~x1) . (8)

Every complex or real matrix of dimensions m ⇥ n defines a map from the space of n-
dimensional vectors to the space of m-dimensional vectors through an operation called
matrix-vector product. We denote the ith row of a matrix A by Ai:, the jth column by
A:j and the (i, j) entry by Aij.

Definition 1.7 (Matrix-vector product). The product of a matrix A 2 Cm⇥n and a vector
~x 2 Cn is a vector A~x 2 Cm, such that

(A~x) [i] =
nX

j=1

Aij~x [j] . (9)

For real matrices, each entry in the matrix-vector product is the dot product between a
row of the matrix and the vector,

(A~x) [i] = hAi:, ~xi . (10)
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The matrix-vector product can also be interpreted in terms of the column of the matrix,

A~x =
nX

j=1

~x [j]A:j. (11)

A~x is a linear combination of the columns of A weighted by the entries in ~x.

Matrix-vector multiplication is clearly linear. Perhaps surprisingly, the converse is also
true: any linear map between Cn and Cm (or between Rn and Rm) can be represented by
a matrix.

Theorem 1.8 (Equivalence between matrices and linear maps). For finite m,n every
linear map f : Cm

! Cn can be uniquely represented by a matrix F 2 Cm⇥n.

Proof. The matrix is

F :=
⇥
f (~e1) f (~e2) · · · f (~en)

⇤
, (12)

i.e., the columns of the matrix are the result of applying f to the standard basis. Indeed,
for any vector ~x 2 Cn

f (x) = f

 
nX

i=1

~x[i]~ei

!
(13)

=
nX

i=1

~x[i]f (~ei) by (7) and (8) (14)

= F~x. (15)

The ith column of any matrix that represents the linear map must equal f (~ei) by (11),
so the representation is unique.

When a matrix Cm⇥n is fat, i.e., n > m, we often say that it projects vectors onto a
lower dimensional space. Note that such projections are not the same as the orthogonal
projections we described in Lecture Notes 1. When a matrix is tall, i.e., m > n, we say
that it lifts vectors to a higher-dimensional space.

1.3 Adjoint

The adjoint of a linear map f from an inner-product space V and another inner product
space R maps elements of R back to V in a way that preserves their inner product with
images of f .

Definition 1.9 (Adjoint). Given two vector spaces V and R associated to the same scalar
field with inner products h·, ·iV and h·, ·iR respectively, the adjoint f ⇤ : R ! V of a linear
map f : V ! R satisfies

hf (~x) , ~yiR = h~x, f ⇤ (~y)iV (16)

for all ~x 2 V and ~y 2 R.
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In the case of finite-dimensional spaces, the adjoint corresponds to the conjugate Hermi-
tian transpose of the matrix associated to the linear map.

Definition 1.10 (Conjugate transpose). The entries of the conjugate transpose A⇤
2

Cn⇥m of a matrix A 2 Cm⇥n are of the form

(A⇤)ij = Aji, 1  i  n, 1  j  m. (17)

If the entries of the matrix are all real, this is just the transpose of the matrix.

Lemma 1.11 (Equivalence between conjugate transpose and adjoint). For finite m,n
the adjoint f ⇤ : Cn

! Cm of a linear map f : Cm
! Cn represented by a matrix F

corresponds to the conjugate transpose of the matrix F ⇤.

Proof. For any ~x 2 Cn and ~y 2 Cm,

hf (~x) , ~yiCm =
mX

i=1

f (~x)i ~yi (18)

=
mX

i=1

~yi

nX

j=1

Fij~xj (19)

=
nX

j=1

~xj

mX

i=1

Fij~yi (20)

= h~x, F ⇤~yiCn . (21)

By Theorem 1.8 a linear map is represented by a unique matrix (you can check that the
adjoint map is linear), which completes the proof.

A matrix that is equal to its adjoint is called self-adjoint. Self-adjoint real matrices
are symmetric: they are equal to their transpose. Self-adjoint complex matrices are
Hermitian: they are equal to their conjugate transpose.

1.4 Range and null space

The range of a linear map is the set of all possible vectors that can be reached by applying
the map.

Definition 1.12 (Range). Let V and R be vector spaces associated to the same scalar
field, the range of a map f : V ! R is the set of vectors in R that can be reached by
applying f to a vector in V:

range (f) := {~y | ~y = f (~x) for some ~x 2 V} . (22)

The range of a matrix is the range of its associated linear map.
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The range of a matrix is the same as its column space.

Lemma 1.13 (The range is the column space). For any matrix A 2 Cm⇥n

range (A) = col (A) . (23)

Proof. For any ~x, A~x is a linear combination of the columns of A, so the range is a subset
of the column space. In addition, every column of A is in the range, since A:i = A~ei for
1  i  n, so the column space is a subset of the range and both sets are equal.

The null space of a map is the set of vectors that are mapped to zero.

Definition 1.14 (Null space). Let V and R be vector spaces associated to the same scalar
field, the null space of a map f : V ! R is the set of vectors in V that are mapped to the
zero vector in R by f :

null (f) :=
n
~x | f (~x) = ~0

o
. (24)

The null space of a matrix is the null space of its associated linear map.

It is not di�cult to prove that the null space of a map is a vector space, as long as the
map is linear, since in that case scaling or adding elements of the null space yield vectors
that are mapped to zero by the map.

The following lemma shows that for real matrices the null space is the orthogonal com-
plement of the row space of the matrix.

Lemma 1.15. For any matrix A 2 Rm⇥n

null (A) = row (A)? . (25)

Proof. Any vector ~x in the row space of A can be written as ~x = AT~z, for some vector
~z 2 Rm. If y 2 null (A) then

h~y, ~xi =
⌦
~y, AT~z

↵
(26)

= hA~y, ~zi (27)

= 0. (28)

So null (A) ✓ row (A)?.

If x 2 row (A)? then in particular it is orthogonal to every row of A, so Ax = 0 and
row (A)? ✓ null (A).

An immediate corollary of Lemmas 1.13 and 1.15 is that the dimension of the range and
the null space add up to the ambient dimension of the row space.

Corollary 1.16. Let A 2 Rm⇥n

dim (range (A)) + dim (null (A)) = n. (29)

This means that for every matrix A 2 Rm⇥n we can decompose any vector in Rn into two
components: one is in the row space and is mapped to a nonzero vector in Cm, the other
is in the null space and is mapped to the zero vector.
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1.5 Identity matrix and inverse

The identity matrix is a matrix that maps any vector to itself.

Definition 1.17 (Identity matrix). The identity matrix of dimensions n⇥ n is

I =

2

664

1 0 · · · 0
0 1 · · · 0

· · ·

0 0 · · · 1

3

775 . (30)

For any ~x 2 Cn, I~x = ~x.

Square matrices have a unique inverse if they are full rank, since in that case the null
space has dimension 0 and the associated linear map is a bijection. The inverse is a matrix
that reverses the e↵ect of the matrix on any vector.

Definition 1.18 (Matrix inverse). The inverse of a square matrix A 2 Cn⇥n is a matrix
A�1

2 Cn⇥n such that

AA�1 = A�1A = I. (31)

1.6 Orthogonal and projection matrices

We often use the letters U 2 Rm⇥n or V 2 Rm⇥n for matrices with orthonormal columns.
If such matrices are square then they are said to be orthogonal. Orthogonal matrices
represent linear maps that do not a↵ect the magnitude of a vector, just its direction.

Definition 1.19 (Orthogonal matrix). An orthogonal matrix is a real-valued square ma-
trix such that its inverse is equal to its transpose,

UTU = UUT = I. (32)

By definition, the columns U:1, U:2, . . . , U:n of any n⇥n orthogonal matrix have unit norm
and orthogonal to each other, so they form an orthonormal basis (it’s somewhat confusing
that orthogonal matrices are not called orthonormal matrices instead). Applying UT to a
vector ~x 2 Rn is equivalent to computing the coe�cients of its representation in the basis
formed by the columns of U . Applying U to UT~x recovers ~x by scaling each basis vector
with the corresponding coe�cient:

~x = UUT~x =
nX

i=1

hU:i, ~xiU:i. (33)

Since orthogonal matrices only rotate vectors, it is quite intuitive that the product of two
orthogonal matrices yields another orthogonal matrix.
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Lemma 1.20 (Product of orthogonal matrices). If U, V 2 Rn⇥n are orthogonal matrices,
then UV is also an orthogonal matrix.

Proof.

(UV )T (UV ) = V TUTUV = I. (34)

The following lemma proves that orthogonal matrices preserve the `2 norms of vectors.

Lemma 1.21. Let U 2 Rn⇥n be an orthogonal matrix. For any vector ~x 2 Rn,

||U~x||2 = ||~x||2 . (35)

Proof. By the definition of orthogonal matrix

||U~x||22 = ~xTUTU~x (36)

= ~xT~x (37)

= ||~x||22 . (38)

Matrices with orthonormal columns can also be used to construct orthogonal-projection
matrices, which represent orthogonal projections onto a subspace.

Lemma 1.22 (Orthogonal-projection matrix). Given a subspace S ✓ Rn of dimension
d, the matrix

P := UUT , (39)

where the columns of U:1, U:2, . . . , U:d are an orthonormal basis of S, maps any vector ~x
to its orthogonal projection onto S.

Proof. For any vector ~x 2 Rn

P~x = UUT~x (40)

=
dX

i=1

hU:i, ~xiU:i (41)

= PS ~x by (64) in the lecture notes on vector spaces. (42)

2 Singular-value decomposition

In this section we introduce the singular-value decomposition, a fundamental tool for
manipulating matrices, and describe several applications in data analysis.
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2.1 Definition

Every real matrix has a singular-value decomposition.

Theorem 2.1. Every rank r real matrix A 2 Rm⇥n, has a singular-value decomposition
(SVD) of the form

A =
⇥
~u1 ~u2 · · · ~ur

⇤

2

6664

�1 0 · · · 0
0 �2 · · · 0

. . .
0 0 · · · �r

3

7775

2

6664

~v T
1

~vT2
...
~vTr

3

7775
(43)

= USV T , (44)

where the singular values �1 � �2 � · · · � �r are positive real numbers, the left singular
vectors ~u1, ~u2, . . .~ur form an orthonormal set, and the right singular vectors ~v1, ~v2, . . .~vr
also form an orthonormal set. The SVD is unique if all the singular values are di↵erent.
If several singular values are the same, their left singular vectors can be replaced by any
orthonormal basis of their span, and the same holds for the right singular vectors.

The SVD of an m⇥ n matrix with m � n can be computed in O (mn2). We refer to any
graduate linear algebra book for the proof of Theorem 2.1 and for the details on how to
compute the SVD.

The SVD provides orthonormal bases for the column and row spaces of the matrix.

Lemma 2.2. The left singular vectors are an orthonormal basis for the column space,
whereas the right singular vectors are an orthonormal basis for the row space.

Proof. We prove the statement for the column space, the proof for the row space is
identical. All left singular vectors belong to the column space because ~ui = A

�
��1
i ~vi

�
. In

addition, every column of A is in their span because A:i = U
�
SV T~ei

�
. Since they form

an orthonormal set by Theorem 2.1, this completes the proof.

The SVD presented in Theorem 2.1 can be augmented so that the number of singular
values equals min (m,n). The additional singular values are all equal to zero. Their cor-
responding left and right singular vectors are orthonormal sets of vectors in the orthogonal
complements of the column and row space respectively. If the matrix is tall or square,
the additional right singular vectors are a basis of the null space of the matrix.

Corollary 2.3 (Singular-value decomposition). Every rank r real matrix A 2 Rm⇥n,
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where m � n, has a singular-value decomposition (SVD) of the form

A := [ ~u1 ~u2 · · · ~ur| {z }
Basis of range(A)

~ur+1 · · · ~un]

2

666666664

�1 0 · · · 0 0 · · · 0
0 �2 · · · 0 0 · · · 0

· · ·

0 0 · · · �r 0 · · · 0
0 0 · · · 0 0 · · · 0

· · ·

0 0 · · · 0 0 · · · 0

3

777777775

[~v1 ~v2 · · · ~vr| {z }
Basis of row(A)

~vr+1 · · · ~vn| {z }
Basis of null(A)

]T ,

(45)

where the singular values �1 � �2 � · · · � �r are positive real numbers, the left singular
vectors ~u1, ~u2, . . . , ~um form an orthonormal set in Rm, and the right singular vectors ~v1,
~v2, . . . , ~vm form an orthonormal basis for Rn.

If the matrix is fat, we can define a similar augmentation, where the additional left singular
vectors form an orthonormal basis of the orthogonal complement of the range.

By the definition of rank and Lemma 2.2 the rank of a matrix is equal to the number of
nonzero singular values.

Corollary 2.4. The rank of a matrix is equal to the number of nonzero singular values.

This interpretation of the rank allows to define an alternative definition that is very useful
in practice, since matrices are often full rank due to numerical error, even if their columns
or rows are almost linearly dependent.

Definition 2.5 (Numerical rank). Given a tolerance ✏ > 0, the numerical rank of a matrix
is the number of singular values that are greater than ✏.

The SVD decomposes the action of a matrix A 2 Rm⇥n on a vector ~x 2 Rn into three
simple steps:

1. Rotation of ~x to align the component of ~x in the direction of the ith right singular
vector ~vi with the ith axis:

V T~x =
nX

i=1

h~vi, ~xi~ei. (46)

2. Scaling of each axis by the corresponding singular value

SV T~x =
nX

i=1

�i h~vi, ~xi~ei. (47)

3. Rotation to align the ith axis with the ith left singular vector

USV T~x =
nX

i=1

�i h~vi, ~xi ~ui. (48)
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(a) �1 = 3, �2 = 1.

~x

~v1

~v2

~y

V T~x

~e1

~e2
V T~y

SV T~x

�1~e1

�2~e2
SV T~y

USV T~x

�1~u1�2~u2

USV T~y

V T

S

U

(b) �1 = 3, �2 = 0.

~x

~v1

~v2

~y

V T~x

~e1

~e2
V T~y

SV T~x
�1~e1

~0 SV T~y

USV T~x

�1~u1

~0

USV T~y

V T

S

U

Figure 1: Any linear map can be decomposed into three steps: rotation to align the right
singular vectors to the axes, scaling by the singular values and a final rotation to align
the axes with the left singular vectors. In image (b) the second singular value is zero, so
the linear map projects two-dimensional vectors onto a one-dimensional subspace.
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Figure 1 illustrates this geometric analysis of the action of a linear map.

We end the section by showing that multiplying a matrix by an orthogonal matrix does
not a↵ect its singular values. This makes sense since it just modifies the rotation carried
out by the left or right singular vectors.

Lemma 2.6. For any matrix A 2 Rm⇥n and any orthogonal matrices eU 2 Rm⇥m and
eV 2 Rm⇥m the singular values of eUA and AeV are the same as the singular values of A.

Proof. Let A = USV T be the SVD of A. By Lemma 1.20 the matrices U := eUU and

V
T
:= V T eV are orthogonal matrices, so USV T and USV

T
are valid SVDs for eUA and

AeV respectively. The result follows by unicity of the SVD.

2.2 Optimal approximations via the SVD

In the previous section, we show that linear maps rotate vectors, scale them according to
the singular values and then rotate them again. This means that the maximum scaling
possible is equal to the maximum singular value and occurs in the direction of the right
singular vector ~v1. The following theorem makes this precise, showing that if we restrict
our attention to the orthogonal complement of ~v1, then the maximum scaling is the second
singular value, due to the orthogonality of the singular vectors. In general, the direction
of maximum scaling orthogonal to the first i � 1 left singular vectors is equal to the ith
singular value and occurs in the direction of the ith singular vector.

Theorem 2.7. For any matrix A 2 Rm⇥n, with SVD given by (45), the singular values
satisfy

�1 = max
{||~x||2=1 | ~x2Rn}

||A~x||2 (49)

= max
{||~y||2=1 | ~y2Rm}

����AT~y
����

2
, (50)

�i = max
{||~x||2=1 | ~x2Rn, ~x?~v1,...,~vi�1}

||A~x||2 , (51)

= max
{||~y||2=1 | ~y2Rm, ~y?~u1,...,~ui�1}

����AT~y
����

2
, 2  i  min {m,n} , (52)

the right singular vectors satisfy

~v1 = argmax
{||~x||2=1 | ~x2Rn}

||A~x||2 , (53)

~vi = argmax
{||~x||2=1 | ~x2Rn, ~x?~v1,...,~vi�1}

||A~x||2 , 2  i  m, (54)
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and the left singular vectors satisfy

~u1 = argmax
{||~y||2=1 | ~y2Rm}

����AT~y
����

2
, (55)

~ui = argmax
{||~y||2=1 | ~y2Rm, ~y?~u1,...,~ui�1}

����AT~y
����

2
, 2  i  n. (56)

Proof. Consider a vector ~x 2 Rn with unit `2 norm that is orthogonal to ~v1, . . . , ~vi�1,
where 1  i  n (if i = 1 then ~x is just an arbitrary vector). We express ~x in terms of
the right singular vectors of A and a component that is orthogonal to their span

~x =
nX

j=i

↵j~vj + Prow(A)? ~x (57)

where 1 = ||~x||22 �
Pn

j=i ↵
2
j . By the ordering of the singular values in Theorem 2.1

||A~x||22 =

*
nX

k=1

�k h~vk, ~xi ~uk,
nX

k=1

�k h~vk, ~xi ~uk

+
by (48) (58)

=
nX

k=1

�2
k h~vk, ~xi

2 because ~u1, . . . , ~un are orthonormal (59)

=
nX

k=1

�2
k

*
~vk,

nX

j=i

↵j~vj + Prow(A)? ~x

+2

(60)

=
nX

j=i

�2
j↵

2
j because ~v1, . . . ,~vn are orthonormal (61)

 �2
i

nX

j=i

↵2
j because �i � �i+1 � . . . � �n (62)

 �2
i by (57). (63)

This establishes (49) and (51). To prove (53) and (54) we show that ~vi achieves the
maximum

||A~vi||
2
2 =

nX

k=1

�2
k h~vk,~vii

2 (64)

= �2
i . (65)

The same argument applied to AT establishes (50), (55), (56) and (52).

Given a set of vectors, it is often of interest to determine whether they are oriented in
particular directions of the ambient space. This can be quantified in terms of the `2
norms of their projections on low-dimensional subspaces. The SVD provides an optimal
k-dimensional subspace in this sense for any value of k.
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Theorem 2.8 (Optimal subspace for orthogonal projection). For any matrix

A :=
⇥
~a1 ~a2 · · · ~an

⇤
2 Rm⇥n, (66)

with SVD given by (45), we have

nX

i=1

����Pspan(~u1,~u2,...,~uk)~ai
����2

2
�

nX

i=1

||PS ~ai||
2
2 , (67)

for any subspace S of dimension k  min {m,n}.

Proof. Note that

nX

i=1

����Pspan(~u1,~u2,...,~uk)~ai
����2

2
=

nX

i=1

kX

j=1

h~uj,~aii
2 (68)

=
kX

j=1

����AT~uj

����2
2
. (69)

We prove the result by induction on k. The base case k = 1 follows immediately from (55).
To complete the proof we show that if the result is true for k � 1 � 1 (the induction
hypothesis) then it also holds for k. Let S be an arbitrary subspace of dimension k. The
intersection of S and the orthogonal complement to the span of ~u1, ~u2,. . . , ~uk�1 contains
a nonzero vector ~b due to the following lemma.

Lemma 2.9 (Proof in Section 5.2). In a vector space of dimension n, the intersection
of two subspaces with dimensions d1 and d2 such that d1 + d2 > n has dimension at least
one.

We choose an orthonormal basis ~b1,~b2, . . . ,~bk for S such that ~bk := ~b is orthogonal to
~u1, ~u2, . . . , ~uk�1 (we can construct such a basis by Gram-Schmidt, starting with ~b). By
the induction hypothesis,

k�1X

i=1

����AT~ui

����2
2
=

nX

i=1

����Pspan(~u1,~u2,...,~uk�1)~ai
����2

2
(70)

�

nX

i=1

���
���Pspan(~b1,~b2,...,~bk�1)~ai

���
���
2

2
(71)

=
k�1X

i=1

���
���AT~bi

���
���
2

2
. (72)

By (56)

����AT~uk

����2
2
�

���
���AT~bk

���
���
2

2
. (73)
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Combining (72) and (73) we conclude

nX

i=1

����Pspan(~u1,~u2,...,~uk)~ai
����2

2
=

kX

i=1

����AT~ui

����2
2

(74)

�

kX

i=1

���
���AT~bi

���
���
2

2
(75)

=
nX

i=1

||PS ~ai||
2
2 . (76)

The SVD also allows to compute the optimal k-rank approximation to a matrix in Frobe-
nius norm, for any value of k. For any matrix A, we denote by A1:i,1:j to denote the i⇥ j
submatrix formed by taking the entries that are both in the first i rows and the first j
columns. Similarly, we denote by A:,i:j the matrix formed by columns i to j.

Theorem 2.10 (Best rank-k approximation). Let USV T be the SVD of a matrix A 2

Rm⇥n. The truncated SVD U:,1:kS1:k,1:kV T
:,1:k is the best rank-k approximation of A in the

sense that

U:,1:kS1:k,1:kV
T
:,1:k = argmin

{ eA | rank(Ã)=k}

���
���A� eA

���
���
F
. (77)

Proof. Let eA be an arbitrary matrix in Rm⇥n with rank( eA) = k, and let eU 2 Rm⇥k be a
matrix with orthonormal columns such that col(eU) = col( eA). By Theorem 2.8,

����U:,1:kU
T
:,1:kA

����2
F
=

nX

i=1

���
���Pcol(U:,1:k)~ai

���
���
2

2
(78)

�

nX

i=1

���
���Pcol(eU)~ai

���
���
2

2
(79)

=
���
��� eU eUTA

���
���
2

F
. (80)

The column space of A � eU eUTA is orthogonal to the column space of eA and eU , so by
Corollary 1.5

���
���A� eA

���
���
2

F
=
���
���A� eU eUTA

���
���
2

F
+
���
��� eA� eU eUTA

���
���
2

F
(81)

�

���
���A� eU eUTA

���
���
2

F
(82)

= ||A||2F �

���
��� eU eUTA

���
���
2

F
also by Corollary 1.5 (83)

� ||A||2F �
����U:,1:kU

T
:,1:kA

����2
F

by (80) (84)

=
����A� U:,1:kU

T
:,1:kA

����2
F

again by Corollary 1.5. (85)

14



2.3 Matrix norms

As we discussed in Lecture Notes 1, the inner-product norm in the vector space of matrices
is the Frobenius norm. The following lemma establishes that the Frobenius norm of a
matrix equals the `2 norm of its singular values.

Lemma 2.11. For any matrix A 2 Rm⇥n, with singular values �1, . . . , �min{m,n}

||A||F =

vuut
min{m,n}X

i=1

�2
i . (86)

Proof. Let us denote the SVD of A by USV T ,

||A||2F = tr
�
ATA

�
(87)

= tr
�
V SUTUSV T

�
by Lemma 2.5 in Lecture Notes 1 (88)

= tr
�
V SSV T

�
because UTU = I (89)

= tr
�
V TV SS

�
(90)

= tr (SS) because V TV = I. (91)

The operator norm quantifies how much a linear map can scale a vector in `2 norm.

Definition 2.12 (Operator norm). The operator norm of a linear map and of the corre-
sponding matrix A 2 Rm⇥n is defined by

||A|| := max
{||~x||2=1 | ~x2Rn}

||A ~x||2 . (92)

By Theorem 2.7 (see equation (49)) the operator norm is equal to the `1 norm of the
singular values, i.e. the largest one, is also a norm.

Corollary 2.13. For any matrix A 2 Rm⇥n, with singular values �1, . . . , �min{m,n}

||A|| := �1. (93)

We end the section by defining an additional matrix norm, this time directly in term of
the singular values.

Definition 2.14 (Nuclear norm). The nuclear norm of a matrix A 2 Rm⇥n is equal to
the `1 norm of its singular values �1, . . . , �min{m,n}

||A||⇤ :=
min{m,n}X

i=1

�i. (94)
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Any matrix norm that is a function of the singular values of a matrix is preserved after
multiplication by an orthogonal matrix. This is a direct corollary of Lemma 2.6.

Corollary 2.15. For any matrix A 2 Rm⇥n and any orthogonal matrices eU 2 Rm⇥m and
eV 2 Rn⇥n the operator, Frobenius and nuclear norm of eUA and AeV are the same as those
of A.

The following theorem is analogous to Hölder’s inequality for vectors.

Theorem 2.16 (Proof in Section 5.3). For any matrix A 2 Rm⇥n,

||A||⇤ = sup
{||B||1 | B2Rm⇥n}

hA,Bi . (95)

A direct consequence of the result is that the nuclear norm satisfies the triangle inequality.
This implies that it is a norm, since it clearly satisfies the remaining properties.

Corollary 2.17. For any m⇥ n matrices A and B

||A+B||⇤  ||A||⇤ + ||B||⇤ . (96)

Proof.

||A+B||⇤ = sup
{||C||1 | C2Rm⇥n}

hA+B,Ci (97)

 sup
{||C||1 | C2Rm⇥n}

hA,Ci+ sup
{||D||1 | D2Rm⇥n}

hB,Di (98)

= ||A||⇤ + ||B||⇤ . (99)

2.4 Denoising via low-rank matrix estimation

In this section we consider the problem of denoising a set of n m-dimensional signals ~x1,
~x2, . . . , ~xn 2 Rm. We model the noisy data as the sum between each signal and a noise
vector

~yi = ~xi + ~zi, 1  i  n. (100)

Our first assumption is that the signals are similar, in the sense that they approximately
span a low-dimensional subspace due to the correlations between them. If this is the case,
then the matrix

X :=
⇥
~x1 ~x2 · · · ~xn

⇤
(101)

obtained by stacking the signals as columns is approximately low rank. Note that in
contrast to the subspace-projection denoising method described in Lecture Notes 1, we
do not assume that the subspace is known.
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Our second assumption is that the noise vectors are independent from each other, so that
the noise matrix

Z :=
⇥
~z1 ~z2 · · · ~zn

⇤
(102)

is full rank. If the noise is not too large with respect to the signals, under these assump-
tions a low-rank approximation to the data matrix

Y :=
⇥
~y1 ~y2 · · · ~yn

⇤
(103)

= X + Z (104)

should mostly suppress the noise and extract the component corresponding to the signals.
Theorem 2.10 establishes that the best rank-k approximation to a matrix in Frobenius
norm is achieved by truncating the SVD, for any value of k.

Algorithm 2.18 (Denoising via SVD truncation). Given n noisy data vectors ~y1, ~y2, . . . , ~yn 2

Rm, we denoise the data by

1. Stacking the vectors as the columns of a matrix Y 2 Rm⇥n.

2. Computing the SVD of Y = USV T .

3. Truncating the SVD to produce the low-rank estimate L

L := U:,1:kS1:k,1:kV
T
:,1:k, (105)

for a fixed value of k  min {m,n}.

An important decision is what rank k to choose. Higher ranks yield more accurate approx-
imations to the original signals than lower-rank approximations, but they do not suppress
the noise component in the data as much. The following example illustrates this tradeo↵.

Example 2.19 (Denoising of digit images). In this example we use the MNIST data set1

to illustrate image denoising using SVD truncation. The signals consist of 6131 28 ⇥ 28
images of the number 3. The images are corrupted by noise sampled independently from
a Gaussian distribution and scaled so that the signal-to-noise ratio (defined as the ratio
between the `2 norms of the clean image and the noise) is 0.5 (there is more noise than
signal!). Our assumption is that because of their similarities, the images interpreted
as vectors in R784 form a low-dimensional (but unknown subspace), whereas the noise
is uncorrelated and therefore is not restricted to a subspace. This assumption holds:
Figure 11 shows the singular values of matrix formed by stacking the clean images, the
noisy images and the noise.

We center each noisy image by subtracting the average of all the noisy images. Subtracting
the average is a common preprocessing step in low-rank approximations (see Figure 5 for
a geometric justification). We then apply SVD truncation to obtain a low-rank estimate
of the image matrix. The noisy average is then added back to the images to produce the
final estimate of the images. Figure 3 shows the results for rank-10 and rank-40 estimates.
The lower-rank estimate suppresses the noise more, but does not approximate the original
signals as e↵ectively. 4

1Available at http://yann.lecun.com/exdb/mnist/
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Figure 2: Plots of the singular values of the clean images, the noisy images and the noise
in Example 2.19.
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Figure 3: The images show 9 examples from the 6131 images used in Example 2.19. The
top row shows the original clean images. The second and third rows show rank-40 and
rank-10 approximations to the clean images. The fourth and fifth rows shows the results
of applying SVD truncation to obtain rank-40 and rank-10 estimates respectively. The
sixth row shows the noisy data.
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2.5 Collaborative filtering

The aim of collaborative filtering is to pool together information from many users to obtain
a model of their behavior. To illustrate the use of low-rank models in this application we
consider a toy example. Bob, Molly, Mary and Larry rate the following six movies from
1 to 5,

A :=

Bob Molly Mary Larry
0

BBBBB@

1

CCCCCA

1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2

(106)

A common assumption in collaborative filtering is that there are people that have similar
tastes and hence produce similar ratings, and that there are movies that are similar and
hence elicit similar reactions. Interestingly, this tends to induce low-rank structure in the
matrix of ratings. To uncover this low-rank structure, we first subtract the average rating

µ :=
1

mn

mX

i=1

nX

j=1

Aij, (107)

from each entry in the matrix to obtain a centered matrix C and then compute its singular-
value decomposition

A� µ~1~1T = USV T = U

2

664

7.79 0 0 0
0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

3

775V T . (108)

where ~1 2 R4 is a vector of ones. The fact that the first singular value is significantly
larger than the rest suggests that the matrix may be well approximated by a rank-1
matrix. This is indeed the case:

µ~1~1T + �1~u1~v
T
1 =

Bob Molly Mary Larry
0

BBBBB@

1

CCCCCA

1.34 (1) 1.19 (1) 4.66 (5) 4.81 (4) The Dark Knight
1.55 (2) 1.42 (1) 4.45 (4) 4.58 (5) Spiderman 3
4.45 (4) 4.58 (5) 1.55 (2) 1.42 (1) Love Actually
4.43 (5) 4.56 (4) 1.57 (2) 1.44 (1) Bridget Jones’s Diary
4.43 (4) 4.56 (5) 1.57 (1) 1.44 (2) Pretty Woman
1.34 (1) 1.19 (2) 4.66 (5) 4.81 (5) Superman 2

(109)
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For ease of comparison the values of A are shown in brackets. The first left singular vector
is equal to

~u1 :=
D. Knight Spiderman 3 Love Act. B.J.’s Diary P. Woman Superman 2
( )�0.45 �0.39 0.39 0.39 0.39 �0.45 .

This vector allows us to cluster the movies: movies with negative entries are similar (in
this case they correspond to action movies) and movies with positive entries are similar
(in this case they are romantic movies).

The first right singular vector is equal to

~v1 =
Bob Molly Mary Larry
( )0.48 0.52 �0.48 �0.52 . (110)

This vector allows to cluster the users: negative entries indicate users that like action
movies but hate romantic movies (Bob and Molly), whereas positive entries indicate the
contrary (Mary and Larry).

For larger data sets, the model generalizes to a rank-k approximation, which approximates
each ranking by a sum of k terms

rating (movie i, user j) =
kX

l=1

�l~ul [i]~vl [j] . (111)

The singular vectors cluster users and movies in di↵erent ways, whereas the singular values
weight the importance of the di↵erent factors.

3 Principal component analysis

In Lecture Notes 1 we introduced the sample variance of a set of one-dimensional data,
which measures the variation of measurements in a one-dimensional data set, as well as the
sample covariance, which measures the joint fluctuations of two features. We now consider
data sets where each example contains m features, and can therefore be interpreted as a
vector in an m-dimensional ambient space. We are interested in analyzing the variation
of the data in di↵erent directions of this space.

3.1 Sample covariance matrix

The sample covariance matrix of a data set contains the pairwise sample covariance be-
tween every pair of features in a data set. If the data are sampled from a multivariate
distribution, then the sample covariance matrix can be interpreted as an estimate of the
covariance matrix (see Section 3.3).

20



Definition 3.1 (Sample covariance matrix). Let {~x1, ~x2, . . . , ~xn} be a set ofm-dimensional
real-valued data vectors, where each dimension corresponds to a di↵erent feature. The
sample covariance matrix of these vectors is the m⇥m matrix

⌃ (~x1, . . . , ~xn) :=
1

n� 1

nX

i=1

(~xi � av (~x1, . . . , ~xn)) (~xi � av (~x1, . . . , ~xn))
T , (112)

where the center or average is defined as

av (~x1, ~x2, . . . , ~xn) :=
1

n

nX

i=1

~xi (113)

contains the sample mean of each feature. The (i, j) entry of the covariance matrix, where
1  i, j  d, is given by

⌃ (~x1, . . . , ~xn)ij =

(
var (~x1 [i] , . . . , ~xn [i]) if i = j,

cov ((~x1 [i] , ~x1 [j]) , . . . , (~xn [i] , ~xn [j])) if i 6= j.
(114)

In order to characterize the variation of a multidimensional data set around its center,
we consider its variation in di↵erent directions. The average variation of the data in a
certain direction is quantified by the sample variance of the projections of the data onto
that direction. Let ~d 2 Rm be a unit-norm vector aligned with a direction of interest, the
sample variance of the data set in the direction of ~d is given by

var
⇣
~d T~x1, . . . , ~d

T~xn

⌘
=

1

n� 1

nX

i=1

⇣
~d T~xi � av

⇣
~d T~x1, . . . , ~d

T~xn

⌘⌘2
(115)

=
1

n� 1

nX

i=1

⇣
~d T (~xi � av (~x1, . . . , ~xn))

⌘2
(116)

= ~d T

 
1

n� 1

nX

i=1

(~xi � av (~x1, . . . , ~xn)) (~xi � av (~x1, . . . , ~xn))
T

!
~d

= ~d T⌃ (~x1, . . . , ~xn) ~d. (117)

Using the sample covariance matrix we can express the variation in every direction! This
is a deterministic analog of the fact that the covariance matrix of a random vector encodes
its variance in every direction.

3.2 Principal component analysis

Principal-component analysis is a popular tool for data analysis, which consists of com-
puting the singular-value decomposition of a set of vectors grouped as the columns of a
matrix.
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Figure 4: PCA of a dataset with n = 100 2D vectors with di↵erent configurations. The
two first singular values reflect how much energy is preserved by projecting onto the two
first principal directions.

Algorithm 3.2 (Principal component analysis). Given n data vectors ~x1, ~x2, . . . , ~xn 2 Rd,
we apply the following steps.

1. Center the data,

~ci = ~xi � av (~x1, ~x2, . . . , ~xn) , 1  i  n. (118)

2. Group the centered data as columns of a matrix

C =
⇥
~c1 ~c2 · · · ~cn

⇤
. (119)

3. Compute the SVD of C. The left singular vectors are the principal directions. The
principal values are the coe�cients of the centered vectors when expressed in the
basis of principal directions.

The sample covariance matrix can be expressed in terms of the centered data matrix C

⌃ (~x1, . . . , ~xn) =
1

n� 1
CCT . (120)

This implies that by Theorem 2.7 the principal directions reveal the directions of maximum
variation of the data.

Corollary 3.3. Let ~u1, . . . , ~uk be the k  min {m,n} first principal directions obtained by
applying Algorithm 3.2 to a set of vectors ~x1, . . . , ~xn 2 Rm. Then the principal directions
satisfy

~u1 = argmax
{||~d||

2
=1 | ~d2Rn}

var
⇣
~d T~x1, . . . , ~d

T~xn

⌘
, (121)

~ui = argmax
{||~d||

2
=1 | ~d2Rn, ~d?~u1,...,~ui�1}

var
⇣
~d T~x1, . . . , ~d

T~xn

⌘
, 2  i  k, (122)
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Figure 5: PCA applied to n = 100 2D data points. On the left the data are not centered.
As a result the dominant principal direction ~u1 lies in the direction of the mean of the
data and PCA does not reflect the actual structure. Once we center, ~u1 becomes aligned
with the direction of maximal variation.

and the associated singular values satisfy

�1
p
n� 1

= max
{||~d||

2
=1 | ~d2Rn}

std
⇣
~d T~x1, . . . , ~d

T~xn

⌘
, (123)

�i
p
n� 1

= max
{||~d||

2
=1 | ~d2Rn, ~d?~u1,...,~ui�1}

std
⇣
~d T~x1, . . . , ~d

T~xn

⌘
, 2  i  k. (124)

Proof. For any vector ~d

var
⇣
~d T~x1, . . . , ~d

T~xn

⌘
= ~d T⌃ (~x1, . . . , ~xn) ~d (125)

=
1

n� 1
~d TCCT ~d (126)

=
1

n� 1

���
���CT ~d

���
���
2

2
, (127)

so the result follows from Theorem 2.7 applied to C.

In words, ~u1 is the direction of maximum variation, ~u2 is the direction of maximum
variation orthogonal to ~u1, and in general ~ui is the direction of maximum variation that
is orthogonal to ~u1, ~u2, . . . , ~ui�1. Figure 4 shows the principal directions for several 2D
examples.

Figure 5 illustrates the importance of centering, i.e., subtracting the sample mean of
each feature, before applying PCA. Theorem 2.7 still holds if the data are not centered.

23



Center PD 1 PD 2 PD 3 PD 4 PD 5

�i/
p
n� 1 330 251 192 152 130

PD 10 PD 15 PD 20 PD 30 PD 40 PD 50

90.2 70.8 58.7 45.1 36.0 30.8

PD 100 PD 150 PD 200 PD 250 PD 300 PD 359

19.0 13.7 10.3 8.01 6.14 3.06

Figure 6: Average and principal directions (PD) of the faces data set in Example 3.4,
along with their associated singular values.

However, the norm of the projection onto a certain direction no longer reflects the variation
of the data. In fact, if the data are concentrated around a point that is far from the
origin, the first principal direction tends be aligned with that point. This makes sense as
projecting onto that direction captures more energy. As a result, the principal directions
do not reflect the directions of maximum variation within the cloud of data. Centering
the data set before applying PCA solves the issue.

In the following example, we apply PCA to a set of images.

Example 3.4 (PCA of faces). In this example we consider the Olivetti Faces data set,
which we described in Lecture Notes 1. We apply Algorithm 3.2 to a data set of 400
64 ⇥ 64 images taken from 40 di↵erent subjects (10 per subject). We vectorize each im-
age so that each pixel is interpreted as a di↵erent feature. Figure 6 shows the center
of the data and several principal directions, together with their associated singular val-
ues. The principal directions corresponding to the larger singular values seem to capture
low-resolution structure, whereas the ones corresponding to the smallest singular values
incorporate more intricate details.
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Center PD 1 PD 2 PD 3

= 8613 - 2459 + 665 - 180

+ 301 + 566 + 638 + 403
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Figure 7: Projection of one of the faces ~x onto the first 7 principal directions and the
corresponding decomposition into the 7 first principal components.

Signal 5 PDs 10 PDs 20 PDs 30 PDs 50 PDs

100 PDs 150 PDs 200 PDs 250 PDs 300 PDs 359 PDs

Figure 8: Projection of a face on di↵erent numbers of principal directions.

Figure 7 shows the projection of one of the faces onto the first 7 principal directions
and the corresponding decomposition into its 7 first principal components. Figure 8
shows the projection of the same face onto increasing numbers of principal directions. As
suggested by the visualization of the principal directions in Figure 6, the lower-dimensional
projections produce blurry images.

4

3.3 Probabilistic interpretation

To provide a probabilistic interpretation of PCA, we first review some background on
covariance matrices. The covariance matrix of a random vector captures the interaction
between the components of the vector. It contains the variance of each component in the
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diagonal and the covariances between di↵erent components in the o↵ diagonals.

Definition 3.5. The covariance matrix of a random vector ~x is defined as

⌃~x :=

2

6664

Var (~x [1]) Cov (~x [1] ,~x [2]) · · · Cov (~x [1] ,~x [n])
Cov (~x [2] ,~x [1]) Var (~x [2]) · · · Cov (~x [2] ,~x [n])

...
...

. . .
...

Cov (~x [n] ,~x [1]) Cov (~x [n] ,~x [2]) · · · Var (~x [n])

3

7775
(128)

= E
�
~x~xT

�
� E(~x)E(~x)T . (129)

Note that if all the entries of a vector are uncorrelated, then its covariance matrix is
diagonal. Using linearity of expectation, we obtain a simple expression for the covariance
matrix of the linear transformation of a random vector.

Theorem 3.6 (Covariance matrix after a linear transformation). Let ~x be a random
vector of dimension n with covariance matrix ⌃. For any matrix A 2 Rm⇥n ,

⌃A~x = A⌃~xA
T . (130)

Proof. By linearity of expectation

⌃A~x = E
⇣
(A~x) (A~x)T

⌘
� E (A~x) E (A~x)T (131)

= A
�
E
�
~x~xT

�
� E(~x)E(~x)T

�
AT (132)

= A⌃~xA
T . (133)

An immediate corollary of this result is that we can easily decode the variance of the
random vector in any direction from the covariance matrix. Mathematically, the variance
of the random vector in the direction of a unit vector ~v is equal to the variance of its
projection onto ~v.

Corollary 3.7. Let ~v be a unit-`2-norm vector,

Var
�
~v T~x

�
= ~v T⌃~x~v. (134)

Consider the SVD of the covariance matrix of an n-dimensional random vector X

⌃~x = U⇤UT (135)

=
⇥
~u1 ~u2 · · · ~un

⇤

2

664

�1 0 · · · 0
0 �2 · · · 0

· · ·

0 0 · · · �n

3

775
⇥
~u1 ~u2 · · · ~un

⇤T
. (136)

Covariance matrices are symmetric by definition, so by Theorem 4.3 the eigenvectors ~u1,
~u2, . . . , ~un can be chosen to be orthogonal. These singular vectors and singular values
completely characterize the variance of the random vector in di↵erent directions. The
theorem is a direct consequence of Corollary 3.7 and Theorem 2.7.
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Figure 9: Samples from bivariate Gaussian random vectors with di↵erent covariance ma-
trices are shown in gray. The eigenvectors of the covariance matrices are plotted in red.
Each is scaled by the square roof of the corresponding singular value �1 or �2.

Theorem 3.8. Let ~x be a random vector of dimension n with covariance matrix ⌃~x. The
SVD of ⌃~x given by (136) satisfies

�1 = max
||~v||2=1

Var
�
~v T~x

�
, (137)

~u1 = arg max
||~v||2=1

Var
�
~v T~x

�
, (138)

�k = max
||~v||2=1,~v?~u1,...,~uk�1

Var
�
~v T~x

�
, (139)

~uk = arg max
||~v||2=1,~v?~u1,...,~uk�1

Var
�
~v T~x

�
. (140)

In words, ~u1 is the direction of maximum variance. The second singular vector ~u2 is the
direction of maximum variation that is orthogonal to ~u1. In general, the eigenvector ~uk

reveals the direction of maximum variation that is orthogonal to ~u1, ~u2, . . . , ~uk�1. Finally,
~un is the direction of minimum variance. Figure 9 illustrates this with an example, where
n = 2.

The sample variance and covariance are consistent estimators of the variance and covari-
ance respectively, under certain assumptions on the higher moments of the underlying
distributions. This provides an intuitive interpretation for principal component analysis
under the assumption that the data are realizations of an iid sequence of random vectors:
the principal components approximate the eigenvectors of the true covariance matrix, and
hence the directions of maximum variance of the multidimensional distribution. Figure 10
illustrates this with a numerical example, where the principal directions indeed converge
to the singular vectors as the number of data increases.
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True covariance
Sample covariance

Figure 10: Principal directions of n samples from a bivariate Gaussian distribution (red)
compared to the eigenvectors of the covariance matrix of the distribution (black).

3.4 Dimensionality reduction via PCA

Data containing a large number of features can be di�cult to analyze or process. Di-
mensionality reduction is a useful preprocessing step for many data-analysis tasks, which
consists of representing the data with a smaller number of variables. For data modeled as
vectors in an ambient space Rm where each dimension corresponds to a feature, this can
be achieved by projecting the vectors onto a lower-dimensional space Rk, where k < m.
If the projection is orthogonal, the new representation can be computed using an orthog-
onal basis for the lower-dimensional subspace ~b1, ~b2, . . . , ~bk: each data vector ~x 2 Rm

is described using the coe�cients of its representation in the basis: h~b1, ~xi, h~b2, ~xi, . . . ,
h~bk, ~xi.

Given a data set of n vectors ~x1, ~x2, . . . , ~xn 2 Rm, the first k principal directions span
the subspace that preserves the most energy (measured in `2 norm) in the centered data
among all possible k-dimensional orthogonal projections by Theorem 2.8. This motivates
the application of PCA for dimensionality reduction.

Example 3.9 (Nearest neighbors in principal-component space). The nearest neighbors
algorithm for classification (Algorithm 4.2 in Lecture Notes 1) requires computing n dis-
tances in an m-dimensional space (where m is the number of features) to classify each
new example. The computational cost is O (nm), so if we need to classify p points the
total cost is O (nmp). If we project each of the points onto a lower-dimensional space k
computed via PCA before classifying them, then the computational cost is:

• O (mnmin {m,n}) to compute the principal directions from the training data.

• kmn operations to project the training data onto the first k principal directions.

• kmp operations to project each point in the test set onto the first k principal direc-
tions.

• knp to perform nearest-neighbor classification in the lower-dimensional space.
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Figure 11: Errors for nearest-neighbor classification combined with PCA-based dimen-
sionality reduction for di↵erent dimensions.
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Figure 12: Results of nearest-neighbor classification combined with PCA-based dimen-
sionality reduction of order 41 for four of the people in Example 3.9. The assignments of
the first three examples are correct, but the fourth is wrong.
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First two PCs Last two PCs

Figure 13: Projection of 7-dimensional vectors describing di↵erent wheat seeds onto the
first two (left) and the last two (right) principal dimensions of the data set. Each color
represents a variety of wheat.

If we have to classify a large number of points (i.e. p � max {m,n}) the computational
cost is reduced by operating in the lower-dimensional space.

Figure 11 shows the accuracy of the algorithm on the same data as Example 4.3 in Lecture
Notes 1. The accuracy increases with the dimension at which the algorithm operates. This
is not necessarily always the case because projections may actually be helpful for tasks
such as classification (for example, factoring out small shifts and deformations). The same
precision as in the ambient dimension (4 errors out of 40 test images) is achieved using
just k = 41 principal components (in this example n = 360 and m = 4096). Figure 12
shows some examples of the projected data represented in the original m-dimensional
space along with their nearest neighbors in the k-dimensional space. 4

Example 3.10 (Dimensionality reduction for visualization). Dimensionality reduction is
often useful for visualization. The objective is to project the data onto 2D or 3D in a
way that preserves its structure as much as possible. In this example, we consider a data
set where each data point corresponds to a seed with seven features: area, perimeter,
compactness, length of kernel, width of kernel, asymmetry coe�cient and length of kernel
groove. The seeds belong to three di↵erent varieties of wheat: Kama, Rosa and Canadian.2

To visualize the data in 2D, we project each point onto the two first principal dimensions
of the data set.

Figure 13 shows the projection of the data onto the first two and the last two principal
directions. In the latter case, there is almost no discernible variation. As predicted by
our theoretical analysis of PCA, the structure in the data is much better conserved by the
two first directions, which allow to clearly visualize the di↵erence between the three types
of seeds. Note however that projection onto the first principal directions only ensures

2The data can be found at https://archive.ics.uci.edu/ml/datasets/seeds.
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~x1, . . . , ~xn UT~x1, . . . , UT~xn S�1UT~x1, . . . , S�1UT~xn

Figure 14: E↵ect of whitening a set of data. The original data are dominated by a linear
skew (left). Applying UT aligns the axes with the eigenvectors of the sample covariance
matrix (center). Finally, S�1 reweights the data along those axes so that they have the
same average variation, revealing the nonlinear structure that was obscured by the linear
skew (right).

that we preserve as much variation as possible, but it does not necessarily preserve useful
features for tasks such as clustering or classification. 4

3.5 Whitening

The principal directions in a data set do not necessarily capture the most useful features
for certain tasks. For instance, in the case of the faces data set in Example 3.4 the prin-
cipal directions correspond to low-resolution images, so that the corresponding principal
components capture low-resolution features. These features do not include important
information contained in fine-scale details, which could be useful for tasks such as classi-
fication. Whitening is a preprocessing technique that reweights the principal components
of every vector so every principal dimension has the same contribution.

Algorithm 3.11 (Whitening). Given n data vectors ~x1, ~x2, . . . , ~xn 2 Rd, we apply the
following steps.

1. Center the data,

~ci = ~xi � av (~x1, ~x2, . . . , ~xn) , 1  i  n. (141)

2. Group the centered data as columns of a matrix

C =
⇥
~c1 ~c2 · · · ~cn

⇤
. (142)

3. Compute the SVD of C = USV T .

4. Whiten each centered vector by applying the linear map US�1UT

~wi := US�1UT~ci. (143)
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Figure 15: Centered faces in the data set from Example 3.4 before and after whitening.

The linear map US�1UT scales the components of the centered vector in each principal
direction by a factor inversely proportional to its corresponding singular value,

~wi :=
min(m,n)X

j=1

1

�j
h~uj,~cii ~uj. (144)

If we group the whitened vectors as columns of a matrix, the matrix can be expressed as

W = US�1UTC. (145)

The covariance matrix of the whitened data is proportional to the identity

⌃ (~c1, . . . ,~cn) =
1

n� 1
WW T (146)

=
1

n� 1
US�1UTCCTUS�1UT (147)

=
1

n� 1
US�1UTUSV TV SUTUS�1UT (148)

=
1

n� 1
I, (149)

This means that the whitened data have no linear skews, there are no directions in space
that contain more variation than others. As illustrated in Figure 14, this may reveal
nonlinear structure in the data. Figure 15 shows some of the centered faces in the data
set from Example 3.4 before and after whitening. Whitening enhances fine-detail features
of the faces.

4 Eigendecomposition

An eigenvector ~q of a square matrix A 2 Rn⇥n satisfies

A~q = �~q (150)
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for a scalar � which is the corresponding eigenvalue. Even if A is real, its eigenvectors
and eigenvalues can be complex. If a matrix has n linearly independent eigenvectors then
it is diagonalizable.

Lemma 4.1 (Eigendecomposition). If a square matrix A 2 Rn⇥n has n linearly inde-
pendent eigenvectors ~q1, . . . , ~qn with eigenvalues �1, . . . ,�n it can be expressed in terms of
a matrix Q, whose columns are the eigenvectors, and a diagonal matrix containing the
eigenvalues,

A =
⇥
~q1 ~q2 · · · ~qn

⇤

2

664

�1 0 · · · 0
0 �2 · · · 0

· · ·

0 0 · · · �n

3

775
⇥
~q1 ~q2 · · · ~qn

⇤�1
(151)

= Q⇤Q�1 (152)

Proof.

AQ =
⇥
A~q1 A~q2 · · · A~qn

⇤
(153)

=
⇥
�1~q1 �2~q2 · · · �2~qn

⇤
(154)

= Q⇤. (155)

If the columns of a square matrix are all linearly independent, then the matrix has an
inverse, so multiplying the expression by Q�1 on both sides completes the proof.

Lemma 4.2. Not all matrices have an eigendecomposition.

Proof. Consider the matrix

0 1
0 0

�
. (156)

Assume an eigenvector ~q associated to an eigenvalue �, then

~q [2]
0

�
=


0 1
0 0

� 
~q [1]
~q [2]

�
=


�~q [1]
�~q [2]

�
, (157)

which implies that ~q [2] = 0 and ~q [1] = 0, so the matrix does not have eigenvectors
associated to nonzero eigenvalues.

Symmetric matrices are always diagonalizable.

Theorem 4.3 (Spectral theorem for symmetric matrices). If A 2 Rn is symmetric, then
it has an eigendecomposition of the form

A = U⇤UT (158)

where the matrix of eigenvectors U is an orthogonal matrix.

33



This is a fundamental result in linear algebra that can be used to prove Theorem 2.1. We
refer to any graduate-level linear-algebra text for the proof.

Together, Theorems 2.1 and 4.3 imply that the SVD A = USV T and the eigendecomposi-
tion A = U⇤UT of a symmetric matrix are almost the same. The left singular vectors can
be taken to be equal to the eigenvectors. Nonnegative eigenvalues are equal to the singular
vectors, and their right singular vectors are equal to the corresponding eigenvectors. The
di↵erence is that if an eigenvalue �i corresponding to an eigenvector ~ui is negative, then
�i = ��i and the corresponding right-singular vector ~vi = �~ui.

A useful application of the eigendecomposition is computing successive matrix products.
Assume that we are interested in computing

AA · · ·A~x = Ak~x, (159)

i.e., we want to apply A to ~x k times. Ak cannot be computed by taking the power
of its entries (try out a simple example to convince yourself). However, if A has an
eigendecomposition,

Ak = Q⇤Q�1Q⇤Q�1
· · ·Q⇤Q�1 (160)

= Q⇤kQ�1 (161)

= Q

2

664

�k
1 0 · · · 0
0 �k

2 · · · 0
· · ·

0 0 · · · �k
n

3

775Q�1, (162)

using the fact that for diagonal matrices applying the matrix repeatedly is equivalent to
taking the power of the diagonal entries. This allows to compute the k matrix products
using just 3 matrix products and taking the power of n numbers.

Let A 2 Rn⇥n be a matrix with eigendecomposition Q⇤Q�1 and let ~x be an arbitrary
vector in Rn. Since the eigenvectors are linearly independent, they form a basis for Rn,
so we can represent ~x as

~x =
nX

i=1

↵i~qi, ↵i 2 R, 1  i  n. (163)

Now let us apply A to ~x k times,

Ak~x =
nX

i=1

↵iA
k~qi (164)

=
nX

i=1

↵i�
k
i ~qi. (165)

If we assume that the eigenvectors are ordered according to their magnitudes and that
the magnitude of one of them is larger than the rest, |�1| > |�2| � . . ., and that ↵1 6= 0
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Figure 16: Illustration of the first three iterations of the power method for a matrix with
eigenvectors ~q1 and ~q2, with corresponding eigenvalues �1 = 1.05 and �2 = 0.1661.

(which happens with high probability if we draw a random ~x) then as k grows larger the
term ↵1�k

1~q1 dominates. The term will blow up or tend to zero unless we normalize every
time before applying A. Adding the normalization step to this procedure results in the
power method or power iteration, an algorithm for estimating the eigenvector of a matrix
that corresponds to the largest eigenvalue.

Algorithm 4.4 (Power method).
Set ~x1 := ~x/ ||~x||2, where the entries of ~x are drawn at random. For i = 1, 2, 3, . . .,
compute

~xi :=
A~xi�1

||A~xi�1||2

. (166)

Figure 16 illustrates the power method on a simple example, where the matrix is equal to

A =


0.930 0.388
0.237 0.286

�
. (167)

The convergence to the eigenvector corresponding to the eigenvalue with the largest mag-
nitude is very fast.

We end this section with an example that applies a decomposition to analyze the evolution
of the populations of two animals.

Example 4.5 (Deer and wolfs). A biologist is studying the populations of deer and wolfs
in Yellowstone. She concludes that a reasonable model for the populations in year n+ 1
is the linear system of equations

dn+1 =
5

4
dn �

3

4
wn, (168)

wn+1 =
1

4
dn +

1

4
wn, n = 0, 1, 2, . . . (169)

where dn and wn denote the number of deer and wolfs in year n. She is interested in
determining the evolution of the populations in the future so she computes an eigende-
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Figure 17: Evolution of the populations of deer and wolfs for di↵erent initial populations
in Example 4.5.

composition of the matrix

A :=


5/4 �3/4
1/4 1/4

�
(170)

=


3 1
1 1

� 
1 0
0 0.5

� 
3 1
1 1

��1

:= Q⇤Q�1. (171)

If we denote the initial populations of deer and wolfs as d0 and w0 respectively, the
populations in year n are given by


dn
wn

�
= Q⇤nQ�1


d0
w0

�
(172)

=


3 1
1 1

� 
1 0
0 0.5n

� 
0.5 �0.5
�0.5 1.5

� 
d0
w0

�
(173)

=
d0 � w0

2


3
1

�
+

3w0 � d0
8n


1
1

�
. (174)

As n ! 1, if the number of deer is larger than the number of wolfs, then the population
of deer will converge to be three times the population of wolfs, which will converge to a
half of the di↵erence between their original populations. Since the populations cannot be
negative, if the original population of wolfs is larger than that of deer, then both species
will go extinct. This is confirmed by the simulations shown in Figure 17. 4

5 Proofs

5.1 Proof of Theorem 1.3

It is su�cient to prove

dim (row (A))  dim (col (A)) (175)
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for any arbitrary matrix A. Since the row space of A is equal to the column space of AT

and vice versa, applying (175) to AT yields dim (row (A)) � dim (col (A)) which completes
the proof.

To prove (175) let r := dim (row (A)) and let ~x1, . . . , ~xr be a basis for row (A). Consider the
vectors A~x1, . . . , A~xr. They belong to col (A) by (11), so if they are linearly independent
then dim (col (A)) � r. We prove that this is the case by contradiction.

Assume that A~x1, . . . , A~xr are linearly dependent. Then there exist scalar coe�cients
↵1, . . . ,↵r such that

~0 =
rX

i=1

↵iA~xi = A

 
rX

i=1

↵i~xi

!
by linearity of the matrix product, (176)

This implies that
Pr

i=1 ↵i~xi is orthogonal to every row of A and hence to every vector
in row (A). However it is in the span of a basis of row (A) by construction! This is only
possible if

Pr
i=1 ↵i~xi = 0, which is a contradiction because ~x1, . . . , ~xr are assumed to be

linearly independent.

5.2 Proof of Lemma 2.9

Let ~a1,~a2, . . . ,~ad1 be a basis for the first subspace and~b1, ~b2, . . . , ~bd2 a basis for the second.
Because the dimension of the vector space is n, the set of vectors ~a1, . . . , ~ad1 ,~b1, . . . , ~bd2
are not linearly independent. There must exist scalars ↵1, . . . , ↵d1 , �1, . . . , �d2 , which
are not all equal to zero, such that

d1X

i=1

↵i~ai +
d2X

j=1

�i
~bi = 0. (177)

The vector

~x :=
d1X

i=1

↵i~ai = �

d2X

j=1

�i
~bi (178)

cannot equal zero because both ~a1, . . . , ~ad1 and ~b1, . . . , ~bd2 are bases by assumption. ~x
belongs to the intersection of the two subspaces, which completes the proof.

5.3 Proof of Theorem 2.16

The proof relies on the following lemma.

Lemma 5.1. For any Q 2 Rn⇥n

max
1in

|Qii|  ||Q|| . (179)

37



Proof. Since ||~ei||2 = 1,

max
1in

|Qii|  max
1in

vuut
nX

j=1

Q2
ji (180)

= max
1in

||Q~ei||2 (181)

 ||Q|| . (182)

We denote the SVD of A by USV T ,

sup
{||B||1 | B2Rm⇥n}

tr
�
ATB

�
= sup

{||B||1 | B2Rm⇥n}
tr
�
V S UTB

�
(183)

= sup
{||B||1 | B2Rm⇥n}

tr
�
S BUTV

�
by Lemma 2.5 in Lecture Notes 1

 sup
{||M ||1 | M2Rm⇥n}

tr (SM) ||B|| =
����BUTV

���� by Corollary 2.15

 sup
{max1in|Mii|1 | M2Rm⇥n}

tr (SM) by Lemma 5.1

 sup
{max1in|Mii|1 | M2Rm⇥n}

nX

i=1

Mii �i (184)



nX

i=1

�i (185)

= ||A||⇤ . (186)

To complete the proof, we need to show that the equality holds. Note that UV T has
operator norm equal to one because its r singular values (recall that r is the rank of A)
are equal to one. We have

⌦
A,UV T

↵
= tr

�
ATUV T

�
(187)

= tr
�
V S UTUV T

�
(188)

= tr
�
V TV S

�
by Lemma 2.5 in Lecture Notes 1 (189)

= tr (S) (190)

= ||A||⇤ . (191)
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Optimization-based data analysis Fall 2017

Lecture Notes 3: Randomness

1 Gaussian random variables

The Gaussian or normal random variable is arguably the most popular random variable
in statistical modeling and signal processing. The reason is that sums of independent
random variables often converge to Gaussian distributions, a phenomenon characterized
by the central limit theorem (see Theorem 1.3 below). As a result any quantity that results
from the additive combination of several unrelated factors will tend to have a Gaussian
distribution. For example, in signal processing and engineering, noise is often modeled
as Gaussian. Figure 1 shows the pdfs of Gaussian random variables with di↵erent means
and variances. When a Gaussian has mean zero and unit variance, we call it a standard

Gaussian.

Definition 1.1 (Gaussian). The pdf of a Gaussian or normal random variable with mean

µ and standard deviation � is given by

fX (x) =
1

p
2⇡�

e�
(x�µ)2

2�2 . (1)

A Gaussian distribution with mean µ and standard deviation � is usually denoted by

N (µ, �2).

An important property of Gaussian random variables is that scaling and shifting Gaussians
preserves their distribution.

Lemma 1.2. If x is a Gaussian random variable with mean µ and standard deviation �,
then for any a, b 2 R

y := ax+ b (2)

is a Gaussian random variable with mean aµ+ b and standard deviation |a| �.

Proof. We assume a > 0 (the argument for a < 0 is very similar), to obtain

Fy (y) = P (y  y) (3)

= P (ax+ b  y) (4)

= P

✓
x 

y � b

a

◆
(5)

=

Z y�b
a

�1

1
p
2⇡�

e�
(x�µ)2

2�2 dx (6)

=

Z y

�1

1
p
2⇡a�

e�
(w�aµ�b)2

2a2�2 dw by the change of variables w = ax+ b. (7)
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Figure 1: Gaussian random variable with di↵erent means and standard deviations.

Di↵erentiating with respect to y yields

fy (y) =
1

p
2⇡a�

e�
(w�aµ�b)2

2a2�2 (8)

so y is indeed a standard Gaussian random variable with mean aµ + b and standard
deviation |a| �.

The distribution of the average of a large number of random variables with bounded
variances converges to a Gaussian distribution.

Theorem 1.3 (Central limit theorem). Let x1, x2, x3, . . . be a sequence of iid random

variables with mean µ and bounded variance �2
. We define the sequence of averages a1,

a2, a3, . . . , as

ai :=
1

i

iX

j=1

xj. (9)

The sequence b1, b2, b3, . . .

bi :=
p

i(ai � µ) (10)

converges in distribution to a Gaussian random variable with mean 0 and variance �2
,

meaning that for any x 2 R

lim
i!1

fbi (x) =
1

p
2⇡�

e�
x2

2�2 . (11)

For large i the theorem suggests that the average ai is approximately Gaussian with
mean µ and variance �/

p
n. This is verified numerically in Figure 2. Figure 3 shows

the histogram of the heights in a population of 25,000 people and how it is very well
approximated by a Gaussian random variable1, suggesting that a person’s height may
result from a combination of independent factors (genes, nutrition, etc.).

1
The data is available here.
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Exponential with � = 2 (iid)

i = 102 i = 103 i = 104

Geometric with p = 0.4 (iid)

i = 102 i = 103 i = 104

Figure 2: Empirical distribution of the average, defined as in equation (9), of an iid exponential

sequence with parameter � = 2 (top) and an iid geometric sequence with parameter p = 0.4
(bottom). The empirical distribution is computed from 10

4
samples in all cases. The estimate

provided by the central limit theorem is plotted in red.
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Figure 3: Histogram of heights in a population of 25,000 people (blue) and its approximation

using a Gaussian distribution (orange).

2 Gaussian random vectors

2.1 Definition and basic properties

Gaussian random vectors are a multidimensional generalization of Gaussian random vari-
ables. They are parametrized by a vector and a matrix that correspond to their mean
and covariance matrix.

Definition 2.1 (Gaussian random vector). A Gaussian random vector ~x is a random

vector with joint pdf (|⌃| denotes the determinant of ⌃)

f~x (~x) =
1p

(2⇡)n |⌃|
exp

✓
�
1

2
(~x� ~µ)T ⌃�1 (~x� ~µ)

◆
(12)

where the mean vector ~µ 2 Rn
and the covariance matrix ⌃ 2 Rn⇥n

, which is symmetric

and positive definite, parametrize the distribution. A Gaussian distribution with mean ~µ
and covariance matrix ⌃ is usually denoted by N (~µ,⌃).

When the covariance matrix of a Gaussian vector is diagonal, then its components are all
independent.

Lemma 2.2 (Uncorrelation implies mutual independence for Gaussian random vectors).
If all the components of a Gaussian random vector ~x are uncorrelated, then they are also

mutually independent.
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Proof. If all the components are uncorrelated then the covariance matrix is diagonal

⌃~x =

2

6664

�2
1 0 · · · 0
0 �2

2 · · · 0
...

...
. . .

...
0 0 · · · �2

n

3

7775
, (13)

where �i is the standard deviation of the ith component. Now, the inverse of this diagonal
matrix is just

⌃�1
~x =

2

66664

1
�2
1

0 · · · 0

0 1
�2
2

· · · 0
...

...
. . .

...
0 0 · · ·

1
�2
n

3

77775
, (14)

and its determinant is |⌃| =
Qn

i=1 �
2
i so that

f~x (~x) =
1p

(2⇡)n |⌃|
exp

✓
�
1

2
(~x� ~µ)T ⌃�1 (~x� ~µ)

◆
(15)

=
nY

i=1

1p
(2⇡)�i

exp

 
�
(~xi � µi)

2

2�2
i

!
(16)

=
nY

i=1

f~xi (~xi) . (17)

Since the joint pdf factors into a product of the marginals, the components are all mutually
independent.

When the covariance matrix of a Gaussian vector is the identity and its mean is zero,
then its entries are iid standard Gaussians with mean zero and unit variance. We refer to
such vectors as iid standard Gaussian vectors.

A fundamental property of Gaussian random vectors is that performing linear transfor-
mations on them always yields vectors with joint distributions that are also Gaussian.
This is a multidimensional generalization of Lemma 1.2. We omit the proof, which is
similar to that of Lemma 1.2.

Theorem 2.3 (Linear transformations of Gaussian random vectors are Gaussian). Let ~x
be a Gaussian random vector of dimension n with mean ~µ and covariance matrix ⌃. For
any matrix A 2 Rm⇥n

and ~b 2 Rm
, ~Y = A~x +~b is a Gaussian random vector with mean

A~µ+~b and covariance matrix A⌃AT
.

An immediate consequence of Theorem 2.3 is that subvectors of Gaussian vectors are also
Gaussian. Figure 4 show the joint pdf of a two-dimensional Gaussian vector together with
the marginal pdfs of its entries.
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Figure 4: Joint pdf of a two-dimensional Gaussian vector ~x and marginal pdfs of its two entries.

Another consequence of Theorem 2.3 is that an iid standard Gaussian vector is isotropic.
This means that the vector does not favor any direction in its ambient space. More
formally, no matter how you rotate it, its distribution is the same. More precisely, for any
orthogonal matrix U , if ~x is an iid standard Gaussian vector, then by Theorem 2.3 U~x
has the same distribution, since its mean equals U~0 = ~0 and its covariance matrix equals
UIUT = UUT = I. Note that this is a stronger statement than saying that its variance
is the same in every direction, which is true for any vector with uncorrelated entries.

2.2 Concentration in high dimensions

In the previous section we established that the direction of iid standard Gaussian vectors is
isotropic. We now consider their magnitude. As we can see in Figure 4, in low dimensions
the joint pdf of Gaussian vectors is mostly concentrated around the origin. Interestingly,
this is not the case as the dimension of the ambient space grows. The squared `2-norm
of an iid standard k-dimensional Gaussian vector ~x is the sum of k independent standard
Gaussian random variables, which is known as a �2 (chi squared) random variable with
k degrees of freedom. As shown in Figure 5, as k grows the pdf of this random variable

6



concentrates around k, which is the mean of the squared `2-norm:

E
�
||~x||22

�
= E

 
kX

i=1

~x[i]2
!

(18)

=
kX

i=1

E
�
~x[i]2

�
(19)

= k. (20)

The following lemma shows that the standard deviation of ||~x||22 is
p
2k.

Lemma 2.4 (Variance of the squared `2 norm of a Gaussian vector). Let ~x be an iid

Gaussian random vector of dimension k. The variance of ||~x||22 is 2k.

Proof. Recall that Var
�
||~x||22

�
= E

⇣�
||~x||22

�2⌘
� E

�
||~x||22

�2
. The result follows from

E
⇣�

||~x||22
�2⌘

= E

0

@
 

kX

i=1

~x[i]2
!2

1

A (21)

= E

 
kX

i=1

kX

j=1

~x[i]2~x[j]2
!

(22)

=
kX

i=1

kX

j=1

E
�
~x[i]2~x[j]2

�
(23)

=
kX

i=1

E
�
~x[i]4

�
+ 2

k�1X

i=1

kX

j=i

E
�
~x[i]2

�
E
�
~x[j]2

�
(24)

= 3k + k(k � 1) since the 4th moment of a standard Gaussian equals 3
(25)

= k(k + 2). (26)

The result implies that as k grows the relative deviation of the norm from its mean
decreases proportionally to 1/

p
k. Consequently, the squared norm is close to k with

increasing probability. This is made precise in the following theorem, which yields a
concrete non-asymptotic bound on the probability that it deviates by more than a small
constant.

Theorem 2.5 (Chebyshev tail bound for the `2 norm of an iid standard Gaussian vector).
Let ~x be an iid standard Gaussian random vector of dimension k. For any ✏ > 0 we have

P
�
k (1� ✏) < ||~x||22 < k (1 + ✏)

�
� 1�

2

k✏2
. (27)
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Figure 5: Pdfs of y/k for di↵erent values of k, where y is a �2
random variable with k degrees

of freedom.

Proof. The bound is a consequence of Markov’s inequality, which quantifies the intuitive
idea that if a random variable is nonnegative and small then the probability that it takes
large values must be small.

Theorem 2.6 (Markov’s inequality, proof in Section 5.1). Let x be a nonnegative random

variable. For any positive constant a > 0,

P (x � a) 
E (x)

a
. (28)

Let y := ||~x||22,

P (|y � k| � k✏) = P
�
(y � E (y))2 � k2✏2

�
(29)


E
�
(y � E (y))2

�

k2✏2
by Markov’s inequality (30)

=
Var (y)

k2✏2
(31)

=
2

k✏2
by Lemma 2.4. (32)

When Markov’s inequality is applied to bound the deviation from the mean like this, it
is usually called Chebyshev’s inequality.

The bound in Theorem 2.5 only relies on the variance to bound the probability that the
magnitude deviates from its mean. As a result, it is significantly weaker than the following
result, which exploits the fact that the higher moments of a standard Gaussian are well
behaved.
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Theorem 2.7 (Cherno↵ tail bound for the `2 norm of an iid standard Gaussian vector).
Let ~x be an iid standard Gaussian random vector of dimension k. For any ✏ 2 (0, 1) we

have

P
�
k (1� ✏) < ||~x||22 < k (1 + ✏)

�
� 1� 2 exp

✓
�
k✏2

8

◆
. (33)

Proof. Let y := ||~x||22. The result is implied by

P (y > k (1 + ✏))  exp

✓
�
k✏2

8

◆
, (34)

P (y < k (1� ✏))  exp

✓
�
k✏2

8

◆
. (35)

We present the proof of (34). The proof of (35) is essentially the same and is presented
in Section 5.3. Let t > 0 be an arbitrary positive number, and note that

P (y > a) = P (exp (ty) > exp (at)) (36)

 exp (�at) E (exp (ty)) by Markov’s inequality (37)

 exp (�at) E

 
exp

 
kX

i=1

txi
2

!!
(38)

 exp (�at)
kY

i=1

E
�
exp

�
txi

2
��

by independence of x1, . . . ,xk (39)

=
exp (�at)

(1� 2t)
k
2

, (40)

where the last step is a consequence of the following lemma.

Lemma 2.8 (Proof in Section 5.2). For x standard Gaussian and t < 1/2,

E
�
exp

�
tx2

��
=

1
p
1� 2t

. (41)

Note that the lemma implies a bound on the higher-order moments of a standard Gaussian
x, since

E
�
exp

�
tx2

��
= E

 1X

i=0

(tx2)i

i!

!
(42)

=
1X

i=0

E (ti (x2i))

i!
. (43)

Bounds that exploit the behavior of higher-order moments to control tail probabilities
through the expectation of an exponential are often called Cherno↵ bounds.
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We set a := k (1 + ✏) and

t :=
1

2
�

1

2 (1 + ✏)
, (44)

by minimizing over t 2 (0, 1/2) in (40). This gives

P (y > k (1 + ✏))  (1 + ✏)k 2 exp

✓
�
k✏

2

◆
(45)

= exp

✓
�
k

2
(✏� log (1 + ✏))

◆
(46)

 exp

✓
�
k✏2

8

◆
, (47)

where the last step follows from the fact that the function g (x) := x�
x2

4 � log (1 + x) is
nonnegative between 0 and 1 (the derivative is nonnegative and g (0) = 0).

In the next section we apply this result to characterize the projection of an iid standard
Gaussian vector on a subspace.

2.3 Projection onto a fixed subspace

In Example 7.4 of Lecture Notes 1 we observed that the `2-norm of the projection of iid
standard Gaussian noise onto a fixed subspace is proportional to the square root of the
dimension of that subspace. In this section we make this precise, using that the fact that
the coe�cients of the projection in an orthonormal basis of the subspace are themselves
iid standard Gaussians.

Lemma 2.9 (Projection of an iid Gaussian vector onto a subspace). Let S be a k-
dimensional subspace of Rn

and ~z 2 Rn
a vector of iid standard Gaussian noise. ||PS ~z||

2
2

is a �2
random variable with k degrees of freedom, i.e. it has the same distribution as the

random variable

y :=
kX

i=1

xi
2 (48)

where x1, . . . ,xk are iid standard Gaussian random variables.

Proof. Let UUT be a projection matrix for the subspace S, where the columns of U 2 Rn⇥k
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are orthonormal. We have

||PS ~z||
2
2 =

����UUT~z
����2

2
(49)

= ~zTUUTUUT~z (50)

= ~zTUUT~z (51)

= ~wT ~w (52)

=
kX

i=1

~w[i]2, (53)

where by Theorem 2.3 the random vector ~w := UT~z is Gaussian with mean zero and
covariance matrix

⌃~w = UT⌃~zU (54)

= UTU (55)

= I, (56)

so the entries are independent standard Gaussians.

Since the coe�cients are standard Gaussians, we can bound the deviation of their norm
using Theorem 2.7.

Theorem 2.10. Let S be a k-dimensional subspace of Rn
and ~z 2 Rn

a vector of iid

Gaussian noise. For any ✏ 2 (0, 1)

p
k (1� ✏)  ||PS ~z||2 

p
k (1 + ✏) (57)

with probability at least 1� 2 exp (�k✏2/8).

Proof. The result follows from Theorem 2.7 and Lemma 2.9.

3 Gaussian matrices

3.1 Randomized projections

As we discussed in Section 3.3 of Lecture Notes 2, dimensionality reduction via PCA
consists of projecting the data on low-dimensional subspaces that are optimal in the sense
that they preserve most of the energy. The principal directions are guaranteed to lie in
the directions of maximum variation of the data, but finding them requires computing
the SVD, which can be computationally expensive or not possible at all if the aim is to
project a stream of data in real time. For such cases we need a non-adaptive alternative
to PCA that chooses the projection before seeing the data. A simple method to achieve
this is to project the data using a random linear map, represented by a random matrix A
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built by sampling each entry independently from a standard Gaussian distribution. The
following lemma shows that the distribution of the result of applying such a matrix to a
fixed deterministic vector is Gaussian.

Lemma 3.1. Let A be an a⇥ b matrix with iid standard Gaussian entries. If ~v 2 Rb
is a

deterministic vector with unit `2 norm, then A~v is an a-dimensional iid Gaussian vector.

Proof. By Theorem 2.3, (A~v) [i], 1  i  a is Gaussian, since it is the inner product
between ~v and the ith row Ai,: (interpreted as a vector in Rb), which is an iid standard
Gaussian vector. The mean of the entry is zero because the mean of Ai,: is zero and the
variance equals

Var
�
AT

i,:~v
�
= ~vT⌃Ai,:~v (58)

= ~vT I~v (59)

= ||~v||22 (60)

= 1, (61)

so the entries of A~v are all standard Gaussians. Finally, they are independent because
each is just a function of a specific row, and all the rows in the matrix are mutually
independent.

A direct consequence of this result is a non-asymptotic bound on the `2 norm of A~v for
any fixed deterministic vector ~v.

Lemma 3.2. Let A be a a⇥ b matrix with iid standard Gaussian entries. For any ~v 2 Rb

with unit norm and any ✏ 2 (0, 1)

p
a (1� ✏)  ||A~v||2 

p
a (1 + ✏) (62)

with probability at least 1� 2 exp (�a✏2/8).

Proof. The result follows from Theorem 2.7 and Lemma 3.1.

Dimensionality-reduction techniques are useful if they preserve the information that we
are interested in. In many cases, we would like the projection to conserve the distances
between the di↵erent data points. This allows us to apply algorithms such as nearest
neighbors in the lower-dimensional space. The following lemma guarantees that random
projections do not distort the distances between points in a non-asymptotic sense. The
result is striking because the lower bound on k – the dimension of the approximate pro-
jection – does not depend on n – the ambient dimension of the data – and its dependence
on the number of points p in the data set is only logarithmic. The proof is based on the
arguments in [3].

12



Lemma 3.3 (Johnson-Lindenstrauss lemma). Let A be a k⇥ n matrix with iid standard

Gaussian entries. Let ~x1, . . . , ~xp 2 Rn
be any fixed set of p deterministic vectors. For

any pair ~xi, ~xj and any ✏ 2 (0, 1)

(1� ✏) ||~xi � ~xj||
2
2 

����

����
1
p
k
A~xi �

1
p
k
A~xj

����

����
2

2

 (1 + ✏) ||~xi � ~xj||
2
2 , (63)

with probability at least
1
p as long as

k �
16 log (p)

✏2
. (64)

Proof. To prove the result we control the action of the matrix on the normalized di↵erence
of the vectors

~vij :=
~xi � ~xj

||~xi � ~xj||2

, (65)

which has unit `2-norm unless ~xi = ~xj (in which case the norm of the di↵erence is preserved
exactly). We denote the event that the norm of the action of A on ~vij concentrates around
k by

Eij =
�
k (1� ✏) < ||A~vij||

2
2 < k (1 + ✏)

 
1  i < p, i < j  p.

Lemma 3.2 implies that each of the Eij hold with high probability as long as condition (64)
holds

P
�
E
c
ij

�


2

p2
. (66)

However, this is not enough. Our event of interest is the intersection of all the Eij.
Unfortunately, the events are dependent (since the vectors are hit by the same matrix),
so we cannot just multiply their individual probabilities. Instead, we apply the union
bound to control the complement of the intersection.

Theorem 3.4 (Union bound, proof in Section 5.4). Let S1, S2, . . . , Sn be a collection of

events in a probability space. Then

P ([iSi) 
nX

i=1

P (Si) . (67)

The number of events in the intersection is
�
p
2

�
= p (p� 1) /2, because that is the number

13



Randomized projection PCA

Figure 6: Approximate projection of 7-dimensional vectors describing di↵erent wheat seeds

onto two random directions. Each color represents a variety of wheat.

of di↵erent pairs of vectors in the set {~x1, . . . , ~xp}. The union bound yields

P

 
\

i,j

Eij

!
= 1� P

 
[

i,j

E
c
ij

!
(68)

� 1�
X

i,j

P
�
E
c
ij

�
(69)

� 1�
p (p� 1)

2

2

p2
(70)

�
1

p
. (71)

Example 3.5 (Dimensionality reduction via randomized projections). We consider the
same data as in Example 3.6 of Lecture Notes 2. Each data point corresponds to a
seed with seven features: area, perimeter, compactness, length of kernel, width of kernel,
asymmetry coe�cient and length of kernel groove. The seeds belong to three di↵erent
varieties of wheat: Kama, Rosa and Canadian.2 The objective is to project the data
onto 2D for visualization. In Figure 6 we compare the result of randomly projecting the
data by applying a 2 ⇥ 7 iid standard Gaussian matrix, with the result of PCA-based
dimensionality reduction. In terms of keeping the di↵erent types of wheat separated, the
randomized projection preserves the structure in the data as e↵ectively as PCA. 4

2
The data can be found at https://archive.ics.uci.edu/ml/datasets/seeds.
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Figure 7: Average, maximum and minimum number of errors (over 50 tries) for nearest-

neighbor classification after a randomized dimensionality reduction for di↵erent dimensions.
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Figure 8: Results of nearest-neighbor classification combined with randomized dimensionality

reduction of dimension 50 for four of the people in Example 3.6. The assignments of the first

two examples are correct, but the other two are wrong.
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Example 3.6 (Nearest neighbors after random projection). The nearest neighbors algo-
rithm for classification (Algorithm 4.2 in Lecture Notes 1) requires computing n distances
in an m-dimensional space (where m is the number of features) to classify each new ex-
ample. The computational cost is O (nm), so if we need to classify p points the total
cost is O (nmp). If we perform a random projection of each of the points onto a lower-
dimensional space k before classifying them, then the computational cost is:

• kmn operations to project the training data using a k ⇥ m iid standard Gaussian
matrix.

• kmp operations to project each point in the test set using the same matrix.

• knp to perform nearest-neighbor classification in the lower-dimensional space.

The overall cost is O (kpmax {m,n}), which is a significant reduction from O (nmp). It
is also more e�cient than the PCA-based approach of Example 3.5 in Lecture Notes 2,
which includes an additional O (mnmin {m,n}) step to compute an SVD.

Figure 7 shows the accuracy of the algorithm on the same data as Example 4.3 in Lecture
Notes 1. A similar average precision as in the ambient dimension (5 errors out of 40
test images compared to 4 out of 40) is achieved for a dimension of k = 50. Figure 8
shows some examples of the projected data represented in the original m-dimensional
space along with their nearest neighbors in the k-dimensional space. 4

3.2 Singular values

In this section we analyze the singular values of matrices with iid standard Gaussian
entries. In particular we consider an k ⇥ n matrix A where n > k. Numerically, we
observe that as n grows, all k singular values converge to

p
n, as shown in Figure 9. As

a result,

A ⇡ U
�p

n I
�
V T =

p
nUV T , (72)

i.e. A is close to an orthogonal matrix. Geometrically, this implies that if we generate a
fixed number of iid Gaussian vectors at increasing ambient dimensions, the vectors will
tend to be almost orthogonal as the dimension grows.

The following result establishes a non-asymptotic bound on the singular values using
a covering number argument from [1] that can be applied to other distributions and
situations. See also [6] for some excellent notes on high-dimensional probability techniques
in this spirit.

Theorem 3.7 (Singular values of a Gaussian matrix). Let A be a n⇥ k matrix with iid

standard Gaussian entries such that n > k. For any fixed ✏ > 0, the singular values of A
satisfy

p
n (1� ✏)  �k  �1 

p
n (1 + ✏) (73)
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Figure 9: Singular values of n ⇥ k matrices with iid standard Gaussian entries for di↵erent

values of k and n.

with probability at least 1� 1/k as long as

n >
64k

✏2
log

12

✏
. (74)

By Theorem 2.7 in Lecture Notes 2, the bounds on the singular values are equivalent to
the following bounds

p
n (1� ✏) < ||A~v||2 <

p
n (1 + ✏) (75)

where ~v is any vector in the k-dimensional sphere S
k�1, which contains the unit-`2-norm

vectors in Rk. This set has infinite cardinality, so we cannot apply the union bound to
establish the bounds as in the proof of the Johnson-Lindenstrauss lemma. To overcome
this obstacle, we consider a set, called an ✏-net, which covers the sphere in the sense that
every other point is not too far from one of its elements. We prove that the bounds hold
on the net using the union bound and then establish that as a result they hold for the
whole sphere.

Definition 3.8 (✏-net). An ✏-net of a set X ✓ Rk
is a subset N✏ ✓ X such that for every

vector ~x 2 X there exists ~y 2 N✏ for which

||~x� ~y||2  ✏. (76)

Figure 10 shows an ✏-net for the two-dimensional sphere S1. The smallest possible number
of points in the ✏-net of a set is called its covering number.

Definition 3.9 (Covering number). The covering number N (X , ✏) of a set X at scale ✏
is the minimal cardinality of an ✏-net of X , or equivalently the minimal number of balls

of radius ✏ with centers in X required to cover X .
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✏

Figure 10: ✏-net for the two-dimensional sphere S
1
, which is just a circle.

The following theorem, proved in Section 5.5 of the appendix, provides a bound for the
covering number of the k-dimensional sphere S

k�1.

Theorem 3.10 (Covering number of a sphere). The covering number of the n-dimensional

sphere S
k�1

at scale ✏ satisfies

N
�
S

k�1, ✏
�


✓
2 + ✏

✏

◆k



✓
3

✏

◆k

. (77)

Let ✏1 := ✏/4 and ✏2 := ✏/2. Consider an ✏1-net N✏1 of Sk�1. We define the event

E~v,✏2 :=
�
n (1� ✏2) ||~v||

2
2  ||A~v||22  n (1 + ✏2) ||~v||

2
2

 
. (78)

By Lemma 3.2 for any fixed ~v 2 Rk P
�
E
c
~v,✏2

�
 2 exp (�n✏2/32), so by the union bound

P
�
[~v2N✏1

E
c
~v,✏2

�


X

~v2N✏1

P
�
E
c
~v,✏2

�
(79)

 |N✏1 |P
�
E
c
~v,✏2

�
(80)

 2

✓
12

✏

◆k

exp

✓
�
n✏2

32

◆
(81)


1

k
if (74) holds. (82)

Now, to finish the proof we need to show that if [~v2N✏1
E
c
~v,✏2

holds then the bound holds
for every element in S

k�1, not only for those in the ✏1-net. For any arbitrary vector
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~x 2 S
k�1 on the sphere there exists a vector in the ✏/4-covering set ~v 2 N (X , ✏1) such

that ||~x� ~v||2  ✏/4. By the triangle inequality this implies

||A~x||2  ||A~v||2 + ||A (~x� ~v)||2 (83)


p
n
⇣
1 +

✏

2

⌘
+ ||A (~x� ~v)||2 assuming [~v2N✏1

E
c
~v,✏2 holds (84)


p
n
⇣
1 +

✏

2

⌘
+ �1 ||~x� ~v||2 by Theorem 2.7 in Lecture Notes 2 (85)


p
n
⇣
1 +

✏

2

⌘
+

�1✏

4
. (86)

By Theorem 2.7 in Lecture Notes 2 �1 is the smallest upper bound on ||A~x||2 for all ~x in
the sphere, so the bound in equation (86) cannot be smaller:

�1 
p
n
⇣
1 +

✏

2

⌘
+

�1✏

4
, (87)

so that

�1 
p
n

✓
1 + ✏/2

1� ✏/4

◆
(88)

=
p
n

✓
1 + ✏�

✏ (1� ✏)

4� ✏

◆
(89)


p
n (1 + ✏) . (90)

The lower bound on �k follows from a similar argument combined with (90). By the
triangle inequality

||A~x||2 � ||A~v||2 � ||A (~x� ~v)||2 (91)

�
p
n
⇣
1�

✏

2

⌘
� ||A (~x� ~v)||2 assuming [~v2N✏1

E
c
~v,✏2 holds (92)

�
p
n
⇣
1�

✏

2

⌘
� �1 ||~x� ~v||2 by Theorem 2.7 in Lecture Notes 2 (93)

�
p
n
⇣
1�

✏

2

⌘
�

✏

4

p
n (1 + ✏) by (90) (94)

=
p
n (1� ✏) . (95)

By Theorem 2.7 in Lecture Notes 2 �k is the largest lower bound on ||A~x||2 for all ~x on
the sphere, so �k �

p
n (1� ✏) as long as [~v2N✏1

E
c
~v,✏2

holds.

4 Randomized singular-value decomposition

4.1 Fast SVD

In this section we describe an algorithm to compute the SVD of a low-rank matrix very
e�ciently assuming that we have access to an orthonormal basis of its column space.
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Figure 11: Sketch of the matrices in Algorithm 4.1.

Algorithm 4.1 (Fast SVD). Given a matrix M 2 Rm⇥n
which is well-approximated as

a k-rank matrix:

1. Find a matrix eU 2 Rm⇥(k+p)
with k + p orthonormal columns that approximately

span the column space of M .

2. Compute W 2 R(k+p)⇥n
defined by W := eUTM .

3. Compute the SVD of W = UWSWV T
W .

4. Output U := (eUUW ):,1:k, S := (SW )1:k,1:k and V := (VW ):,1:k as the SVD of M .

Figure 11 shows the dimensions of the matrices. Computing the SVD ofW has complexity
O (k2n), so overall the complexity of the algorithm is governed by the second step which
has complexity O (kmn). This is a dramatic reduction from O (mnmin {m,n}).

The following lemma establishes that the algorithm works in the idealized situation where
the matrix is exactly low rank and we have access to an orthonormal basis of its column
space.

Lemma 4.2. Algorithm 4.1 outputs the SVD of a matrix M 2 Rm⇥n
as long as M is

rank k and eU spans its column space.

Proof. If eU spans the column space of M then

M = eU eUTM (96)

= eUW (97)

= eUUWSWV T
W , (98)
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where U := eUUW is an m⇥ k matrix with orthonormal columns since

UTU = UT
W
eUT eUUW (99)

= UT
WUW (100)

= I, (101)

SW 2 Rk⇥k is a diagonal matrix with nonnegative entries and VW 2 Rn⇥k has orthonormal
columns. We conclude that the output of Algorithm 4.1 is a valid SVD of M .

The following sections describe two methods for estimating the column space based on ran-
domization (i.e., step 1 of Algorithm 4.1). In practice, most matrices of interest will only
be approximately low rank. In that case, the performance of the column-approximation
algorithms depends on the gap between the k first singular values and the k + 1th. To
enhance the performance, a popular preprocessing procedure is to use power iterations to
increase the gap. Instead of M , the idea is to apply Step 1 of Algorithm 4.1 to

fM :=
�
MMT

�q
M, (102)

for a small integer q. Expressing M in terms of its SVD, we have

fM =
�
UMS2

MUT
M

�q
UMSMV T

M (103)

= UMS2q+1
M V T

M . (104)

fM has the same singular vectors as M but its singular values are raised to the power of
2q + 1, so the gap between small and large singular values is amplified. The idea is very
similar to the power method for computing eigenvectors (Algorithm 4.4 in Lecture Notes
2). More details on the power iterations will be given in the next two subsections.

4.2 Randomized column-space approximation

Random projections make it possible to estimate the column space of a low-rank matrix
very e�ciently. Here we just outline the method and provide some intuition. We refer
to [4, 5] for a more detailed description and theoretical guarantees.

Algorithm 4.3 (Randomized column-space approximation). Given a matrix M 2 Rm⇥n

which is well-approximated as a k-rank matrix:

1. Create an n ⇥ (k + p) iid standard Gaussian matrix A, where p is a small integer

(e.g. 5).

2. Compute the m⇥ (k + p) matrix B = MA.

3. Compute an orthonormal basis for col(B) and output them as a matrix eU 2 Rm⇥(k+p)
.
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Figure 12: Four randomly selected frames from the video in Example 4.7.

Consider the matrix

B = MA (105)

= UMSMV T
MA (106)

= UMSMC. (107)

If M is exactly low rank, by Theorem 2.3 C is a k⇥ (k + p) iid standard Gaussian matrix
since V T

MVM = I. In that case the column space of B is the same as that of M because
C is full rank with high probability. When M is only approximately low rank, then C
is a min {m,n} ⇥ (k + p) iid standard Gaussian matrix. Surprisingly, for p equal to a
small integer, the product with C conserves the subspace corresponding to the largest k
singular values with high probability, as long as the k + 1th singular values is su�ciently
small. See the seminal paper [4] for more details.

We can improve the accuracy of Algorithm 4.3 by using power iterations as detailed below.

Algorithm 4.4 (Power Iterations for Randomized column-space approximation). Given

a matrix M 2 Rm⇥n
which is well-approximated as a k-rank matrix:

1. Create an n ⇥ (k + p) iid standard Gaussian matrix A, where p is a small integer

(e.g. 5).

2. Compute the m⇥ (k + p) matrix B = MA and let eU0 denote the matrix formed by

orthonormalizing the columns of B.

3. For i from 1 to q (inclusive) :

(a) Let eFi be formed by orthonormalizing the columns of MT eUi�1.

(b) Let eUi be formed by orthonormalizing the columns of M eFi.

4. Output eUq.

Example 4.5 (Randomized SVD of a video). In this example we consider a data set
that consists of a video with 160 1080⇥ 1920 frames. Four sample frames are show in 12.
We interpret each frame as a vector in R20,736,000. The matrix obtained by stacking these
vectors as columns is approximately low rank due to the correlation between the frames,
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Figure 13: Singular values of the 160⇥ 20, 736, 000 matrix in Example 4.7.

as can be seen in Figure 13. Computing the SVD of this matrix takes 12 seconds on
our machine. Applying Algorithm 4.1 combined with Algorithm 4.4 we obtain a rank-10
approximation in 5.8 seconds. If we consider a larger video with 691 frames, computing
the SVD takes 281.1 seconds, whereas the randomized algorithm only takes 10.4 seconds.
Figure 14 shows a comparison between the true left singular values and the estimate
produced by the randomized algorithm, using power iterations with parameter q = 2 and
setting p = 7 in Algorithm 4.4. 4

4.3 Random column selection

An alternative procedure for estimating the column space of a low-rank matrix is to
randomly select a subset of columns and obtain an orthonormal basis from them.

Algorithm 4.6 (Randomized column-space approximation). Given a matrix M 2 Rm⇥n

which is well-approximated as a k-rank matrix:

1. Select a random subset of column indices I := {i1, i2, . . . , ik0} with k0
� k.

2. Compute an orthonormal basis for the columns of the submatrix corresponding to

I:
MI :=

⇥
M:,i1 M:,i2 · · · M:,ik0

⇤
(108)

and output them as a matrix eU 2 Rm⇥k0
.

The random submatrix MI can be expressed in terms of the left singular vectors and
singular values of M , and a submatrix of the right-singular-vector matrix,

MI = UMSM (VM)I . (109)
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Figure 14: First 10 singular values of the 160⇥20, 736, 000 matrix in Example 4.7 and their esti-

mate using Algorithm 4.1 combined with Algorithm 4.4 and Algorithm 4.6 with power iteration.

The estimates are almost perfect.

~u1 ~u2 ~u3 ~u4

True singular

vectors

Estimated

singular

vectors

Figure 15: The first 4 left singular vectors of the movie computed using the standard SVD

algorithm, and the randomized Algorithm 4.4.
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In order for the algorithm to capture the column space of M , we need (VM)I to be full
rank (and ideally to not have very small singular values). Moreover, if the matrix is only
approximately low rank, we need the right singular vectors corresponding to large singular
values to be spread out so that they are not missed when we subsample. Let us illustrate
this with a simple example. Consider the rank-2 matrix

M :=

2

664

�3 2 2 2
3 2 2 2
�3 2 2 2
3 2 2 2

3

775 (110)

and its SVD

M = UM SMV T
M =

2

664

0.5 �0.5
0.5 0.5
0.5 �0.5
0.5 0.5

3

775


6.9282 0

0 6

� 
0 0.577 0.577 0.577
1 0 0 0

�
(111)

(112)

Any submatrix of columns that do not include the first one will have a column space that
only consists of the first left singular vector. For example if I = {2, 3}

MI =

2

664

2 2
2 2
2 2
2 2

3

775 =

2

664

0.5
0.5
0.5
0.5

3

775 6.9282
⇥
0.577 0.577

⇤
. (113)

Column subsampling tends to ignore left singular vectors corresponding to sparse (or ap-
proximately sparse) right singular vectors. Depending on the application, this may not be
a disadvantage: sparse right singular vectors arise due to columns in M that are almost
orthogonal to every other column and can consequently be interpreted as outliers. In
contrast, column subsampling preserves the part of the column space corresponding to
spread-out right singular vectors with high probability (see [2] for a theoretical character-
ization of this phenomenon).

To use power iteration with column subsampling, define B := eU obtained from 4.6, and
apply steps 3,4 from Algorithm 4.4. Although power iteration can be helpful, it will not
alleviate the issue with sparse columns described above.

Example 4.7 (Randomized SVD of a video using subset of columns). In this example we
consider the same data set as in Example 4.7. We estimate a rank-10 approximation of
the 160⇥ 20, 736, 000 matrix by randomly selecting k0 = 17 columns as in Algorithm 4.6
and then applying Algorithm 4.1. The running time is 5.2 seconds, even faster than if we
use Algorithm 4.1. Figure 14 shows a comparison between the true left singular values
and the estimate produced by the randomized algorithm, using power iterations with
parameter q = 2. In Figure 16 we show the top 4 estimated singular vectors compared
to the true ones. The approximation is very precise, indicating that the first 10 right
singular vectors of the matrix are not sparse or approximately sparse. 4
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Figure 16: The first 4 left singular vectors of the movie computed using the standard SVD

algorithm, and the randomized Algorithm 4.6.

5 Proofs

5.1 Proof of Theorem 2.6

Consider the indicator variable 1x�a. We have

x� a 1x�a � 0. (114)

In particular its expectation is nonnegative (as it is the sum or integral of a nonnegative
quantity over the positive real line). By linearity of expectation and the fact that 1x�a is
a Bernoulli random variable with expectation P (x � a) we have

E (x) � aE (1x�a) = aP (x � a) . (115)

5.2 Proof of Lemma 2.8

E
�
exp

�
tx2

��
=

1
p
2⇡

Z 1

�1
exp

✓
�
u2

2

◆
exp

�
tu2

�
du (116)

=
1

p
2⇡

Z 1

�1
exp

✓
�
(1� 2t) u2

2

◆
du finite for 1� 2t > 0 (117)

=
1p

2⇡ (1� 2t)

Z 1

�1
exp

✓
�
v2

2

◆
dv change of variables v = (2� t) u

=
1

p
1� 2t

. (118)
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5.3 Proof of (35)

A very similar argument to the one that yields (39) gives

P (y < a0) = P (exp (�t0y) > exp (�a0t0)) (119)

 exp (a0t0)
kY

i=1

E
�
exp

�
�t0xi

2
��

. (120)

Setting t0 = t in (41), we have

E
�
exp

�
�t0x2

��
=

1
p
1 + 2t0

. (121)

This implies

P (y < a0) 
exp (a0t0)

(1 + 2t0)
k
2

. (122)

Setting

t0 := �
1

2
+

1

2 (1� ✏)
, (123)

a0 := k (1� ✏) (124)

we have

P (y < k (1� ✏))  (1� ✏)
k
2 exp

✓
k✏

2

◆
(125)

= exp

✓
�
k

2
(�✏� log (1� ✏))

◆
. (126)

The function h (x) := �x� x2

2 � log (1� x) is nonnegative between 0 and 1 (the derivative
is nonnegative and g (0) = 0). We conclude that

P (y < k (1� ✏))  exp

✓
�
k✏2

2

◆
(127)

 exp

✓
�
k✏2

8

◆
. (128)

5.4 Proof of Theorem 3.4

Let us define the sets:

S̃i = Si \ \
i�1
j=1S

c
j . (129)
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✏/2

1 + ✏/2

Figure 17: Sketch of the proof of Theorem 3.10 in two dimensions. B
k
1+✏/2

⇣
~0
⌘
is the big red

circle. The smaller shaded circles correspond to B
k
✏/2 (~x) for each ~x in the ✏-net.

It is straightforward to show by induction that [n
j=1Sj = [

n
j=1S̃j for any n, so [iSi = [iS̃i.

The sets S̃1, S̃2, . . . are disjoint by construction, so

P ([iSi) = P
⇣
[iS̃i

⌘
=
X

i

P
⇣
S̃i

⌘
(130)



X

i

P (Si) because S̃i ✓ Si. (131)

5.5 Proof of Theorem 3.10

We construct an ✏-covering set N✏ ✓ S
k�1 recursively:

• We initialize N✏ to the empty set.

• We choose a point ~x 2 S
k�1 such that ||~x� ~y||2 > ✏ for any ~y 2 N✏. We add ~x to

N✏ until there are no points in S
k�1 that are ✏ away from any point in N✏.

This algorithm necessarily ends in a finite number of steps because the n-dimensional
sphere is compact (otherwise we would have an infinite sequence such that no subsequence
converges).

Now, let us consider the balls of radius ✏/2 centered at each of the points in N✏. These
balls do not intersect since their centers are at least ✏ apart and they are all inside the
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ball of radius 1 + ✏/2 centered at the origin ~0 because N✏ ✓ S
k�1. This means that

Vol
⇣
B

k
1+✏/2

⇣
~0
⌘⌘

� Vol
�
[~x2N✏B

k
✏/2 (~x)

�
(132)

= |N✏|Vol
⇣
B

k
✏/2

⇣
~0
⌘⌘

(133)

where B
k
r (~x) is the ball of radius r centered at ~x. By multivariable calculus

Vol
⇣
B

k
r

⇣
~0
⌘⌘

= rk Vol
⇣
B

k
1

⇣
~0
⌘⌘

, (134)

so (132) implies

(1 + ✏/2)k � |N✏| (✏/2)
k . (135)
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Optimization-based data analysis Fall 2017

Lecture Notes 4: The Frequency Domain

1 Fourier representations

1.1 Complex exponentials

The complex exponential or complex sinusoids is a complex-valued function. Its real part is a
cosine and its imaginary part is a sine.

Definition 1.1 (Complex sinusoid).

exp (ix) := cos (x) + i sin (x) . (1)

The argument x of a complex sinusoid is known as its phase. For any value of the phase, the
magnitude of the complex exponential is equal to one,

| exp(ix)|2 = cos(x)2 + sin(x)2 = 1. (2)

If we set the phase of a complex sinusoid to equal ft for fixed f , then the sinusoid is periodic with
period 1/f and the parameter f is known as the frequency of the sinusoid.

Definition 1.2 (Frequency). A complex sinusoid with frequency f is of the form

hf (t) := exp (i2⇡ft) . (3)

Lemma 1.3 (Periodicity). The complex exponential hf (t) with frequency f is periodic with period

1/f .

Proof.

hf (t+ 1/f) = exp

✓
i2⇡f

✓
t+

1

f

◆◆
(4)

= exp(i2⇡ft) exp(i2⇡) (5)

= hf (t). (6)

Figure 1 shows a complex sinusoid with frequency 1 together with its real and imaginary parts.

If we consider a unit interval, complex sinusoids with integer frequencies form an orthonormal set.
The choice of interval is arbitrary, since all these sinusoids are periodic with period 1/k for some
integer k and hence also with period one.

1



Figure 1: Complex sinusoid h1 (dark red) plotted between 0 and 10. Its real (green) corresponds to a
cosine function and its imaginary part (blue) to a sine function.

Lemma 1.4. The family of complex sinusoids with integer frequencies

hk (t) := exp (i2⇡kt) , k 2 Z, (7)

is an orthonormal set of functions on the unit interval [�1/2, 1/2].

Proof. Each function has unit L2 norm,

||hk||
2
L2

=

Z 1/2

�1/2

|hk (t)|
2 dt (8)

= 1, (9)

and they are all orthogonal

hhk, hji =

Z 1/2

�1/2

hk (t)hj (t) dt (10)

=

Z 1/2

�1/2

exp (i2⇡ (k � j) t) dt (11)

=
exp (i⇡ (k � j))� exp (�i⇡ (k � j))

i2⇡
(12)

=
cos (⇡ (k � j))� cos (⇡ (k � j))

i2⇡
(13)

= 0. (14)

2



Figure 2: Discrete complex sinusoids ~h[10]2 (left) and ~h
[10]
3 (right) in red along with their real (green) and

imaginary (blue) parts.

Complex sinusoids on the unit interval can be discretized by sampling their values at n equispaced
points. This yields a family of discrete complex sinusoids.

Definition 1.5 (Discrete complex exponential). The discrete complex sinusoid ~h
[n]
k 2 Cn

with

integer frequency k is defined as

~h
[n]
k [j] := exp

✓
i2⇡kj

n

◆
, 0  j, k  n� 1 (15)

The discrete complex sinusoid is periodic in j with period n/k and in k with period n/j. In
particular, they are also periodic with period n, so we only consider values in an interval of length
n. Here we have fixed the interval to be from 0 to n� 1 but this is arbitrary. Figure 2 shows ~h[10]

2

and ~h
[10]
3 along with their real and imaginary parts

Discrete complex sinusoids form an orthonormal basis of Cn if we scale them by 1/
p
n.

Lemma 1.6 (Orthonormal sinusoidal basis). The discrete complex exponentials
1p
n
~h
[n]
0 , . . . ,

1p
n
~h
[n]
n�1

form an orthonormal basis of Cn
.

Proof. Each vector has `2 norm equal to
p
n,

���
���~h[n]

k

���
���
2

2
=

n�1X

j=0

���~h[n]
k [j]

���
2

(16)

=
n�1X

j=0

1 (17)

= n, (18)
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and they are all orthogonal

D
~h
[n]
k ,~h

[n]
l

E
=

n�1X

j=0

~h
[n]
k [j]~h[n]

l [j] (19)

=
n�1X

j=0

exp

✓
i2⇡ (k � l) j

n

◆
(20)

=
1� exp

⇣
i2⇡(k�l)n

n

⌘

1� exp
⇣

i2⇡(k�l)
n

⌘ (21)

= 0. (22)

Since there are n vectors in the set and they are linearly independent, they form a basis of Cn.

1.2 Fourier series

The Fourier series of a function defined in the unit interval is the projection of the function onto
the span of the complex sinusoids with integer frequencies, which are orthonormal by Lemma 1.4.

Definition 1.7 (Fourier series). The partial Fourier series of order N of a function f 2 L2 [�1/2, 1/2]
is defined as

SN {f} :=
NX

i=�N

F [k]hk, (23)

F [k] := hf, hki . (24)

The Fourier series of a function f 2 L2 [�1/2, 1/2] is defined as

S {f} :=
1X

i=�1

F [k]hk, (25)

F [k] := hf, hki . (26)

For real functions, the Fourier series is a projection onto an orthonormal basis of cosine and sine
functions (we omit the proof that these functions are orthogonal, which is very similar to the proof
of Lemma 1.4).

Lemma 1.8. For a real function f 2 L2 [�1/2, 1/2] we have

S {f} =
1X

i=0

ak cos (2⇡kt) + bk sin (2⇡kt) , (27)

ak := 2 hf, cos (2⇡kt)i , (28)

bk := 2 hf, sin (2⇡kt)i . (29)
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1 2 3

�1/2 1/2

�1/2 1/2 �1/2 1/2

5 10 15

�1/2 1/2 �1/2 1/2 �1/2 1/2

Figure 3: Partial Fourier series (blue) of the Gaussian function in Figure 5 restricted to the unit interval.
The complex sinusoids used to produce the approximation are shown in green.
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�1/2 1/2

�
1

2kc+1
1

2kc+1

2kc + 1

�kc kc

Figure 4: Dirichlet kernel with cut-o↵ frequency kc (left) and corresponding Fourier coe�cients (right).

Figure 3 shows the nth-order partial Fourier series of a Gaussian function restricted to the unit
interval for di↵erent values of n. As n increases, the approximation obtained by projecting the
function onto the span of the complex sinusoids improves. Remarkably, if the function is integrable,
the approximation eventually converges to the function. We omit the proof of this result, which
is beyond the scope of these notes.

Theorem 1.9 (Convergence of Fourier series). For any function f 2 L2 [�1/2, 1/2]

lim
N!1

||f � SN {f}||L2
= 0. (30)

In addition, if f is continuously di↵erentiable, the convergence is uniform and hence also pointwise,

so that

lim
N!1

SN {f} (t) = f (t) , for any t. (31)

By Theorem 1.9 we can represent any square-integrable function defined on an interval by using
its Fourier coe�cients, which are known as the spectrum of the function. It is worth noting that
one can generalize this representation to functions defined on the whole real line by considering
real-valued frequencies, which yields the Fourier transform. We will not discuss this further in
these notes.

The Dirichlet kernel is an example of a bandlimited function, for which the higher end of the
spectrum is zero, as illustrated in Figure 4.

Definition 1.10 (Dirichlet kernel). The Fourier coe�cients of the Dirichlet kernel with cut-o↵

frequency kc are equal to

D [k] :=

(
1 if |k|  kc

0 otherwise.
(32)

6



�1/2 1/2
0

p
2⇡�

Figure 5: Gaussian function in Example 1.11 and corresponding Fourier coe�cients (right).

The corresponding function is given by

d (t) =
kcX

n=�kc

D [k]hk (t) (33)

=
kcX

n=�kc

e
i2⇡kt (34)

=

(
2kc + 1 if t = 0,
sin((2kc+1)⇡t)

sin(⇡t) otherwise .
(35)

Note that the width of the main lobe of the Dirichlet kernel is inversely proportional to its cut-o↵
frequency, which corresponds to the width of its spectrum. The following example shows that this
is also the case for the Gaussian function.

Example 1.11 (Gaussian). Consider the Gaussian function

g (t) = exp

✓
�
t
2

�2

◆
, (36)

restricted to the interval [�1/2, 1/2]. If � is small with respect to the length of the interval, then

7



we can approximate its spectrum by

G [k] =

Z 1/2

�1/2

exp

✓
�
t
2

�2

◆
exp (�i2⇡kt) dt (37)

=

Z 1/2

1/2

exp

✓
�
t
2

�2

◆
cos 2⇡kt dt because g is even and sin (2⇡kt) is odd (38)

⇡

Z 1

�1
exp

✓
�
t
2

�2

◆
cos 2⇡kt dt if � << 1 (39)

=
p
⇡� exp

�
�⇡

2
�
2
k
2
�
. (40)

The envelope of the Fourier coe�cients is Gaussian with a standard deviation that is proportional
to 1/�, as shown in Figure 5. 4

An important property of the Fourier representation is that shifting a function is equivalent to
scaling its Fourier coe�cients by a factor that only depends on the shift and the corresponding
frequency.

Lemma 1.12 (Time shift). We define the ⌧ -shifted version of a function f 2 L2 [�1/2, 1/2] by

f[⌧ ] (t) := f (t� ⌧) , (41)

where the shift is circular (the function wraps around). For any shift ⌧ we have

F[⌧ ] [k] = exp (�i2⇡k⌧)F [k] . (42)

Proof. We interpret f as a periodic function such that f (t+ 1) = f (t). We have

F[⌧ ] [k] =

Z 1/2

�1/2

f (t� ⌧) exp (�i2⇡kt) dt (43)

=

Z 1/2�⌧

�1/2�⌧

f (u) exp (�i2⇡k (u+ ⌧)) dt (44)

= exp (�i2⇡k⌧)F [k] . (45)

1.3 Sampling Theorem

In this section we consider the problem of estimating a bandlimited signal from samples taken at
regular intervals. Such situations arise when we digitally store or process an analog signal such
as music or speech. Figure 6 shows an example of a bandlimited signal, its spectrum and the
corresponding samples. Two fundamental questions are:

1. What sampling rate is necessary to preserve all the information in the signal?

2. How can we reconstruct the original signal from the samples?

8



Signal Spectrum Samples

Figure 6: Bandlimited signal (left), corresponding spectrum (center) and regular samples (right).

The answer to the first question is given by the Nyquist-Shannon-Kotelnikov sampling theorem.

Theorem 1.13 (Nyquist-Shannon-Kotelnikov sampling theorem). Any bandlimited signal g 2

L2 [0, 1] of the form

g (t) :=
kcX

k=�kc

G [k]hk (t) (46)

can be recovered exactly from n uniformly spaced samples g (0), g (1/n), . . . , g ((n� 1)/n) as long
as the sampling rate fs := n satisfies

fs � 2kc + 1, (47)

which is known as the Nyquist rate.

Proof. To simplify the proof, we assume that n = 2ks + 1 for some integer ks � kc. We denote
the vector of samples by ~gn, which equals

~gn :=

2

6666664

g (0)

g
�
2
n

�

· · ·

g
�
n�1
n

�

3

7777775
=

2

6666664

Pkc
k=�kc

G [k]hk (0)
Pkc

k=�kc
G [k]hk

�
1
n

�

· · ·

Pkc
k=�kc

G [k]hk

�
n�1
n

�

3

7777775
=

kcX

k=�kc

G [k]

2

6666664

hk (0)

hk

�
1
n

�

· · ·

hk

�
n�1
n

�

3

7777775
=

kcX

k=�kc

G [k]~h[n]
k . (48)

Now let us define a vector ~G 2 Cn containing the Fourier coe�cients of g (padded by zeros if
ks � kc),

~G [k] :=

(
G [k] , if |k|  kc,

0, otherwise.
(49)

By equation (48) we have

~gn =
h
~h
[n]
�ks

~h
[n]
�ks+1 · · · ~h

[n]
ks

i
~G (50)

= F ~G. (51)
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Figure 7: Reconstruction via linear inversion is equivalent to interpolation with a Dirichlet kernel.

By Lemma 1.6 the matrix F has orthogonal columns, so that we can recover ~G and hence g from
~gn.

To recover the signal we can build its Fourier series from its Fourier series obtained by inverting
the system of equations given by (51). Interestingly, this is exactly equivalent to interpolating the
samples with shifted Dirichlet kernels, as sketched in Figure 7.

Theorem 1.14 (Dirichlet-kernel interpolation). Let n := 2ks + 1 for some integer ks. As long as

ks � kc, a bandlimited function of the form (46) is equal to

g (t) =
1

n

n�1X

j=0

g (j/n) d[j/n] (t) (52)

where d is a Dirichlet kernel (see Definition 1.10) with cut-o↵ frequency ks.

Proof. Let us define the vector

~at :=
⇥
exp (�i2⇡kst) exp (�i2⇡(ks � 1)t) · · · exp (i2⇡kst)

⇤T
, (53)

such that the adjoint of the matrix F in (51) can be expressed as

F
⇤ =

⇥
~a0 ~a1/n · · · ~a(n�1)/n

⇤
. (54)

F scaled by 1/
p
n is orthogonal, so

~G = F
⇤
~gn (55)

=
1

n

n�1X

j=0

g (j/n)~aj/n. (56)
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Now, we express g and the Dirichlet kernel in terms of ~at,

g (t) =
1

n

kcX

k=�kc

G [k] e�i2⇡kt (57)

=
1

n
~a

⇤
t
~G, (58)

d[⌧ ] (t) =
kcX

k=�kc

e
�i2⇡k(t�⌧) (59)

= ~a
⇤
t ~a⌧ . (60)

We conclude

g (t) =
1

n
~a

⇤
t
~G by (58) (61)

=
1

n

nX

j=0

g (j/n)~a ⇤
t ~aj/n by (56) (62)

=
1

n

nX

j=0

g (j/n) d[j/n] (t) by (60). (63)

Finally, another interesting question is what occurs when the cut-o↵ frequency of the function
we are sampling kc is too large with respect to the sampling rate kc > ks so that we violate the
sampling-rate condition (47). The following example illustrates this.

Example 1.15 (Aliasing). We consider a function

g (t) :=
kc+1X

k=�kc

G [k]hk (t) . (64)

with cut-o↵ frequency kc + 1 defined on the unit interval. We have set G [�kc � 1] to simplify
notation. Imagine that we underestimate its cut-o↵ frequency and sample it at a rate ks := kc/2
instead of kc+1, gathering n := 2ks+1 = kc+1 samples. Let us define ~G as the vector containing
the Fourier coe�cients of g. By (48) we have

~gn =
h
~h
[n]
�kc

· · · ~h
[n]
0

~h
[n]
1 · · · ~h

[n]
kc+1

i
~G (65)

=
h
~h
[n]
�2ks

· · · ~h
[n]
0

~h
[n]
1 · · · ~h

[n]
2ks+1

i
~G (66)

=
h
~h
[n]
1 · · · ~h

[n]
n

~h
[n]
1 · · · ~h

[n]
n

i
~G (67)

=
h
eF eF

i  ~G1

~G2

�
, (68)

since for any k ~h
[n]
k = ~h

[n]
k+n by periodicity of the discrete complex sinusoids. Note that we have

separated ~G1 into its first and second half. Now we have a problem because
h
eF eF

i
is clearly not

invertible!
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Compare this to the situation where n = 2kc + 1. As we showed in the proof of Theorem 1.13
(with a di↵erent choice of indices that doesn’t a↵ect the result) in that case

~G =
1

n

eF ⇤
~gn, (69)

since eF has orthogonal columns by Lemma 1.6.

What happens if we assume that this holds even if it doesn’t and we try to obtain ~G from ~gn in
the same way? Then aliasing occurs:

~Galiased =
1

n

eF ⇤
~gn (70)

=
1

n

eF ⇤
h
eF eF

i  ~G1

~G2

�
(71)

= ~G1 + ~G2. (72)

The recovered spectrum is scrambled. We recover a function with cut-o↵ frequency kc with a
spectrum that equals the sum of the spectrum of g and a copy that is shifted by kc. 4

1.4 Discrete Fourier transform

By Lemma 1.6 the discrete complex sinusoids 1p
n
~h
[n]
0 , . . . , 1p

n
~h
[n]
n�1 form an orthonormal basis of Cn.

This means that we can express any vector in terms of its coe�cients in this representation. The
discrete Fourier transform (DFT), which extracts these coe�cients, is consequently the discrete
counterpart of the Fourier series.

Definition 1.16 (Discrete Fourier transform). The discrete Fourier transform (DFT) of a vector

~x 2 Cn
are given by

~X [k] :=
D
~x,~h

[n]
k

E
, 0  k  n� 1. (73)

Equivalently,

~X = W~x (74)

where W
⇤ :=

h
~h
[n]
0

~h
[n]
1 · · · ~h

[n]
n�1

i⇤
. W is known as the DFT matrix.

Recovering a vector from its DFT coe�cients only requires inverting the linear transformation.

Lemma 1.17. If ~X contains the DFT coe�cients of ~x 2 Cn
, then

~x =
1

n

n�1X

k=0

~X [k]~h[n]
k (75)

=
1

n
F

⇤ ~X. (76)
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Proof. By Lemma 1.6 1p
nF is an orthogonal matrix, so

F
⇤ ~X = F

⇤
F~x (77)

= ~x. (78)

As in the case of the Fourier series, the DFT coe�cients of a shifted vector can be computed by
scaling linearly the DFT coe�cients of the original vector.

Lemma 1.18 (Discrete time shift). We define the m-shifted version of a vector ~x 2 Cn
by

~x[m] [j] := ~x (j �m) , (79)

where the shift is circular, so that ~x (j + n) = ~x (j). For any shift m we have

~X[m] [k] = exp (�i2⇡km) ~X [k] . (80)

Proof.

~X[m] [k] =
n�1X

j=0

~x[⌧ ] [j] exp (�i2⇡kj) (81)

=
n�1�mX

l=�m

~x [l] exp (�i2⇡k (l +m)) (82)

= exp (�i2⇡km) ~X [k] . (83)

Remark 1.19 (Connection between the Fourier series and the DFT). If ~x corresponds to samples

from a bandlimited function, as in Theorem 1.13, which are measured at the Nyquist rate, then the

DFT coe�cients of ~x are equal to the Fourier series coe�cients of the continuous function. This

follows from (51), since if we re-index the columns adequately (recall that ~h
[n]
k+n = ~h

[n]
k for any k)

we have W = F
⇤
. The DFT, combined with the sampling period, consequently makes it possible

to compute the spectrum of continuous signals in practice!

Figure 8 shows the DFT of an electrocardiogram signal. Its frequency representation makes it
possible to locate and remove interference caused by the power-line system.

The DFT of a signal of length n can be obtained with complexity O (n log n) by applying the fast-
Fourier transform (FFT) algorithm described below. It is di�cult to overstate the importance of
this method, which makes it extremely e�cient to compute the DFT. The algorithm relies on the
following lemma, which you will prove in the homework.

Lemma 1.20. Let W
[n]

denote the n ⇥ n DFT matrix and assume that n is even. Then for

k < n/2

W
[n]
~x [k] = W

[n/2]
~xeven [k] + exp

✓
�
i2⇡k

n

◆
W

[n/2]
~xodd [k] , (84)

W
[n]
~x [k + n/2] = W

[n/2]
~xeven [k]� exp

✓
�
i2⇡k

n

◆
W

[n/2]
~xodd [k] . (85)
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Data Spectrum

Low-pass component High-pass component (zoomed)

Figure 8: Electrocardiogram data (top left), along with its spectrum (top right). We separate the
spectrum into a low-pass (blue) and a high-pass (red) region. The low-pass region corresponds to the
signal of interest (bottom left), whereas the high-pass component corresponds to power-line interference
(bottom right).
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~w0 ~w1 ~w2 ~w3 ~w4 ~w5 ~w6 ~w7

~x[0]

~x[1]

~x[2]

~x[3]

~x[4]

~x[5]

~x[6]

~x[7]

~X [0]
~X [1]
~X [2]
~X [3]

~X [4]
~X [5]
~X [6]
~X [7]

=

Figure 9: W
(8) can be decomposed into even columns (blue) and odd columns (green). As we will see,

it is also useful to distinguish the top half (dark) from the bottom half (light).

Algorithm 1.21 (Fast Fourier transform). If n = 1, then set W
1
~x := ~x. Otherwise apply the

following steps:

1. Compute W
[n/2]

~xeven.

2. Compute W
[n/2]

~xodd.

3. For k = 1, 2, . . . , n/2 set

W
[n]
~x [k] := W

[n/2]
~xeven [k] + exp

✓
�
i2⇡k

n

◆
W

[n/2]
~xodd [k] , (86)

W
[n]
~xk+n/2 := W

[n/2]
~xeven [k]� exp

✓
�
i2⇡k

n

◆
W

[n/2]
~xodd [k] . (87)

In Figures 9 ,10, 11, 12 we visually depict the FFT algorithm for n = 8. Figure 13 shows the
recursion tree, which illustrates why the runtime is O(n lg n).

The DFT can be extended to two dimensions by considering two-dimensional sinusoidal atoms
obtained by taking the outer product of the one-dimensional discrete complex sinusoids of di↵erent
frequencies.

Definition 1.22 (Two-dimensional DFT). The 2D DFT cM of a matrix M 2 Cn⇥n
is given by

cM [k] :=
D
M,~h

2D
k1,k2

E
, 0  k1, k2  n� 1, (88)
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~w0 ~w2 ~w4 ~w6 = ~w1 ~w3 ~w5 ~w7

e
�2⇡i(0)/8

e
�2⇡i(1)/8

e
�2⇡i(2)/8

e
�2⇡i(3)/8

e
�2⇡i(4)/8

e
�2⇡i(5)/8

e
�2⇡i(6)/8

e
�2⇡i(7)/8

Figure 10: The odd columns of W (8) can be calculated from the evens by scaling the rows.

=

Figure 11: The bottom and top half of the even columns are the same. Both are a DFT matrix of size
4 = n/2.

x[0]
x[2]
x[4]
x[6]

+

e
�2⇡i(0)/8

e
�2⇡i(1)/8

e
�2⇡i(2)/8

e
�2⇡i(3)/8

x[1]
x[3]
x[5]
x[7]

~x[0]
~x[2]
~x[4]
~x[6]

+

e
�2⇡i(4)/8

e
�2⇡i(5)/8

e
�2⇡i(6)/8

e
�2⇡i(7)/8

~x[1]
~x[3]
~x[5]
~x[7]

~X [0]
~X [1]
~X [2]
~X [3]

=

~X [4]
~X [5]
~X [6]
~X [7]

=

Figure 12: The n = 8 FFT calculation represented using only the dark blue portion of the matrix. The
reduces the n = 8 FFT to two calls ot the n = 4 FFT and then O(n) work to combine the results.
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DFT2n

DFT2n�1 DFT2n�1

DFT2n�2 DFT2n�2 DFT2n�2 DFT2n�2

DFT2n�3 DFT2n�3 DFT2n�3 DFT2n�3 DFT2n�3 DFT2n�3 DFT2n�3 DFT2n�3

Figure 13: The recursion tree for the FFT.
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Log. of magnitude of 2D DFT

Figure 14: The logarithm of the magnitudes of the 2D DFT coe�cients of the image on the left are
shown on the right.

where

~h
2D
k1,k2 :=

~h
[n]
k1

⇣
~h
[n]
k2

⌘T
(89)

=

2

6666664

1 e
i2⇡k2

n · · · e
i2⇡k2(n�1)

n

e
i2⇡k1

n e
i2⇡(k1+k2)

n · · · e
i2⇡(k1+k2(n�1))

n

· · ·

e
i2⇡k1(n�1)

n e
i2⇡(k1(n�1)+k2)

n · · · e
i2⇡(k1(n�1)+k2(n�1))

n

3

7777775
. (90)

Equivalently,

cM = WMW, (91)

where W :=
h
~h
[n]
0

~h
[n]
1 · · · ~h

[n]
n�1

i⇤
is the 1D DFT matrix.

Figure 14 shows an image along with the magnitudes of its 2D DFT coe�cients. As is often
the case for natural images, most of the energy is concentrated in the lower end of the spectrum.
Figure 15 shows the result of projecting di↵erent components of the spectrum of the image (see the
right image of Figure 14) onto the image domain. The low-pass component captures low-resolution
variations, the band-pass component higher-resolution details and the high-pass component high-
frequency fluctuations.

1.5 Compression

The discrete cosine transform (DCT) is a variant of the discrete Fourier transform for real discrete
signals. The DCT is obtained from the DFT by assuming that the signal is symmetric (but
only one half is observed). In that case the DFT components correspond to discrete cosines (the
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Low-pass component Band-pass component High-pass component

Figure 15: Image corresponding to the low-pass (left), band-pass (center) and high-pass (right) compo-
nents of the image in Figure 14. The corresponding regions of the spectrum are shown in Figure 14.
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Figure 16: 8⇥ 8 DCT basis vectors.
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1 5 15 30 50

Figure 17: Result of projecting each 64-pixel patch from the natural image in Figure 14 onto the lowest
1, 5, 15, 30 and 50 2D DCT basis functions.

Figure 18: Average magnitudes of each 2D DCT coe�cient in a database of patches extracted from
natural images.

coe�cients corresponding to the sines are zero due to symmetry). The two-dimensional DCT is a
very important tool in image processing. Figure 16 shows the basis vectors of the 8⇥ 8 2D DCT.

One of the main reasons that the 2D DCT is so useful is that the energy of natural images are
highly concentrated in their low-frequency components. Figure 18 shows the average magnitudes
of each 2D DCT coe�cient in a database of patches extracted from natural images. Figure 17
shows the result of dividing the image into 64-pixel patches and projecting it onto the span of the
low-frequency DCT basis functions. Ignoring some of the high-frequency components is almost
imperceptible. This is the main insight behind the JPEG method for lossy compression of digital
images. JPEG divides the image in 8⇥ 8 patches and then quantizes each band di↵erently, using
more bits for lower-frequency bands where di↵erences are more apparent.

Algorithm 1.23 (JPEG compression (for grayscale images)). 1. Choose a quality setting Q 2

(0, 100).

2. Divide image into a collection of 8⇥ 8 pixel patches.
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M =

2

66666666664

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

3

77777777775

Figure 19: JPEG DCT Quantization Matrix

Figure 20: Natural image compared to the result of quantizing the lowest 16 DCT coe�cients of each
patch, the highest 16 DCT coe�cients of each patch and applying JPEG Compression with Q = 90
(which yields a compression factor of between 4 and 5).

3. Compute the 2D DCT of each patch.

4. Quantize the 2D DCT of each patch separately. Let bP 2 R8⇥8
denote the 2D DCT of a patch

and let M denote the JPEG quantization matrix shown in Figure ??. Set

bP 0
ij = round

 
bPij

S(Q)Mij

!
S(Q)Mij, (92)

where S(Q) is the quality scaling factor:

S(Q) :=

(
100�Q

50 if Q > 50,
50
Q otherwise.

(93)

5. Encode into a file. When viewing, the decoder will compute the inverse 2D DCT of each

quantized patch bP 0
to display the image.

2 Convolution

2.1 Continuous convolution

Convolution between functions is a fundamental operation in signal and image processing.
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f g

1

1 2

1

1

Figure 21: Two functions f and g.

0.5

210.7 2.3

Figure 22: The result of convolving functions f and g from Figure 21.

Definition 2.1 (Convolution). The convolution of two functions f, g 2 L2 [�1/2, 1/2] is defined

as

f ⇤ g (t) :=

Z 1/2

�1/2

f (u) g (t� u) du. (94)

Figures 21, 22 and 23 illustrate the operation with a simple example. To compute the value of
the convolution between two functions at point t, we (1) fix one of them (f (u)), (2) flip and shift
the other by t (g (t� u)) and (3) integrate their product.

Convolution in time (or space) is equivalent to multiplication in frequency. This implies that we
can compute convolutions very e�ciently using the FFT.

Theorem 2.2 (Convolution in time is multiplication in frequency). Let r := f ⇤ g for f, g 2

L2 [�1/2, 1/2]. Then

R [k] = F [k]G [k] . (95)
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f (t) g (0.7� t) f (t) g (2.3� t)

1 20.7�0.3

1

2.31.3 21

1

Figure 23: Position of the two functions in Figure 21 when they are multiplied to compute the value of
their convolution at 0.7 (left) and 2.3 (right).

Proof.

R [k] :=

Z 1/2

�1/2

exp (�i2⇡kt) f ⇤ g (t) dt (96)

=

Z 1/2

�1/2

f (u)

Z 1/2

�1/2

exp (�i2⇡kt) g (t� u) dt du (97)

=

Z 1/2

�1/2

f (u)G [k] exp (�i2⇡ku) dt du by Lemma 1.12 (98)

= F [k]G [k] . (99)

The convolution theorem shows that we can compute convolutions between continuous functions
by just multiplying their Fourier coe�cients. It can also be used to prove the central limit theorem.

Example 2.3 (Sketch of a proof of the central limit theorem). The convolution theorem provides
insight into why the distribution of sums of independent random variables become Gaussian in
the limit.

Theorem 2.4 (Pdf of the sum of two independent random variables). The pdf of z = x+y, where
x and y are independent random variables is equal to the convolution of their respective pdfs fx

and fy,

fz (z) =

Z 1

u=�1
fx (z � u) fy (u) du. (100)

Proof. Note that

Fz(z) = P (x+ y  z) (101)

=

Z 1

y=�1

Z z�y

x=�1
fx,y(x, y) dx dy (102)

=

Z 1

y=�1

Z z

u=�1
fx,y(u� y, y) du dy (u = x+ y) (103)

=

Z z

u=�1

Z 1

y=�1
fx,y(u� y, y) dy du, (104)
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Figure 24: Result of convolving two di↵erent distributions with themselves several times. The shapes
quickly become Gaussian-like.
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where swapping the integrals is justified since the pdfs are nonnegative. Applying independence
shows

fz(z) =

Z 1

y=�1
fx,y(z � y, y) dy =

Z 1

y=�1
fx(z � y)fy(y) dy. (105)

4

Now let us consider a sequence of iid random variables x1, x2, x3, . . . with pdf f . The pdf of their
sum is given by

fP1
j=1 xj

(x) = (f ⇤ f ⇤ · · ·) (x) . (106)

Convolutions have a smoothing e↵ect, which eventually transforms the pmf/pdf into a Gaussian!
We show this numerically in Figure 24 for two very di↵erent distributions: a uniform distribution
and a very irregular one. Both converge to Gaussian-like shapes after just 3 or 4 convolutions.
The central limit theorem makes this precise, establishing that the shape of the pmf or pdf does
indeed become Gaussian asymptotically. 4

2.2 Discrete convolution

Definition 2.5 (Discrete convolution). The circular convolution of two vectors ~x, ~y 2 Cn
is defined

as

~x ⇤ ~y [j] :=
n�1X

m=0

~x [m] ~y [j �m] , 0  j  n� 1, (107)

(108)

where the shifts are circular, so that ~x [j] = ~x [j + n] and ~y [j] = ~y [j + n].

Circular convolution can be expressed as multiplication with a convolution matrix.

Definition 2.6 (Convolution matrix). The convolution matrix corresponding to a vector ~x 2 Cn

contains every possible shift of the entries of ~y in its rows

C~y :=

2

664

~y[0] ~y[n� 1] · · · ~y[2] ~y[1]
~y[1] ~y[0] · · · ~y[3] ~y[2]

· · ·

~y[n� 1] ~y[n� 2] · · · ~y[1] ~y[0]

3

775 . (109)

Matrices with this structure are called circulant matrices. Assuming that the vectors entries are

numbered from 0 to n�1, the convolution between ~y and any other vector ~x 2 Cn
can be expressed

as

~x ⇤ ~y = C~y~x. (110)

Theorem 2.7 (Convolution in time is multiplication in frequency). Let ~r := ~x ⇤ ~y for ~x, ~y 2 Cn
.

Then

~R [k] = ~X [k] ~Y [k] . (111)
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Proof.

R [k] :=
n�1X

j=0

exp (�i2⇡kj)
n�1X

m=0

~x [m] ~y [j �m] (112)

=
n�1X

m=0

~x [m]
n�1X

j=0

exp (�i2⇡kj) ~y [j �m] (113)

=
n�1X

m=0

~x [m] exp (�i2⇡km) ~Y [k] by Lemma 1.18 (114)

= ~X [k] ~Y [k] . (115)

Let ⇤~Y contain the DFT of an arbitrary vector ~y 2 Cn. We can express the convolution of ~y with
any vector ~x 2 Cn as

C~y = ~x ⇤ ~y (116)

=
1

n
W

⇤⇤~Y
~X (117)

=
1

n
W

⇤⇤~YW~x. (118)

This immediately implies that the discrete sinusoids in the columns of the DFT matrix are eigen-
vectors of the convolution matrix.

Corollary 2.8 (Eigendecomposition of circulant matrices). A circulant matrix C~y corresponding

to a vector ~y has an eigendecomposition of the form

C~y =
1

n
W

⇤⇤~YW. (119)

Convolution can be extended to two dimensions by using 2D shifts.

Definition 2.9 (Two-dimensional discrete convolution). The circular convolution of two matrices

M1,M2 2 Cn⇥n
is defined as

M1 ⇤M2 [j, l] :=
n�1X

m=0

n�1X

u=0

M1 [m, u]M2 [j �m, l � u] (120)

where the shifts are circular, so that M1 [j, l] = M1 [j + n, l + n].

In two dimensions, convolution is again equivalent to multiplication in the 2D DFT domain. We
omit the proof, which is similar to the one for the 1D case.

Theorem 2.10 (Convolution in space is multiplication in frequency). Let R := M1 ⇤ M2 for

M1,M2 2 Cn⇥n
. Then

bR [k1, k2] = cM1 [k1, k2]cM2 [k1, k2] . (121)
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X K B

Spectrum

Figure 25: The top row shows a natural image (left), a blurring kernel (center) and the corresponding
blurred image (right). The bottom row shows the magnitudes of the 2D DFT coe�cients of the three
images on a logarithmic scale.

2.3 Wiener deconvolution

In imaging, the resolution of lenses is limited by di↵raction. If the resolution is low with respect to
the number of pixels in the image, this is perceived as blur. A simplified model for a blurred image
B is the convolution of the high-resolution images, which we represent by a matrix X 2 Rn⇥n,
and a convolution kernel K 2 Rn⇥n that depends on the optical system

B = K ⇤X. (122)

In the frequency domain, the 2D DFT of the image equals the product between the DFTs of the
high resolution image and the convolution kernel

bB = bK � bX, (123)

where � denotes the Hadamard or entry-wise product. Figure 25 illustrates this model with an
example. In the frequency domain, we can see how the high-end of the spectrum of the image is
suppressed by the filter. Recovering the high-resolution image from these data is easy. We just
need to invert the action of the kernel,

bXest = bKdec �
bY (124)

where the spectrum of the deconvolution kernel is the inverse of the spectrum of the convolution
kernel

bKdec[k1, k2] :=
1

bKdec[k1, k2]
, 0  k1, k2  n� 1, (125)
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B Kdec Xest

Spectrum

Figure 26: The top row shows a blurred image (left), a deconvolution kernel obtained by inverting the
spectrum of the convolution kernel K in Figure 25 (center) and the corresponding deconvolved image
(right). The bottom row shows the magnitudes of the 2D DFT coe�cients of the three images on a
logarithmic scale.

assuming that it is nonzero everywhere. Figure 26 shows that this scheme works perfectly on our
simulated data. The deconvolution filter amplifies the high-frequency components to undo the
e↵ect of the convolution kernel.

Unfortunately, real data always contain noise. We take this into account by incorporating a noise
term to our model

Bnoisy = K ⇤X + Z, (126)

where Z 2 Rn⇥n represents the noise. Figure 27 shows the noisy data. As opposed to the
image, which has most of its energy concentrated in the low frequencies, the energy in the noise is
distributed uniformly across all the spectrum. This is not surprising, since the noise is iid Gaussian
and the 2D DFT is an orthogonal transformation (up to a constant). By Theorem 2.3 in Lecture
Notes 3, the DFT of the noise is consequently also Gaussian with a unit covariance matrix, so
that the variance of each corresponding frequency coe�cient is the same.

What happens if we apply our deconvolution scheme to the noisy blurred image? The result is
catastrophic, as you can see in Figure 28. The reason is obvious when we look at this in the
frequency domain. The high-end of the spectrum of the noisy blurred image is dominated by
the noise. The deconvolution filter amplifies this high-frequency noise drowning out the actual
image! In order to avoid this e↵ect while deconvolving it is necessary to take into account the
ratio between the noise level and the signal level at each frequency. Wiener filtering is a principled
way of doing this if we can have a prior estimate of the spectral statistics of the signal and the
noise.
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B Z Bnoisy

Spectrum

Figure 27: The top row shows a blurred image (left), additive Gaussian noise (center) and the corre-
sponding noisy blurred image (right). The bottom row shows the magnitudes of the 2D DFT coe�cients
of the three images on a logarithmic scale.

Bnoisy Kdec Xnaive

Spectrum

Figure 28: The top row shows a noisy blurred image (left), a deconvolution kernel obtained by inverting
the spectrum of the convolution kernel K in Figure 25 (center) and the corresponding deconvolved image
(right). The bottom row shows the magnitudes of the 2D DFT coe�cients of the three images on a
logarithmic scale.
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The version of Wiener filtering that we present here makes the assumption that the DFT coef-
ficients of the image and of the noise are uncorrelated. However, the method can be adapted
to the case where the correlations are known. Let us model each DFT coe�cient of the signal
and the noise as random variables with known means and variances. For simplicity, we subtract
their respective means, so that both random variables have zero mean. This makes it possible to
interpret the random variables as vectors in the vector space of zero-mean random variables.

Theorem 2.11 (Vector space of zero-mean random variables). Zero-mean complex-valued random

variables form a vector space with the usual summing and multiplication operations. The zero

vector is the random variable that equals one with probability one.

Proof. If two random variables have zero mean, any linear combination of the variables also has
zero mean because of linearity of expectation.

The covariance between two random variables is a valid inner product in this vector space, which
means that uncorrelated random variables are orthogonal.

Theorem 2.12 (Inner product for zero-mean random variables). The covariance

hx,yi := Cov (x,y) (127)

= E (xy) (128)

is a valid inner product in the vector space of zero-mean random variables. The corresponding

inner-product norm is the variance,

||x||h·,·i = Var (x) (129)

Proof. This follows directly from linearity of expectation and the assumption that all the random
variables are zero-mean. The fact that hx,xi = 0 implies x = 0 with probability one follows from
Chebyshev’s inequality. In more detail, if ||x||h·,·i = 0, for any ✏ > 0

P (|x| > ✏) 
Var (x)

✏2
= 0 (130)

so x with probability one.

The problem of estimating each DFT coe�cient from the measured DFT coe�cients now boils
down to estimating a zero-mean random variable x given a measurement of the form

y = ax+ z (131)

where a represents the value of the DFT coe�cient of the convolution kernel. The following
theorem derives the best linear estimate of x given y assuming that the signal and the noise are
uncorrelated.

Theorem 2.13 (Linear estimation). Let

y = ax+ z (132)
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where a is a known constant and x and z are uncorrelated zero-mean random variables with

variances �
2
x and �

2
z respectively. The linear estimate of x given y

xMMSE := wy (133)

that minimizes the mean square error

E
�
(x� xMMSE)

2� (134)

is given by

xMMSE =
a�

2
xy

|a|2�2
x + �2

z

. (135)

Proof. We need to find the vector x̃ in the span of y that minimizes

||x� x̃||h·,·i =
q

E
�
(x� x̃)2

�
. (136)

By basic linear algebra, this is just the orthogonal projection of y onto x! The projection is given
by

Pspan(y) x =

*
x,

y

||y||h·,·i

+
y

||y||h·,·i
(137)

This implies that

w =
1

||y||h·,·i

*
x,

y

||y||h·,·i

+
(138)

=
hx, ax+ zi

||ax+ z||2h·,·i
(139)

=
a ||x||2h·,·i + a hx, zi

||ax+ z||2h·,·i
(140)

=
a ||x||2h·,·i

|a|2 ||x||2h·,·i + ||z||2h·,·i
by orthogonality and the Pythagorean theorem (141)

=
a�

2
x

|a|2�2
x + �2

z

. (142)

Wiener filtering consists of estimating the statistics of the signal and the noise, and then applying
the best linear estimate at each frequency coe�cient. In this version of the method we assume
that the DFT coe�cients of the signal and noise are all uncorrelated and that the noise has zero
mean.

Algorithm 2.14 (Wiener filtering). Given a noisy blurred image Bnoisy 2 Rn⇥n
and a kernel

K 2 Rn⇥n
, apply the following steps:
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Bnoisy W XW

Spectrum

Figure 29: The top row shows a blurred image (left), the Wiener filter obtained by applying Al-
gorithm 2.14 (center) and the corresponding deconvolved image (right). The bottom row shows the
magnitudes of the 2D DFT coe�cients of the three images on a logarithmic scale.

1. Estimate the variance of each 2D DFT coe�cient of the noise �Z [k1, k2]
2
.

2. Estimate the mean µX [k1, k2] and variance �X [k1, k2]
2
of each 2D DFT coe�cient bX [k1, k2]

of the image using a database of images.

3. Compute the 2D DFT coe�cients of the noisy blurred image bBnoisy and the kernel bK.

4. For 0  k1, k2  n� 1

• Center bBnoisy[k1, k2] by subtracting bK[k1, k2]µX [k1, k2].

• Set

W [k1, k2] :=
bK[k1, k2]�X [k1, k2]

2

| bK[k1, k2]|2�X [k1, k2]
2 + �Z [k1, k2]

2
(143)

XW := µX [k1, k2] +W [k1, k2] bBnoisy [k1, k2] . (144)

5. Compute the inverse 2D DFT of XW .

Figure 29 shows the result of applying Wiener filtering to our running example.
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Signal Data

Figure 30: The goal of spectral super-resolution is to estimate the frequencies of a multisinusoidal signal
like the one on the left from the finite samples shown on the right.

3 Spectral Super-resolution

3.1 The spectral super-resolution problem

The aim of spectral super-resolution is to estimate the components of a multisinusoidal signal from
finite data. This problem arises for example in radar, radio telescopy and other applications where
we want to determine the direction of arrival of a propagating wave using an array of sensors. Here
we will look at a basic version of the problem. Consider a multisinusoidal signal of the form

g (t) :=
sX

j=1

~c [j] exp (�i2⇡fjt) , (145)

which is the weighted sum of s complex sinusoids. The goal of spectral super-resolution is to
estimate the frequencies f1, f2, . . . , fs and the corresponding complex-valued amplitudes ~c [1],
~c [2], . . . , ~c [s] from a finite number of samples of g, as illustrated in Figure 30 (in the figure the
amplitudes are real for ease of visualization). We assume that the frequencies lie in a unit interval,
for example in [�1/2, 1/2] and the samples are measured at integer values from �(n � 1)/2 to
(n� 1)/2 (n is assumed to be odd to simplify the exposition).

One can model the spectrum of g as spikes with amplitudes c1, c2, . . . , cs located at the frequencies
f1, f2, . . . , fs. To make this mathematically precise, we introduce the Dirac measure.

Definition 3.1 (Dirac measure). A Dirac measure �[⌧ ] is a measure associated to a point ⌧ , which

assigns a value of one to sets that contain ⌧ and zero to sets that do not,

Z

S
�[⌧ ] (du) =

(
1 if ⌧ 2 S,

0 otherwise.
(146)

Even though it is often called a Dirac delta function, the Dirac measure is not a function. It can

however be interpreted as a distribution or a generalized function such that for any function h we

have

Z

S
h (u) �[⌧ ] (du) =

(
h (⌧) if ⌧ 2 S,

0 otherwise.
(147)
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Although a rigorous justification is beyond the scope of these notes, one can define the Fourier
series of a distribution and in particular of a Dirac measure. The coe�cients are obtained by
integrating the complex sinusoidal atoms hk, k 2 Z, against the measure. We can now interpret
the spectral super-resolution problem as that of estimating the support of the measure

µg :=
sX

j=1

~c [j]�[fj ] (148)

from a finite subset of Fourier coe�cients
Z 1/2

�1/2

hk (u)µg ( du) =
sX

j=1

~c [j]

Z 1/2

�1/2

hk (u)�[fj ] ( du) (149)

=
sX

j=1

~c [j] exp (�i2⇡kfj) (150)

= g (k) , �
n� 1

2
 k 

n� 1

2
. (151)

In the next section it will become apparent why this is a super-resolution problem.

3.2 The periodogram

In order to estimate the frequencies of g from the available samples, we can compute the truncated
Fourier series of the measure µg. This is known as the periodogram in the signal processing
literature.

Definition 3.2 (Periodogram). The periodogram of a vector of data ~y 2 Cn
is defined as

P~y (u) :=

n�1
2X

k=�n�1
2

~y [k]hk (u) , (152)

where hk is a complex sinusoid with integer frequency k and the entries of the data are numbered

from � (n� 1) /2 to (n� 1) /2 for ease of exposition.

The periodogram can be interpreted as the convolution between a Dirichlet kernel with cut-o↵
frequency (n� 1) /2 and the measure µg.

Lemma 3.3. The periodogram of g (� (n� 1) /2), . . . , g ((n� 1) /2) where g is the multisinusoidal

function defined by equation (145) equals

Pg (u) =
sX

j=1

~c [j]d[fj ] (u) . (153)

Proof. By Definition 1.10 and Lemma 1.12 the Fourier coe�cients of a Dirichlet kernel with cut-o↵
frequency (n� 1)/2 shifted by f are equal to

D[f ] [k] :=

(
exp (�i2⇡kf) if |k|  (n� 1)/2

0 otherwise.
(154)
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This implies that the samples

g (k) =
sX

j=1

~c [j]D[fj ] [k] , �
n� 1

2
 k 

n� 1

2
, (155)

are exactly equal to the Fourier coe�cients of the periodogram, so that

Pg (u) =

n�1
2X

k=�n�1
2

g (k)hk (u) (156)

=
sX

j=1

~c [j]

n�1
2X

k=�n�1
2

D[fj ] [k]hk (u) (157)

=
sX

j=1

~c [j]d[fj ] (u) . (158)

Recall that the width of the main lobe of a Dirichlet kernel is inversely proportional to its cut-o↵
frequency, which in this case equals (n � 1)/2. As we gather more samples, the widths become
narrower and narrower, revealing the location of the frequencies of interest. The resolution at which
we observe the spectrum µg is consequentially tied to the number of data. This is illustrated in
Figure 31.

Computing the periodogram does not solve the super-resolution problem, it just allows to visualize
a lower resolution version of µg. If the frequencies f1, . . . , fs are far apart, the local maxima of
P are a good indication of their location. The problem with this approach is that the side
lobes corresponding to large amplitudes may mask the presence of smaller spikes. As a result,
the periodogram is not very useful if the spikes are not far enough from each other or if their
amplitudes di↵er substantially, even if no noise is present in the data. The image at the center of
Figure 32 illustrates this: detecting some of the lower-amplitude spikes from the periodogram is
impossible.

In order to alleviate the interference caused by the side lobes of the Dirichlet kernel, one can
window the data before computing the periodogram.

Definition 3.4 (Windowed periodogram). Let us define a bandlimited window function w with

Fourier coe�cients W [k] that are only nonzero if |k|  (n� 1)/2. The windowed periodogram of

a vector of data ~y 2 Cn
is defined as

Pw,~y (u) :=

n�1
2X

k=�n�1
2

W [k] g (k)hk (u) . (159)

Following the exact same reasoning as in the proof of Lemma 3.3,

Pw,~y (u) :=
sX

j=1

~c [j]w[fj ] [u] . (160)
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Periodogram Data

�2 0 2 4 6 8 10 12

0 5 10 15 20

0 5 10 15 20 25 30 35 40

0 10 20 30 40 50

Figure 31: Periodogram (left) and corresponding samples (right) for di↵erent numbers of measurements
(increasing downwards). In the limit where n⇥1 the frequencies are completely resolved.
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Data Window function
Windowed data

Signal (magnitude)
Periodogram

Signal (magnitude)
Periodogram

Signal (magnitude)
Windowed periodogram

Signal (magnitude)
Windowed periodogram

Figure 32: Data before (top left) and after applying a window function (top right). No noise is added to
the data. Below we see the periodogram (center) and windowed periodogram (bottom) computed from
the data. The scaling of the periodograms is set so that both the large and small peaks can be seen on
the plot.
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Periodogram Windowed periodogram

� = 1.2
n

� = 2.4
n

Figure 33: Periodogram (left) and windowed periodogram (right) for two signals with identical ampli-
tudes but di↵erent minimum separations.

where w denotes the inverse Fourier transform of the window function. Ideally, w should be as spiky
as possible to make it easier to locate the frequency locations from the windowed periodogram.
However, this is challenging due to the constraint that bw has finite support and hence w is a
low-pass function.

In the image on the top right of Figure 32 we apply a Gaussian window to the data. To be more
precise, we set W to be a truncated Gaussian, so that w is also approximately Gaussian. The
resulting periodogram, shown at the center of Figure 32, has much less spectral leakage from the
largest signal components, due to the fact that the Gaussian window has lower side lobes than
the periodized sinc. However, the latter is spikier at the origin, which allows to better distinguish
neighboring spikes with similar amplitudes. In general, designing an adequate window implies
finding a good tradeo↵ between the width of the main lobe and the height of the side lobes. We
refer the reader to [2] for a detailed account of design considerations and types of window function.

3.3 Prony’s method

Prony’s method solves the spectral super-resolution problem exactly in the absence of noise by
encoding the position of the s frequencies of interest as the zeros of a trigonometric polynomial of
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order s. The following theorem shows that such a polynomial always exists.

Theorem 3.5 (Prony polynomial). Given any set of frequencies f1, f2, . . . , fs in the unit interval,

there exists a nonzero complex polynomial of order s

p (z) :=
sX

k=0

P [k]zk, (161)

which we call a Prony polynomial, such that its s roots are equal to exp (2⇡f1), exp (2⇡f2), . . . ,
exp (2⇡fs).

Proof. Consider the polynomial

p(z) :=
sY

j=1

(1� exp (�i2⇡fj) z) . (162)

If we expand the product, we have

p(z) = 1 +
sX

k=1

P [k] zk (163)

for some P [1], . . . , P [k]. Since p (0) = 1, the polynomial is nonzero and by the fundamental
theorem of algebra it has at most s roots. By construction,

p(exp (i2⇡fj)) = 0 (164)

for 1  j  s, which establishes the result.

If we are able to compute such a polynomial, then finding its roots immediately reveals the
frequencies of interest. Prony’s method consists of building a system of linear equations from the
available data, such that its solution is equal to the coe�cients of the Prony polynomial. The
following theorem shows how to build the system.

Theorem 3.6 (Prony system). Let P [k] denote the kth coe�cient of the Prony polynomial defined

in Theorem 3.5 and let g be the multisinusoidal function defined by equation (145), for any integer

b

sX

l=0

P [l]g[l � b] = 0. (165)
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Proof.

sX

l=0

P [l]g[l � b] =
sX

l=0

P [l]

Z 1/2

�1/2

hl�b (u)µg ( du) by (151) (166)

=

Z 1/2

�1/2

exp (i2⇡bu)
sX

l=0

P [l] exp (�i2⇡lu)µg ( du) (167)

=

Z 1/2

�1/2

exp (i2⇡bu) p (exp (�i2⇡u))µg ( du) (168)

=
sX

j=1

~c[j] exp (i2⇡bfj) p (exp (�i2⇡fj)) (169)

= 0. (170)

Notice that equation (165) only involves samples of g between �b and s � b. Prony’s method
consists of setting up enough such equations in a system so that the solution yields the coe�cients
of the Prony polynomial, which can then be used to estimate the frequencies.

Algorithm 3.7 (Prony’s method). The input is the number of frequencies s that we aim to

estimate and 2s+ 1 uniform samples of multisinusoidal function defined by equation (145).

1. Form the system of equations

2

664

g(1) g(2) · · · g(s)
g(0) g(1) · · · g(s� 1)
· · · · · · · · · · · ·

g(�s+ 2) g(�s+ 3) · · · g(1)

3

775 ~P = �

2

664

g(0)
g(�1)
· · ·

g(�s+ 1)

3

775 , (171)

where ~P 2 Cs
.

2. Solve the system to obtain ~P .

3. Root the polynomial

p (z) := 1 +
sX

k=1

~P [k]zk, (172)

to obtain its s roots z1, . . . , zs.

4. For every root on the unit circle zj = exp (i2⇡⌧) include ⌧ in the set of estimated frequencies.

This procedure is guaranteed to achieve exact recovery of the original signal. This implies that
in a noiseless scenario spectral super-resolution is achieved using only n = 2s + 1 measurements,
which is essentially optimal since we need to estimate 2s free parameters (the s frequencies and
the corresponding amplitudes).
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No noise SNR = 140 dB

Signal (magnitude)
Prony polynomial (magnitude)

Signal (magnitude)
Prony polynomial (magnitude)

Figure 34: Prony polynomial applied on noiseless data (left). The image on the right shows the e↵ect
of adding a very small quantity of noise to the data. The roots of the polynomial no longer coincide with
the frequencies of the original signal. Note that the vertical axis is scaled di↵erently in the two images.

Lemma 3.8. In the absence of noise, Prony’s method recovers the frequencies of a multisinusoidal

function of the form (145) exactly.

Proof. The coe�cients of the polynomial (161) are a feasible solution for the system of equa-
tions (171). In fact, they are the unique solution. To show this we compute the factorization

2

6666664

g(1) g(2) · · · g(s)

g(0) g(1) · · · g(s� 1)

· · ·

g(�s+ 2) g(�s+ 3) · · · g(1)

3

7777775
= (173)

2

6666664

e
�i2⇡f1 e

�i2⇡f2 · · · e
�i2⇡fs

1 1 · · · 1

· · ·

e
�i2⇡(2�s)f1 e

�i2⇡(2�s)f2 · · · e
�i2⇡(2�s)fs

3

7777775

2

6666664

~c [1] 0 · · · 0

0 ~c [2] · · · 0

· · ·

0 0 · · · ~c [s]

3

7777775

2

6666664

1 e
�i2⇡f1 · · · e

�i2⇡(s�1)f1

1 e
�i2⇡f2 · · · e

�i2⇡(s�1)f2

· · ·

1 e
�i2⇡fs · · · e

�i2⇡(s�1)fs

3

7777775
.

The diagonal matrix is full rank as long as all the coe�cients ~c[j] are nonzero, whereas the two
remaining matrices are full rank by the following lemma, proved in Section 4.1 of the appendix.

Lemma 3.9 (Vandermonde matrix). For any distinct set of s nonzero complex numbers z1, z2, . . . , zs
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and any positive integers m1,m2, s such that m2 �m1 + 1 � s the Vandermonde matrix

2

6666666664

z
m1
1 z

m1
2 · · · z

m1
s

z
m1+1
1 z

m1+1
2 · · · z

m1+1
s

z
m1+2
1 z

m1+2
2 · · · z

m1+2
s

· · ·

z
m2
1 z

m2
2 · · · z

m2
s

3

7777777775

(174)

is full rank.

As a result, the matrix in (171) is full rank, so the system of equations has a unique solution equal
to (161). This completes the proof.

Unfortunately, Prony’s method as presented above cannot be applied to real data even if the
signal-to-noise ratio is exceptionally high. The image on the left of Figure 34 shows how the
Prony polynomial allows to super-resolve the spectrum to very high accuracy from noiseless data.
However, on the right we see the result of applying the method to data that have a very small
amount of noise (the ratio between the `2 norm of the noise and the noiseless data is around
10�8!). The roots of the Prony polynomial are perturbed away from the points of the unit circle
that correspond to the true frequencies, so that it is no longer possible to achieve accurate spectral
super-resolution. It is consequently necessary to adapt the method to deal with noisy data if there
is to be any hope of applying it in any realistic scenario. This is the subject of the following
section.

3.4 Subspace methods

In this section we consider the spectral super-resolution problem when noise is added to the data.
First, we will generalize Prony’s method so that it can use more data than just 2s + 1 samples.
Applying Prony’s method is equivalent to finding a nonzero vector in the null space of Y (s+ 1)T ,
where Y (m) is defined for any integer m as the Hankel matrix

Y (m) :=

2

664

~y [0] ~y [1] · · · ~y [n�m]
~y [1] ~y [2] · · · ~y [n�m+ 1]
· · · · · · · · · · · ·

~y [m� 1] ~y [m] · · · ~y [n� 1]

3

775 , (175)

where

~y[k] = g(�k + 1) 0  k  n. (176)

The vector in the null space of Y (s+ 1)T corresponds to the coe�cients of the Prony polynomial,
which we can root to find the frequencies of g.
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In the absence of noise, Y (m) can be decomposed in the following way

Y (m) =
h
~a0:m�1 (f1) ~a0:m�1 (f2) · · · ~a0:m�1 (fs)

i

2

6666664

c1 0 · · · 0

0 c2 · · · 0

· · · · · · · · · · · ·

0 0 · · · cs

3

7777775

2

6666664

~a0:n�m (f1)
T

~a0:n�m (f2)
T

· · ·

~a0:n�m (fs)
T

3

7777775

= A0:m�1 C A
T
0:m, (177)

where for k > 0 we define

~a0:k (u) :=
h
1 exp (�i2⇡u) exp (�i2⇡2u) · · · exp (�i2⇡ku)

iT
, (178)

A0:k :=
h
~a0:k (f1) ~a0:k (f2) · · · ~a0:k (fs)

i
. (179)

This decomposition suggests an alternative way of estimating the spectrum from Y (m): finding
sinusoidal atoms ~a0:m�1(u) that are in the column space of Y (m+ 1). Lemma 3.10 below proves
that the only atoms of this form that belong to the column space of Y (m) are precisely ~a0:m�1 (f1),
~a0:m�1 (f2), . . . , ~a0:m�1 (fs).

In order to apply the same idea in the presence of noise, where

~y[k] = g(�k + 1) + ~z[k] 0  k  n, (180)

for some additive perturbation ~z, we check what atoms are close to the column space of Y (m).
To quantify this we compute the orthogonal complement N of the column space of Y (m) and
construct the pseudospectrum

PN (u) = log
1

|PN (~a0:m�1(u))|
2 , (181)

where PN denotes a projection onto N . If an atom is almost orthogonal to N then PN will have
a very large value at that point.

The following lemma shows that the maxima of the pseudospectrum reveal the frequencies of
interest of the signal in the noiseless case.

Lemma 3.10. Let N be the null space of the empirical covariance matrix ⌃ (m) for m � s. Then

PN (fj) = 1, 1  j  s, (182)

PN (u) < 1, for u /2 {f1, . . . , fs} . (183)

Proof. By (177) the atoms ~a0:m�1(f1), . . . , ~a0:m�1(fs) span the column space of Y (m) and ⌃ (m).
As a result they are orthogonal to the null space N of the empirical covariance matrix, which
proves (182).

We prove (183) by contradiction. The atoms ~a0:m�1 (f1), . . . , ~a0:m�1 (fs) span the orthogonal
complement to N . As a result, if ~a0:m�1(u) is orthogonal to N for some u then ~a0:m�1(u) is in
the span of ~a0:m�1 (f1), . . . , ~a0:m�1 (fs). This would imply that AT

0:m�1 (T [ {u}) is not full rank,
which can only hold if u 2 {f1, . . . , fs} by Lemma 3.9.
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No noise SNR = 140 dB

Figure 35: Pseudospectrum corresponding to the data used to construct the Prony polynomials in
Figure 34. The true frequencies of interest are marked with red circles.

Figure 35 shows the pseudospectrum corresponding to the data used to construct the Prony
polynomials in Figure 34 when n = 2s + 1. In the noiseless case, the pseudospectrum achieves
exact super-resolution. Unfortunately, the locations of the local maxima are severely perturbed
by even a very small amount of noise.

The subspace N is the null space of the empirical covariance matrix

⌃ (m) =
1

n�m+ 1
Y Y

⇤ (184)

=
1

n�m+ 1

n�mX

j=0

2

664

~y [j]
~y [j + 1]

· · ·

~y [j +m� 1]

3

775
⇥
~y [j] ~y [j + 1] · · · ~y [j +m� 1]

⇤
. (185)

In order to obtain an estimate that is more robust to noise, we can average over more data. If
we fix m and increase n, the column space of ⌃ (m) remains the same, but the averaging process
will cancel out the noise to some extent. This is the principle underlying the multiple-signal
classification (MUSIC) [1, 4].

Algorithm 3.11 (Multiple-signal classification (MUSIC)). The input is the number of frequencies

s, the data y, which are assumed to be of the form (180) and the value of the parameter m � s.

1. Build the empirical covariance matrix ⌃ (m) defined in (184).

2. Compute the eigendecomposition of ⌃ (m) to select the subspace N corresponding to the m�s

smallest singular values.

3. Output an estimate of s estimated frequencies by locating the s highest peaks of the pseu-

dospectrum

PN (u) = log
1

|PN (~a0:m�1)|
2 , (186)
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SNR = 40 dB SNR = 1 dB

Figure 36: Pseudospectrum constructed by the MUSIC algorithm with n = 81 and m = 30 for the same
signal used in Figure 34 and di↵erent noise levels. The true frequencies are marked with red circles.

By Lemma 3.10, in the absence of noise MUSIC achieves perfect super-resolution. When additive
Gaussian noise is present in the data, MUSIC is much more robust than Prony’s method. Figure 36
shows the result of applying MUSIC algorithm with n = 81 and m = 30 to the same data used
in Figure 34 and di↵erent noise levels. The method is able to super-resolve the frequencies at a
noise level of 40 dB. At 1 dB the pseudospectrum does not detect the smaller spikes (the true
magnitudes are shown in Figure 34), but the estimate for the rest is still rather accurate.

In order to provide a theoretical justification of why MUSIC is stable we study the method in an
asymptotic regime where the two following assumptions on the signal and the noise are met:

• Assumption 1: Consider the amplitude and phase of each coe�cient in the multisinusoidal
signal g:

~c[j] = ↵j exp (i�j) , 1  j  s, (187)

We model the phases �1, . . . , �s as independent random variables that are uniformly dis-
tributed in [0, 2⇡]. The amplitudes ↵1, . . . , ↵s can be arbitrary and deterministic. This
implies that E (~c[j]) = 0 and that the covariance matrix equals

E [~c~c ⇤] = S~c :=

2

664

↵
2
1 0 · · · 0
0 ↵

2
2 · · · 0

· · · · · · · · · · · ·

0 0 · · · ↵
2
s

3

775 . (188)

• Assumption 2: The noise in the measurements (180) is Gaussian with zero mean and
covariance matrix �

2
I, which is also independent from the signal.

In summary, we model the data as an m-dimensional random vector of the form

~y = A0:m�1~c+ ~z, (189)
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where ~z is Gaussian with mean zero and covariance matrix �
2
I. The following theorem, proved in

Section 4.2 of the appendix, derives the covariance matrix of ~y.

Theorem 3.12. Let ~y be an m dimensional vector of data satisfying Assumptions 1 and 2. The

SVD of the covariance matrix of ~y is equal to

E [~y~y⇤] =
⇥
US UN

⇤ S + �
2
Is 0

0 �
2
In�s

� 
U

⇤
S

U
⇤
N

�
, (190)

where S is a diagonal matrix containing the singular values of The singular vectors are divided

into two unitary matrices.

• US 2 Cm⇥s
contains an orthonormal basis of the signal subspace which corresponds to the

span of ~a0:m�1 (f1), . . . , ~a0:m�1 (fs).

• UN 2 Cm⇥(m�s)
is a unitary matrix spanning the noise subspace, which is the orthogonal

complement of the signal subspace.

This theorem provides a rather intuitive interpretation of the MUSIC algorithm. The SVD of
the covariance matrix of the data allows to estimate a signal subspace and a noise subspace.
As a result, the term subspace methods is often used to describe MUSIC and related algorithms.
Computing the pseudospectrum from these subspaces allows us to locate the support of the signal.

In practice, we approximate the covariance matrix using the empirical covariance matrix ⌃ (m)
defined in (184). Asymptotically, if we fix s and m and let n ! 1, ⌃ (m) converges to the true
covariance matrix (see Section 4.9.1 in [5]). However that this does not necessarily imply that
MUSIC will allow to find the support! To ensure that we can actually identify the noise subspace
correctly, the singular values in the matrix S must all be large with respect to the variance of the
noise �2. In the case of signals that have a small separation between the frequencies (with respect
to n), some of these singular values may be small due to the correlation between ~a0:m�1 (f1), . . . ,
~a0:m�1 (fs).

Figure 37 compares the performance of MUSIC for di↵erent noise levels and di↵erent values of
the parameter m. On the left column, we see the decay of the singular values of the empirical
covariance matrix. At high signal-to-noise ratios (SNR) there is a clear transition between the
singular values corresponding to the signal subspace (in this case s = 7) and the noise subspace, but
this is no longer necessarily the case when the noise is increased. On the right column, we see the
performance of the algorithm for di↵erent values of the SNR and the parameter m. At relatively
high SNRs MUSIC is an e↵ective algorithm as long as the assumptions on the signal (random
phases), noise (Gaussian) and measurement model (equispaced time samples) are satisfied. In
Figure 38 we show the result of running the algorithm for the wrong value of the parameter s.
If the value is not too di↵erent to s and the SNR not too low, the method is still capable of
approximately locating the frequencies.
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Singular values of ⌃(m) MUSIC estimate
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Figure 37: Singular values of the empirical covariance matrix ⌃ (m) used by MUSIC (left) and corre-
sponding estimates (right) for di↵erent values of the parameter m and of the SNR. The cardinality of the
true support is s = 7.
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Figure 38: Line-spectra estimates obtained by Root MUSIC when the estimated number of sources is
equal to s� 1 (left) and s+ 1 (right) for the same data as in Figure 37.

4 Proofs

4.1 Proof of Lemma 3.9

Let us define

Z :=

2

6666666664

1 1 · · · 1

z1 z2 · · · zs

z
2
1 z

2
2 · · · z

2
s

· · ·

z
s�1
1 z

s�1
2 · · · z

s�1
s

3

7777777775

. (191)

The determinant of the first s rows of our matrix of interest is equal to

|Z|

Y

1is

zi =
Y

1j<ks

(zj � zk)
Y

1is

zi 6= 0 (192)

This implies that the first s rows are linearly independent and consequently that the whole matrix
is full rank.

4.2 Proof of Theorem 3.12

Due to the assumptions,

E [~y~y ⇤] = E
⇥
A0:m�1~c~c

⇤
A

⇤
0:m�1 + A0:m�1~c~z

⇤ + ~z~c ⇤
A

⇤
0:m�1 + ~z~z ⇤⇤ (193)

= A0:m�1E [~c~c ⇤]A⇤
0:m�1 + A0:m�1E [~c] E [~z⇤] + E [~z] E [~c ⇤]A⇤

0:m�1 + E [~z~z ⇤] (194)

= A0:m�1S~cA
⇤
0:m�1 + �

2
I. (195)
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The matrix A0:m�1S~cA
⇤
0:m�1 is symmetric and has rank s. It therefore has a singular value decom-

position of the form

A0:m�1S~cA
⇤
0:m�1 =

h
US UN

i
2

4⇤ 0

0 0

3

5

2

4U
⇤
S

U
⇤
N

3

5 , (196)

where US and UN are as defined in the statement of the theorem.

To complete the proof, we decompose the identity matrix using US and UN to obtain

E [yy⇤] = A0:m�1S~cA
⇤
0:m�1 + �

2
I (197)

=
h
US UN

i
2

4⇤ 0

0 0

3

5

2

4U
⇤
S

U
⇤
N

3

5+
h
US UN

i
2

4�
2
Is 0

0 �
2
In�s

3

5

2

4U
⇤
S

U
⇤
N

3

5 . (198)
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Optimization-based data analysis Fall 2017

Lecture Notes 5: Multiresolution Analysis

1 Frames

A frame is a generalization of an orthonormal basis. The inner products between the vectors in a
frame and an arbitrary vector preserve the inner-product norm of the vector.

Definition 1.1 (Frame). Let V be an inner-product space. A frame of V is a set of vectors

F := {~v1,~v2, . . .} such that for every ~x 2 V

cL ||x||
2
h·,·i 

X

~v2F

|h~x,~vi|2  cU ||v||2h·,·i , (1)

for fixed positive constants cU � cL � 0. The frame is a tight frame if cL = cU .

A direct consequence of the definition is that frames span the ambient space.

Lemma 1.2 (Frames span the whole space). Any frame F := {~v1,~v2, . . .} of a vector space V

spans V.

Proof. Assume that there exists a vector ~y that does not belong to the span, then Pspan(~v1,~v2,...)
? ~y

is nonzero and orthogonal to all the vectors in the frame and cannot satisfy (1).

Orthonormal bases are examples of frames. They are frames that contain a minimum number of
vectors.

Lemma 1.3 (Orthonormal bases are tight frames). Any orthonormal basis B :=
n
~b1,~b2, . . .

o
of a

vector space V is a tight frame.

Proof. For any vector ~x 2 V , by the Pythagorean theorem

||x||2h·,·i =

������

������

X

~b2B

D
~x,~b

E
~b

������

������

2

h·,·i

(2)

=
X

~b2B

���
D
~x,~b

E���
2 ���
���~b
���
���
2

h·,·i
(3)

=
X

~b2B

���
D
~x,~b

E���
2

. (4)

1



The operator that maps vectors to their frame coe�cients is called the analysis operator of the
frame.

Definition 1.4 (Analysis operator). The analysis operator � of a frame maps a vector to its

coe�cients in the frame representation

� (~x) [k] = h~x,~vki . (5)

For any finite frame {~v1,~v2, . . . , vm} of Cn
the analysis operator corresponds to the matrix

F :=

2

664

~v⇤1
~v⇤2
. . .
~v⇤m

3

775 . (6)

In finite-dimensional spaces, any full rank square or tall matrix can be interpreted as the analysis
operator of a frame.

Lemma 1.5 (Frames in finite-dimensional spaces). A set of vectors {~v1,~v2, . . . ,~vm} form a frame

of Cn
if and only the matrix F defined by equation (6) is full rank. In that case,

cU = �2
1, (7)

cL = �2
n, (8)

where �1 is the largest singular value of F and �n is the smallest.

Proof. By Theorem 2.7 in Lecture Notes 2, for any vector ~x 2 Cn

�2
n  ||F~x||22 =

mX

j=1

h~x,~vji
2
 �2

1. (9)

To recover a vector from its frame coe�cients, we need to invert the action of the analysis operator.
In finite dimensions this can be achieved using the pseudoinverse of the corresponding matrix.

Lemma 1.6 (Pseudoinverse). If an n⇥m tall matrix A, m � n, is full rank, then its pseudoinverse

A† := (A⇤A)�1 A⇤ (10)

is well defined, is a left inverse of A

A†A = I (11)

and equals

A† = V S�1U⇤, (12)

where A = USV ⇤
is the SVD of A.
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Proof.

A† := (A⇤A)�1 A⇤ (13)

= (V SU⇤USV ⇤A)�1 V SU⇤ (14)

=
�
V S2V ⇤��1

V SU⇤ (15)

= V S�2V ⇤V SU⇤ (16)

= V S�1U, (17)

where S�2 and S�1 are diagonal matrices containing ��2
j and ��1

j in the jth entry of the diagonal,
where �j denotes the jth singular value of A. These matrices are well defined as long as all the
singular values are nonzero, or equivalently A is full rank. In that case,

A†A = V S�1UV ⇤USV ⇤ (18)

= I. (19)

Corollary 1.7 (Recovering the signal). Let ~c be the representation of a vector ~x in terms of a

frame {~v1,~v2, . . . ,~vm} of Cn
. Then applying the pseudoinverse of F recovers the signal from the

coe�cients

~x = F †~c. (20)

2 Short-time Fourier transform

The motivation to consider frames instead of bases is that they often make it possible to build
signal decompositions that are more flexible. An important example is the short-time Fourier
transform (STFT). Frequency representations such as the Fourier series and the DFT provide
global information about the fluctuations of a signal, but they do not capture local information.
However, the spectrum of speech, music and other sound signals changes continuously with time.
The STFT is designed to describe these localized fluctuations. It consists of computing the fre-
quency representation of a time segment of the signal, extracted through multiplication with a
window.

Definition 2.1 (Short-time Fourier transform). The short-time Fourier transform (STFT) of a

function f 2 L2[�1/2, 1/2] is defined as

STFT {f} (k, ⌧) :=

Z 1/2

�1/2

f (t)w (t� ⌧)e�i2⇡kt
dt, (21)

where w 2 L2[�1/2, 1/2] is a window function. In words, it is equal to the Fourier series coe�-

cients of the pointwise product between f and a shifted window w[l].

The STFT coe�cients are equal to the inner product between the signal and vectors of the form
vk,⌧ (t) := w (t� ⌧) ei2⇡kt, which corresponds to the window function w shifted by ⌧ in time and by

3



⌧ = 0, k = 0 ⌧ = 1/32, k = 0

Real part Imaginary part

Spectrum

Real part Imaginary part

⌧ = 0, k = 64 ⌧ = 1/32, k = 64

Real part Imaginary part

Spectrum

Real part Imaginary part

Figure 1: Examples of STFT frame vectors along with their Fourier representation.
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k in frequency. As long as the shifts are chosen so that the windows overlap, the STFT coe�cients
form a frame. Figure 1 shows some of these frame vectors.

The discrete version of the short-time Fourier transform acts upon finite-dimensional vectors and
is usually also known as STFT.

Definition 2.2 (Discrete short-time Fourier transform). The STFT of a vector ~x 2 Cn
is defined

as

STFT {f} (k, l) :=
D
~x � ~w[l],~hk

E
, (22)

where ~w is a window vector and ~h[n]
k is the discrete complex sinusoidal vector from Definition 1.5

in Lecture Notes 4.

As in the continuous case, if the shifts overlap su�ciently, then this transformation is a frame
in a finite-dimensional space. This means that there is a tall matrix that represents the analysis
operator, and that we can invert it with the pseudoinverse by Lemma 1.6. However this would be
very ine�cient computationally! The STFT operator is usually applied and inverted using fast
algorithms based on the FFT.

The simplest window function that we can use is a rectangular function, i.e. just selecting intervals
of coe�cients. Unfortunately, this introduces an artificial discontinuity at the ends of the interval.
Mathematically, multiplying the coe�cients by the rectangular function is equivalent to convolving
with a Dirichlet kernel in the spectral domain, which becomes apparent when we compute the
Fourier coe�cients of the windowed data, as shown in Figure 2. In contrast, Gaussian-like windows
that taper o↵ at the ends smooth the borders of the windowed signal and avoid the high-frequency
artifacts introduced by the side lobes of the Dirichlet kernel.

The STFT is an important tool for sound processing. Variations in the spectral components of
signals are visualized using the spectrogram, which is equal to the logarithm of the magnitude
of the STFT coe�cients. Figure 4 shows the spectrogram of a real speech signal. The time
and frequency representation of the same signal are shown in Figure 3. In contrast to these
representations, the spectrogram reveals how the frequency components of the speech signal vary
over time. The resolution at which we track these variations depends on the width of the window
chosen to compute the spectrogram. Shorter windows provide higher temporal resolution (we
can track quicker changes), but are not able to detect lower-frequency components whose periods
are longer than the chosen window. This motivates using windows of di↵erent lengths to extract
information at multiple resolutions. The next section discusses signal representations designed to
achieve this.

3 Wavelets

3.1 Definition

Wavelets are designed to capture signal structure at di↵erent scales. This is achieved with an
analysis operator that contains scaled copies of a fixed function called a wavelet.
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Signal Window

⇥ =

Spectrum ⇤ =

⇥ =

Spectrum ⇤ =

Figure 2: The spectrum of a time segment may contain spurious high-frequency content produced by the
sudden transition at the ends of the segment. In the frequency domain, the spectrum is being convolved
by a sinc function, which has a very heavy tail. Multiplying the signal by a localized window that has a
faster decay in the frequency domain alleviates the problem.
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Time Frequency

Figure 3: Time and frequency representation of a speech signal.

Time

Frequency

Figure 4: Spectrogram (log magnitude of STFT coe�cients) of the speech signal in Figure 3.
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Scaling function Mother wavelet

Figure 5: Scaling and wavelet function of the Haar wavelet transform.

Definition 3.1 (Wavelet transform). The wavelet transform of a function f 2 L2 depends on a

choice of wavelet (or mother wavelet)  2 L2 and scaling function � 2 L2 (or father wavelet).

The scaling coe�cients are obtained through an inner product with shifted copies of �

W� {f} (⌧) :=
1
p
s

Z
f (t)� (t� ⌧) dt (23)

whereas the wavelet coe�cients are obtained through an inner product with dilated, shifted copies

of  

W {f} (s, ⌧) :=
1
p
s

Z
f (t) 

✓
t� ⌧

s

◆
dt. (24)

Intuitively, W {f} (s, ⌧) captures the information at scale s and location ⌧ . The scaling function
can be interpreted as a low-pass filter that extracts the global features that are not captured by
the wavelet coe�cients. The Haar wavelet is an example of a wavelet. Figure 5 shows its scaling
and wavelet functions.

Definition 3.2 (Haar wavelet). The scaling function for the Haar wavelet is a rectangular function

� (t) := 1, �
1

2
 t 

1

2
. (25)

The Haar wavelet is of the form

 (t) :=

(
�1, �

1
2  t  0,

1, 0  t  1
2 .

(26)

The discrete wavelet transform acts upon finite-dimensional vectors.

Definition 3.3 (Discrete wavelet transform). The wavelet transform of a function f 2 Cn
depends

on a choice of wavelet (or mother wavelet) ~ 2 Cn
and scaling vector ~� 2 Cn

(or father wavelet).

The scaling coe�cients are obtained through an inner product with shifted copies of ~�

W~� {f} (l) :=
D
~x, ~�[l]

E
, (27)
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whereas the wavelet coe�cients are obtained through an inner product with scaled, shifted copies

of ~ 

W ~ {f} (s, l) :=
D
~x, ~ [s,l]

E
, (28)

where

~ [s,l][j] := ~ 


j � l

s

�
. (29)

The discrete Haar wavelet is the discrete counterpart of the Haar wavelet.

Definition 3.4 (Discrete Haar wavelet). The scaling function for the Haar wavelet is a rectangular

function

~�[j] := 1, 1  j  n. (30)

The Haar wavelet is of the form

~ [j] :=

8
><

>:

�1, j = n
2 ,

1, j = n
2 + 1,

0, otherwise.

(31)

3.2 Multiresolution decomposition

The discrete Haar wavelet and its corresponding scaling vector can be used to construct a basis
of Cn.

Definition 3.5 (Haar wavelet basis). Let n := 2K for some integer K. We fix a single scaling

vector

~�[j] :=
1
p
n
, 1  j  n. (32)

We fix K + 1 scales equal to 20, 21, . . . , 2K. The wavelets at the finest scale 20 are given by

~ [j] :=

8
><

>:

�
1p
2
, j = 1,

1p
2
, j = 2,

0, j > 2,

(33)

and copies of ~ shifted by 2, so that they do not overlap. The wavelets at scale 2k, 1  k  K are

copies of ~ dilated by 2k, multiplied by a factor of 1/
p

2k (their `2 norm equals one) and shifted

by multiples of 2k+1
(so the basis vectors at each scale do not overlap).

The Haar wavelet basis contains n unit-norm vector that are all orthogonal, so they form an
orthonormal basis of Cn. Figure 6 shows the basis vectors for n = 8. Figure 7 shows the coe�cients
of an electrocardiogram signal in the basis.

Wavelet bases can be interpreted as a multiresolution representation, where the coe�cients cor-
responding to di↵erent dilations of the wavelet capture information at the corresponding scales.
This is made more precise in the following definition.
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Scale Basis functions

20

21

22

23 (scaling vector)

Figure 6: Basis functions in the Haar wavelet basis for C8.

Signal Haar transform

Figure 7: Electrocardiogram signal (left) and its corresponding Haar wavelet coe�cients (right).
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Definition 3.6 (Multiresolution wavelet decomposition). Let n := 2K for some integer K. Given

a scaling vector ~� 2 Cn
and a wavelet ~ 2 Cn

, a multiresolution decomposition of Cn
is a sequence

of subspaces V0,V1, . . . ,VK where:

• VK is spanned by the scaling vector ~�.

• Vk := Wk � Vk+1 where Wk is the span of  dilated by 2k and shifted by multiples of 2k+1
.

For any vector ~x 2 Cn
, PVk

~x is the approximation of ~x at scale 2k.

To be a valid multiresolution decomposition, the subspaces must satisfy the following properties:

• V0 = Cn
, the approximation at scale 20 is perfect.

• Vk is invariant to translations of scale 2k for 0  k  K. If ~x 2 Vk then

~x[2kl] 2 Vk for all l 2 Z, (34)

where the shifts are circular.

• Dilating vectors in Vj by 2 yields vectors in Vj+1. Let ~x 2 Vj be nonzero only between 1 and

n/2, the dilated vector ~y defined by

~y[j] = ~x [dj/2e] (35)

belongs to Vj+1.

By construction, the Haar wavelet basis in Definition 3.5 provides a multiresolution decomposition
of Cn. In Figure 8 the decomposition is applied to obtain approximations of an electrocardiogram
signal at di↵erent scales. Many other wavelet bases apart from the Haar yield multiresolution
decompositions: Meyer, Daubechies, Battle-Lemarie, . . .We refer the interested reader to Chapter
7 in [?] for a detailed and rigorous description of the construction of orthonormal wavelet bases.

3.3 Multidimensional wavelet decompositions

Two-dimensional wavelets can be obtained by taking outer products of one-dimensional wavelets,
as in the case of the two-dimensional discrete Fourier transform. 2D wavelets are of the form,

⇠2D[s1,s2,k1,k2] := ⇠1D[s1,k1]
�
⇠1D[s2,k2]

�⇤
, (36)

where ⇠ can refer to both 1D scaling and wavelet functions. We consider shifts k1, k2 in two
dimensions and a two-dimensional scaling s1, s2. The corresponding two-dimensional transform
allows to obtain multiscale representations of images. An example is shown in Figure 10. The
coe�cients are grouped by their scale (which is decreasing as we move down and to the right) and
arranged in two dimensions, according to the location of the corresponding shifted wavelet with
respect to the image. Figure 9 shows the vectors in a 2D Haar wavelet basis.

Designing multidimensional transforms that are more e↵ective at providing sparse representations
for images has been a vibrant research subject for many years. Some of these extensions include
the steerable pyramid, ridgelets, curvelets, and bandlets. We refer to Section 9.3 in [?] for more
details.
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Scale (2k) PWk
~x PVk

~x

29

28

24

20

Figure 8: Multiresolution decomposition of the electrocardiogram signal in Figure 7. On the left, the
projection of the signal onto Wk extracts information at scale 2k. On the right, projection onto Vk yields
an approximation of the signal at scale 2k.
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Figure 9: Basis vectors of the 2D Haar wavelet transform.

Wavelet coe�cients

Figure 10: An image (left) and its coe�cients in a 2D Haar wavelet basis (right). The coe�cients are
arranged so that the scaling coe�cients are on the top left and coe�cients corresponding to increasingly
fine scales are situated below and to the right.
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Wavelet coe�cients

Figure 11: Gaussian iid noise (left) and its Haar wavelet coe�cients (left).

4 Denoising via thresholding

The STFT and wavelet transforms often yield sparse signal representations, meaning that many
coe�cients are equal to zero. In the case of the STFT, this occurs when only a few spectral com-
ponents are active at a particular time, which is typical of speech or music signals (see Figure 4).
In the case of wavelets, sparsity results from the fact that large regions of natural images (and
many other signals) are smooth and mostly contain coarse-scale features, whereas most of the
fine-scale features are confined to edges or regions with high-frequency textures.

In contrast, noisy perturbations usually have dense coe�cients in any fixed frame or basis. As
we establish in Lecture Notes 3, if ~z is a Gaussian random vector with covariance matrix �2I,
for some fixed �2 > 0 then F~z is a Gaussian random vector with covariance matrix FF ⇤. In
particular, if F is a basis, then F~z is iid Gaussian, which means that the magnitude of most
entries is approximately equal to the standard deviation �. Figure 11 shows the Haar wavelet
coe�cients of iid Gaussian noise. As expected, the coe�cients are also noisy and dense in this
representation.

Let us consider the problem of denoising measurements ~y 2 Cn of a signal ~x 2 Cn corrupted by
additive noise ~z 2 Cn

~y := ~x+ ~z. (37)

Under the assumptions that (1) F~x is sparse representation where F is a certain frame or basis and
(2) the entries of F~z are small and dense, thresholding F~y makes it possible to suppress the noise
while preserving the signal. Figure 12 shows an example of two noisy images with di↵erent signal-
to-noise ratios (SNR), defined as the ratio between the `2 norm of the signal and the noise. In the
wavelet domain, the coe�cients corresponding to the signal lie above a sea of noisy coe�cients.
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SNR Wavelet coe�cients

2.5

1

Figure 12: The two noisy images on the left are obtained by adding Gaussian noise to the image in
Figure 10 to obtain an SNR of 2.5 (above) and 1 (below). The coe�cients of the images in the 2D Haar
basis are shown on the right.
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Before thresholding After thresholding

Figure 13: Denoising via hard thresholding.

To motivate thresholding-based denoising, consider the case where ~x itself is sparse and ~z. In that
case we can denoise by setting to zero the entries in ~y that are below a certain value. Figure 13
illustrates this with a simple example. Most signals are not sparse, but in many cases we can
design a linear transform that sparsifies them. We can then apply the same idea to the coe�cients
of the measurements in this representation.

Algorithm 4.1 (Denoising via hard thresholding). Let ~y follow the model in equation (37). To

estimate the signal we:

1. Compute a decomposition F~y, where F is a frame or basis which sparsifies the signal ~x.

2. Apply the hard-thresholding operator H⌘ : Cn
! Cn

to F~y

H⌘ (~v) [j] :=

(
~v [j] if |~v [j]| > ⌘,

0 otherwise,
(38)

for 1  j  n, where ⌘ is adjusted according to the standard deviation of F~z. If F is a basis

and ~z is iid Gaussian with standard deviation �, ⌘ should be set larger than �.

3. Compute the estimate by inverting the transform. If F is a basis, then

~xest := F�1
H⌘ (F~y) . (39)

If F is a frame,

~xest := F †
H⌘ (F~y) , (40)

where F †
is the pseudoinverse of F (any other left inverse of F would also work).

Figure 14 shows the result of denoising a multisinusoidal signal by thresholding its Fourier coe�-
cients. Figure 15 shows the result of denoising the images in Figure 12 by thresholding their 2D
wavelet coe�cients.
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Before thresholding After thresholding

DCT
coe�cients

Figure 14: Denoising via hard thresholding in a Fourier basis.

When we apply transforms that capture localized details of signals, such as the wavelet transform
or the STFT, sparse representations tend to be highly structured. For example, nonzero wavelet
coe�cients are often clustered around edges. This is apparent in Figure 10. The reason is that
several localized atoms are needed to reproduce sharp variations, whereas a small number of
coarse-scale atoms su�ce to represent smooth areas of the image.

Thresholding-based denoising can be enhanced by taking into account the group sparsity of the
signal of interest. If we have a reason to believe that nonzero coe�cients in the signal tend to be
close to each other, then we should threshold small isolated coe�cients, but not similar coe�cients
that are in the vicinity of large coe�cients and therefore may contain useful information. This
can be achieved by applying block thresholding.

Algorithm 4.2 (Denoising via block thresholding). Let ~y follow the model in equation (37). To

estimate the signal we:

1. Compute a decomposition F~y, where F is a frame or basis which sparsifies the signal ~x.

2. Partition the indices of F~y into blocks I1, I2, . . . , Ik.

3. Apply the hard-block-thresholding operator B⌘ : Cn
! Cn

to F~y

B⌘ (~v) [j] :=

(
~v [j] if j 2 Ij such that

����~vIj
����

2
> ⌘, ,

0 otherwise,
(41)
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SNR Wavelet coe�cients

2.5

1

Figure 15: Thresholding-based denoising applied to the images in Figure 12.
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SNR Wavelet coe�cients
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1

Figure 16: Block-thresholding-based denoising applied to the images in Figure 12.
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SNR Clean Noisy Thresholding Block thresholding

2.5

1

Figure 17: Comparison between thresholding and block-thresholding applied to denoise the images in
Figure 12.

where ⌘ is adjusted according to the standard deviation of F~z. If F is a basis and ~z is iid

Gaussian with standard deviation �, ⌘ should be set larger than b�, where b is the number

of indices in each block.

4. Compute the estimate by inverting the transform. If F is a basis, then

~xest := F�1
B⌘ (F~y) . (42)

If F is a frame,

~xest := F †
B⌘ (F~y) , (43)

where F †
is the pseudoinverse of F (any other left inverse of F would also work).

Figure 16 shows the result of denoising the images in Figure 12 by partitioning its 2D Haar
coe�cients in 4 ⇥ 4 blocks and applying block thresholding. As illustrated by Figure 17 block-
thresholding recovers regular such as the vertical lines on the Empire State building more e↵ec-
tively.

We conclude this section with an application of thresholding-based denoising to speech.

Example 4.3 (Speech denoising). The recording shown in Figures 3 and 4 is a short snippet from
the movie Apocalypse Now where one of the character talks over the noise of a helicopter. We
denoise the data using the following methods (click on the links to hear the result):

• Time thresholding: The result, which is plotted in Figure 18, sounds terrible because the
thresholding eliminates parts of the speech.
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Time thresholding

Frequency thresholding

Figure 18: Time thresholding (top row) applied to the noisy data shown in Figure 3. The result sounds
terrible because the thresholding eliminates parts of the speech. Below, frequency thresholding is applied
to the same data. The result is very low pitch because the thresholding eliminates the high frequencies
of both the speech and the noise.

21

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/time_thresh.wav
http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16/material/freq_thresh.wav


• Frequency thresholding: The result has very low pitch because the thresholding eliminates
the high frequencies of both the speech and the noise. The spectrum is shown in Figure ??
before and after thresholding.

• STFT thresholding: The result is significantly better but isolated STFT coe�cients that are
not discarded produce musical noise artifacts. The corresponding spectrogram is shown in
Figure 19.

• STFT block thresholding: The result does not su↵er from musical noise and retains some of
the high-pitch speech. The corresponding spectrogram is shown in Figure 19.

The results are compared visually for a small time segment of the data in Figure 20. 4

References

For more information on multiresolution approximations and time-frequency signal processing we
refer to the excellent book [?] and references therein.
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STFT
thresholding

STFT block
thresholding

Figure 19: Spectrograms of the noisy signal (above) compared to the estimates obtained by simple
thresholding (center) and block thresholding (bottom). The result of simple thresholding contains musical
noise caused by particularly large STFT coe�cients caused by the noise that were not thresholded. The
result of block thresholding does not su↵er from these artifacts.
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STFT block
thresholding

Figure 20: Comparison of the original noisy data (blue) with the denoised signal for the data shown in
Figure 3. We compare frequency thresholding (above) and thresholding (center) and block thresholding
(below) of STFT coe�cients.
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Optimization-based data analysis Fall 2017

Lecture Notes 6: Linear Models

1 Linear regression

1.1 The regression problem

In statistics, regression is the problem of characterizing the relation between a quantity of interest
y, called the response or the dependent variable, and several observed variables x1, x2, . . . , xp,
known as covariates, features or independent variables. For example, the response could be the
price of a house and the covariates could correspond to the extension, the number of rooms, the
year it was built, etc. A regression model would describe how house prices are a↵ected by all of
these factors.

More formally, the main assumption in regression models is that the predictor is generated accord-
ing to a function h applied to the features and then perturbed by some unknown noise z, which
is often modeled as additive,

y = h (~x) + z. (1)

The aim is to learn h from n examples of responses and their corresponding features

�
y(1), ~x (1)

�
,
�
y(2), ~x (2)

�
, . . . ,

�
y(n), ~x (n)

�
. (2)

If the regression function h in a model of the form (1) is linear, then the response is modeled as a
linear combination of the predictors:

y(i) =
D
~x (i), ~�⇤

E
+ z(i), 1  i  n, (3)

where z(i) is an entry of the unknown noise vector. The function is parametrized by a vector of
coe�cients ~�⇤ 2 Rp. All we need to fit the linear model to the data is to estimate these coe�cients.

Expressing the linear system (3) in matrix form, we have

2

666664

y(1)

y(2)

· · ·
y(n)

3

777775
=

2

666664

~x (1)[1] ~x (1)[2] · · · ~x (1)[p]

~x (2)[1] ~x (2)[2] · · · ~x (2)[p]

· · · · · · · · · · · ·
~x (n)[1] ~x (n)[2] · · · ~x (n)[p]

3

777775

2

666664

~�⇤[1]

~�⇤[2]

· · ·
~�⇤[p]

3

777775
+

2

666664

z(1)

z(2)

· · ·
z(n)

3

777775
. (4)

This yields a more succinct representation of the linear-regression model:

~y = X~�⇤ + ~z, (5)
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where X is a n ⇥ p matrix containing the features, ~y 2 Rn contains the response and ~z 2 Rn

represents the noise.

For simplicity we mostly discuss the linear model (3), but in practice we usually fit an a�ne model
that includes a constant term �0,

y(i) = �0 +
D
~x (i), ~�⇤

E
+ z(i), 1  i  n. (6)

This term is called an intercept, because if there is no noise y(i) is equal to �0 when the features
are all equal to zero. For a least-squares fit (see Section 2 below), �0 can be shown to equal zero as
long as the response ~y and the features ~x1, . . . , ~xp are all centered. This is established rigorously
in Lemma 2.2. In addition to centering, it is common to normalize the response and the features
before fitting a regression model, in order to ensure that all the variables have the same order of
magnitude and the model is invariant to changes in units.

Example 1.1 (Linear model for GDP). We consider the problem of building a linear model to pre-
dict the gross domestic product (GDP) of a state in the US from its population and unemployment
rate. We have available the following data:

GDP Population Unemployment

(USD millions) rate (%)

0

BBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCA

North Dakota 52 089 757 952 2.4

Alabama 204 861 4 863 300 3.8

Mississippi 107 680 2 988 726 5.2

Arkansas 120 689 2 988 248 3.5

Kansas 153 258 2 907 289 3.8

Georgia 525 360 10 310 371 4.5

Iowa 178 766 3 134 693 3.2

West Virginia 73 374 1 831 102 5.1

Kentucky 197 043 4 436 974 5.2

Tennessee ??? 6 651 194 3.0

In this example, the GDP is the response, whereas the population and the unemployment rate
are the features. Our goal is to fit a linear model to the data so that we can predict the GDP of
Tennessee, using a linear model. We begin by centering and normalizing the data. The averages
of the response and of the features are

av (~y) = 179 236, av (X) =
h
3 802 073 4.1

i
. (7)

The empirical standard deviations are

std (~y) = 396 701, std (X) =
h
7 720 656 2.80

i
. (8)
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We subtract the average and divide by the standard deviations so that both the response and the
features are centered and on the same scale,

~y =

2

66666666666666666664

�0.321

0.065

�0.180

�0.148

�0.065

0.872

�0.001

�0.267

0.045

3

77777777777777777775

, X =

2

66666666666666666664

�0.394 �0.600

0.137 �0.099

�0.105 0.401

�0.105 �0.207

�0.116 �0.099

0.843 0.151

�0.086 �0.314

�0.255 0.366

0.082 0.401

3

77777777777777777775

. (9)

To obtain the estimate for the GDP of Tennessee we fit the model

~y ⇡ X~�, (10)

rescale according to the standard deviations (8) and recenter using the averages (7). The final
estimate is

~yTen = av (~y) + std (~y)
D
~xTen
norm, ~�

E
(11)

where ~xTen
norm is centered using av (X) and normalized using std (X). 4

1.2 Overfitting

Imagine that a friend tells you:

I found a cool way to predict the daily temperature in New York: It’s just a linear combination of
the temperature in every other state. I fit the model on data from the last month and a half and
it’s perfect!

Your friend is not lying. The problem is that in this example the number of data points is roughly
the same as the number of parameters. If n  p we can find a ~� such that ~y = X~� exactly, even
if ~y and X have nothing to do with each other! This is called overfitting : the model is too flexible
given the available data. Recall from linear algebra that for a matrix A 2 Rn⇥p that is full rank,
the linear system of equations

A~b = ~c (12)

is (1) underdetermined if n < p, meaning that it has infinite solutions, (2) determined if n = p,
meaning that there is a unique solution, and (3) overdetermined if n > p. Fitting a linear model
without any additional assumptions only makes sense in the overdetermined regime. In that case,
an exact solution exists if ~b 2 col (A), which is never the case in practice due to the presence of
noise. However, if we manage to find a vector ~b such that A~b is a good approximation to ~c when
n > p then this is an indication that the linear model is capturing some underlying structure in
the problem. We make this statement more precise in Section 2.4

3



Figure 1: Linear model learned via least-squares fitting for a simple example where there is just one
feature (p = 1) and 40 examples (n = 40).

2 Least-squares estimation

2.1 Minimizing the `2-norm approximation error

To calibrate the linear regression model ~y ⇡ X~� it is necessary to choose a metric to evaluate the
fit achieved by the model. By far, the most popular metric is the sum of the squares of the fitting
error,

nX

i=1

⇣
y(i) �

D
~x (i), ~�

E⌘2

=
���
���~y �X~�

���
���
2

2
. (13)

The least-squares estimate ~�LS is the vector of coe�cients that minimizes this cost function,

~�LS := argmin
~�

���
���~y �X~�

���
���
2
. (14)

The least-squares cost function is convenient from a computational view, since it is convex and
can be minimized e�ciently (in fact, as we will see in a moment it has a closed-form solution).
In addition, it has intuitive geometric and probabilistic interpretations. Figure 1 shows the linear
model learned using least squares in a simple example where there is just one feature (p = 1) and
40 examples (n = 40).

Theorem 2.1. If X is full rank and n � p, for any ~y 2 Rn we have

~�LS := argmin
~�

���
���~y �X~�

���
���
2

(15)

= V S�1UT~y (16)

=
�
XTX

��1
XT~y, (17)

where USV T is the SVD of X.
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Proof. We consider the decomposition of ~y into its orthogonal projection UUT~y onto the column
space of X col (X) and its projection

�
I � UUT

�
~y onto the orthogonal complement of col (X).

X~� belongs to col (X) for any � and is consequently orthogonal to
�
I � UUT

�
~y (as is UUT~y), so

that

argmin
~�

���
���~y �X~�

���
���
2

2
= argmin

~�

�����I � UUT
�
~y
����2

2
+
���
���UUT~y �X~�

���
���
2

2
(18)

= argmin
~�

���
���UUT~y �X~�

���
���
2

2
(19)

= argmin
~�

���
���UUT~y � USV T ~�

���
���
2

2
. (20)

Since U has orthonormal columns, for any vector ~v 2 Rp ||U~v||2 = ||~v||2, which implies

argmin
~�

���
���~y �X~�

���
���
2

2
= argmin

~�

���
���UT~y � SV T ~�

���
���
2

2
(21)

If X is full rank and n � p, then SV T is square and full rank. It therefore has a unique inverse,
which is equal to V S�1. As a result V S�1UT~y =

�
XTX

��1
XT~y is the unique solution to the

optimization problem (it is the only vector that yields a value of zero for the cost function).

The following lemma shows that centering the data before computing the least-squares fit is exactly
equivalent to fitting an a�ne model with the same cost function.

Lemma 2.2 (Proof in Section 5.1). For any matrix X 2 Rn⇥m and any vector ~y, let

n
�LS,0, ~�LS

o
:= argmin

�0,~�

���
���~y �X~� � �0

~1
���
���
2

2
(22)

be the coe�cients corresponding to an a�ne fit, where ~1 is a vector containing n ones, and let

~� cent
LS := argmin

~�

���
���~y cent �X cent~�

���
���
2

2
(23)

be the coe�cients of a linear fit after centering both X and ~y using their respective averages (in
the case of X, the column-wise average). Then,

X~�LS + �LS,0 = X cent~� cent
LS + av (y) . (24)

Example 2.3 (Linear model for GDP (continued)). The least-squares estimate for the regression
coe�cients in the linear GDP model is equal to

~�LS =

2

4 1.019

�0.111

3

5 . (25)

The GDP seems to be proportional to the population and inversely proportional to the unemploy-
ment rate. We now compare the fit provided by the linear model to the original data, as well as
its prediction of the GDP of Tennessee:
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GDP Estimate

0

BBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCA

North Dakota 52 089 46 241

Alabama 204 861 239 165

Mississippi 107 680 119 005

Arkansas 120 689 145 712

Kansas 153 258 136 756

Georgia 525 360 513 343

Iowa 178 766 158 097

West Virginia 73 374 59 969

Kentucky 197 043 194 829

Tennessee 328 770 345 352

4

Example 2.4 (Global warming). In this example we describe the application of linear regression
to climate data. In particular, we analyze temperature data taken in a weather station in Oxford
over 150 years.1 Our objective is not to perform prediction, but rather to determine whether
temperatures have risen or decreased during the last 150 years in Oxford.

In order to separate the temperature into di↵erent components that account for seasonal e↵ects
we use a simple linear with three predictors and an intercept

y ⇡ �0 + �1 cos

✓
2⇡t

12

◆
+ �2 sin

✓
2⇡t

12

◆
+ �3 t (26)

where t denotes the time in months. The corresponding matrix of predictors is

X :=

2

6666664

1 cos
�
2⇡t1
12

�
sin

�
2⇡t1
12

�
t1

1 cos
�
2⇡t2
12

�
sin

�
2⇡t2
12

�
t2

· · · · · · · · · · · ·

1 cos
�
2⇡tn
12

�
sin

�
2⇡tn
12

�
tn

3

7777775
. (27)

The intercept �0 represents the mean temperature, �1 and �2 account for periodic yearly fluctua-
tions and �3 is the overall trend. If �3 is positive then the model indicates that temperatures are
increasing, if it is negative then it indicates that temperatures are decreasing.

The results of fitting the linear model using least squares are shown in Figures 2 and 3. The fitted
model indicates that both the maximum and minimum temperatures have an increasing trend of
about 0.8 degrees Celsius (around 1.4 degrees Fahrenheit). 4

1The data are available at http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/
oxforddata.txt.
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Maximum temperature Minimum temperature

Figure 2: Temperature data together with the linear model described by (26) for both maximum and
minimum temperatures.
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Maximum temperature Minimum temperature

+ 0.75 �C / 100 years + 0.88 �C / 100 years

Figure 3: Temperature trend obtained by fitting the model described by (26) for both maximum and
minimum temperatures.

2.2 Geometric interpretation of least-squares regression

The following corollary of Theorem 2.1 provides an intuitive geometric interpretation of the linear
approximation obtained from a least-squares fit. The least-squares fit yields the vector X~� in
the column space col (X) of the features that is closest to ~y in `2 norm. X~�LS is therefore the
orthogonal projection of ~y onto col (X), as depicted in Figure 4.

Corollary 2.5. The least-squares approximation of ~y obtained by solving problem (14)

~yLS = X~�LS (28)

is equal to the orthogonal projection of ~y onto the column space of X.

Proof.

X~�LS = USV TV S�1UT~y (29)

= UUT~y (30)

Example 2.6 (Denoising of face images). In Example 7.4 of Lecture Notes 1, we denoised a noisy
image by projecting it onto the span of a set of clean images. This is equivalent to solving a
least-squares linear-regression problem in which the response is the noisy images and the columns
of the matrix of features correspond to the clean faces. The regression coe�cients are used to
combine the di↵erent clean faces linearly to produce the estimate. 4
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Figure 4: Illustration of Corollary 2.5. The least-squares solution is the orthogonal projection of the
data onto the subspace spanned by the columns of X, denoted by X1 and X2.

2.3 Probabilistic interpretation of least-squares regression

In this section we derive the least-squares regression estimate as a maximum-likelihood (ML)
estimator. ML estimation is a popular method for learning parametric models. In parametric
estimation we assume that the data are sampled from a known distribution that depends on some
unknown parameters, which we aim to estimate. The likelihood function is the joint pmf or pdf
of the data, interpreted as a function of the unknown parameters.

Definition 2.7 (Likelihood function). Given a realization ~y 2 Rn of random vector ~y with joint
pdf f~� parameterized by a vector of parameters ~� 2 Rm, the likelihood function is

L~y

⇣
~�
⌘
:= f~� (~y) . (31)

The log-likelihood function is equal to the logarithm of the likelihood function logL~y

⇣
~�
⌘
.

The likelihood function represents the probability density of the parametric distribution at the ob-
served data, i.e. it quantifies how likely the data are according to the model. Therefore, higher like-
lihood values indicate that the model is better adapted to the samples. The maximum-likelihood
(ML) estimator is a very popular parameter estimator based on maximizing the likelihood (or
equivalently the log-likelihood).

Definition 2.8 (Maximum-likelihood estimator). The maximum likelihood (ML) estimator of the

9



vector of parameters ~� 2 Rm is

~�ML (~y) := argmax
~�

L~y

⇣
~�
⌘

(32)

= argmax
~�

logL~y

⇣
~�
⌘
. (33)

The maximum of the likelihood function and that of the log-likelihood function are at the same
location because the logarithm is a monotone function.

The following lemma shows that the least-squares estimate can be interpreted as an ML estimator.

Lemma 2.9. Let ~y 2 Rn be a realization of a random vector

~y := X~� + ~z, (34)

where ~z is iid Gaussian with mean zero and variance �2. If X 2 Rn⇥m is known, then the ML
estimate of ~� is equal to the least-squares estimate

~�ML = argmin
~�

���
���~y �X~�

���
���
2

2
. (35)

Proof. For a fixed ~�, the joint pdf of ~y is equal to

f~� (~y) =
nY

i=1

1p
2⇡�

exp

✓
� 1

2�2

⇣
~y[i]�

⇣
X~�

⌘
[i]
⌘2
◆

(36)

=
1p

(2⇡)n�n
exp

✓
� 1

2�2

���
���~y �X~�

���
���
2

2

◆
. (37)

The likelihood is the probability density function of ~y evaluated at the observed data ~y and
interpreted as a function of the coe�cient vector ~�,

L~y

⇣
~�
⌘
=

1p
(2⇡)n

exp

✓
�1

2

���
���~y �X~�

���
���
2

2

◆
. (38)

To find the ML estimate, we maximize the log likelihood

~�ML = argmax
~�

L~y

⇣
~�
⌘

(39)

= argmax
~�

logL~y

⇣
~�
⌘

(40)

= argmin
~�

���
���~y �X~�

���
���
2

2
. (41)
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2.4 Analysis of the least-squares estimate

In this section we analyze the solution of the least-squares regression fit under the assumption
that the data are indeed generated according to a linear model with additive noise,

~y := X~�⇤ + ~z, (42)

where X 2 Rn⇥m and ~z 2 Rn. In that case, we can express the least-squares solution in terms
of the true coe�cients ~�⇤, the feature matrix X and the noise ~z applying Theorem 2.1. The
estimation error equals

~�LS � ~�⇤ =
�
XTX

��1
XT

⇣
X~�⇤ + ~z

⌘
(43)

=
�
XTX

��1
XT~z, (44)

as long as X is full rank.

Equation (44) implies that if the noise is random and has zero mean, then the expected error is
equal to zero. In statistics lingo, the least-squares estimate is unbiased, which means that the
estimator is centered at the true coe�cient vector ~�⇤.

Lemma 2.10 (Least-squares estimator is unbiased). If the noise ~z is a random vector with zero
mean, then

E
⇣
~�LS � ~�⇤

⌘
= 0. (45)

Proof. By (44) and linearity of expectation

E
⇣
~�LS � ~�⇤

⌘
=

�
XTX

��1
XTE (~z) = 0. (46)

We can bound the error incurred by the least-squares estimate in terms of the noise and the
singular values of the feature matrix X.

Theorem 2.11 (Least-squares error). For data of the form (42), we have

||~z||2
�1


���
���~�LS � ~�⇤

���
���
2
 ||~z||2

�p
, (47)

as long as X is full rank, where �1 and �p denote the largest and smallest singular value of X
respectively.

Proof. By (44)

~�LS � ~�⇤ = V S�1UT~z. (48)

The smallest and largest singular values of V S�1U are 1/�1 and 1/�p respectively so by Theorem
2.7 in Lecture Notes 2

||~z||2
�1


����V S�1UT~z

����
2
 ||~z||2

�p
. (49)
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Figure 5: Relative `2-norm error of the least-squares coe�cient estimate as n grows. The entries of X,
~�⇤ and ~z are sampled iid from a standard Gaussian distribution. The error scales as 1/

p
n as predicted

by Theorem 2.12.

Let us assume that the norm of the noise ||~z||2 is fixed. In that case, by (48) the largest error
occurs when ~z is aligned with ~up, the singular vector corresponding to �p, whereas the smallest
error occurs when ~z is aligned with ~u1, the singular vector corresponding to �1. To analyze what
happens in a typical linear-regression problem, we can assume that X and ~z are sampled from
a Gaussian distribution. The following theorem shows that in this case, the ratio between the
norms of the error and the noise (or equivalently the error when the norm of the noise is fixed to
one) concentrates around

p
p/n. In particular, for a fixed number of features it decreases as 1/

p
n

with the number of available data, becoming arbitrarily small as n ! 1. This is illustrated by
Figure 5, which shows the results of a numerical experiment that match the theoretical analysis
very closely.

Theorem 2.12 (Non-asymptotic bound on least-squares error). Let

~y := X~�⇤ + ~z, (50)

where the entries of the n⇥p matrix X and the n-dimensional vector ~z are iid standard Gaussians.
The least-squares estimate satisfies

s
(1� ✏)

(1 + ✏)

r
p

n


���
���~�LS � ~�⇤

���
���
2


s
(1 + ✏)

(1� ✏)

r
p

n
(51)

with probability at least 1� 1/p� 2 exp (�p✏2/8) as long as n � 64p log(12/✏)/✏2.

Proof. By the same argument used to derive (49), we have
����UT~z

����
2

�1


����VS
�1
U

T~z
����

2


����UT~z
����

2

�p
. (52)
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By Theorem 2.10 in Lecture Notes 3 with probability 1� 2 exp (�p✏2/8)

(1� ✏) p 
����UT~z

����2
2
 (1 + ✏) p, (53)

where U contains the left singular vectors of X. By Theorem 3.7 in Lecture Notes 3 with proba-
bility 1� 1/p

p
n (1� ✏)  �p  �1 

p
n (1 + ✏) (54)

as long as n � 64p log(12/✏)/✏2. The result follows from combining (52) with (53) and (54) which
hold simultaneously with probability at least 1� 1/p� 2 exp (�p✏2/8) by the union bound.

3 Regularization

3.1 Noise amplification

Theorem 2.12 characterizes the performance of least-squares regression when the feature matrix
is well-conditioned, which means that its smallest singular value is not too small with respect to
the largest singular value.

Definition 3.1 (Condition number). The condition number of a matrix A 2 Rn⇥p, n � p, is equal
to the ratio �1/�p of its largest and smallest singular values �1 and �p.

In numerical linear algebra, a system of equations is said to be ill conditioned if the condition
number is large. The reason is that perturbations aligned with the singular vector corresponding
to the smallest singular value may be amplified dramatically when inverting the system. This is
exactly what happens in linear regression problems when the feature matrix X is not well condi-
tioned. The component of the noise that falls in the direction of the singular vector corresponding
to the smallest singular value blows up, as proven in the following theorem.

Lemma 3.2 (Noise amplification). Let X 2 Rn⇥p be a matrix such that m singular values are
smaller than ⌘ and let

~y := X~�⇤ + z, (55)

where the entries of ~z are iid standard Gaussians. Then, with probability at least 1�2 exp (�m✏2/8)

���
���~�LS � ~�⇤

���
���
2
� m

p
1� ✏

⌘
. (56)

Proof. Let X = USV T be the SVD of X, ~u1, . . . , ~up the columns of U and �1, . . . , �p the singular
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values. By (44)

���
���~�LS � ~�⇤

���
���
2

2
=

����V S�1UT~z
����2

2
(57)

=
����S�1UT~z

����2
2

V is an orthogonal matrix (58)

=
pX

i

�
~uT
i ~z

�2

�2
i

(59)

� 1

⌘2

mX

i

�
~uT
i ~z

�2
. (60)

The result follows because
Pm

i

�
~uT
i ~z

�2 � 1 � ✏ with probability at least 1 � 2 exp (�m✏2/8) by
Theorem 2.10 in Lecture Notes 3 .

We illustrate noise amplification in least-squares regression through a simple example.

Example 3.3 (Noise amplification). Consider a linear-regression problem with data of the form

~y := X~�⇤ + ~z, (61)

where

X :=

2

666666666664

0.212 �0.099

0.605 �0.298

�0.213 0.113

0.589 �0.285

0.016 0.006

0.059 0.032

3

777777777775

, ~�⇤ :=

2

4 0.471

�1.191

3

5 , ~z :=

2

666666666664

0.066

�0.077

�0.010

�0.033

0.010

0.028

3

777777777775

. (62)

The `2 norm of the noise is 0.11. The feature matrix is ill conditioned, its condition number is
100,

X = USV T =

2

666666666664

�0.234 0.427

�0.674 �0.202

0.241 0.744

�0.654 0.350

0.017 �0.189

0.067 0.257

3

777777777775

2

41.00 0

0 0.01

3

5

2

4�0.898 0.440

0.440 0.898

3

5 . (63)

As a result, the component of ~z in the direction of the second singular vector is amplified by a
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factor of 100! By (44), the error in the coe�cient estimate is

~�LS � ~�⇤ = V S�1UT~z (64)

= V

2

41.00 0

0 100.00

3

5UT~z (65)

= V

2

40.058
3.004

3

5 (66)

=

2

41.270
2.723

3

5 , (67)

so that the norm of the error satisfies ���
���~�LS � ~�⇤

���
���
2

||~z||2
= 27.00. (68)

4

The feature matrix is ill conditioned if any subset of columns is close to being linearly dependent,
since in that case there must be a vector that is almost in the null space of the matrix. This occurs
when some of the feature vectors are highly correlated, a phenomenon known as multicollinearity
in the statistics ling. The following lemma shows how two feature vectors being very correlated
results in poor conditioning.

Lemma 3.4 (Proof in Section 5.2). For any matrix X 2 Rn⇥p, with columns normalized to have
unit `2 norm, if any two distinct columns Xi and Xj satisfy

hXi, Xji2 � 1� ✏2 (69)

then �p  ✏, where �p is the smallest singular value of X.

3.2 Ridge regression

As described in the previous section, if the feature matrix is ill conditioned, then small shifts in
the data produce large changes in the least-squares solution. In particular, some of the coe�cients
may blow up due to noise amplification. In order to avoid this, we can add a term penalizing the
norm of the coe�cient vector to the least-squares cost function. The aim is to promote solutions
that yield a good fit with small coe�cients. Incorporating prior assumptions on the desired
solution– in this case that the coe�cients should not be too large– is called regularization. Least-
squares regression combined with `2-norm regularization is called ridge regression in statistics and
Tikhonov regularization in the inverse-problems literature.

Definition 3.5 (Ridge regression / Tikhonov regularization). For any X 2 Rn⇥p and ~y 2 Rp the
ridge-regression estimate is the minimizer of the optimization problem

~�ridge := argmin
~�

���
���~y �X~�

���
���
2

2
+ �

���
���~�
���
���
2

2
, (70)

where � > 0 is a fixed regularization parameter.
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As in the case of least-squares regression, the ridge-regression estimate has a closed form solution.

Theorem 3.6 (Ridge-regression estimate). For any X 2 Rn⇥p and ~y 2 Rn we have

~�ridge :=
�
XTX + �I

��1
XT~y. (71)

Proof. The ridge-regression estimate is the solution to a modified least-squares problem

~�ridge = argmin
~�

������

������

2

4~y
0

3

5�

2

4 X
p
�I

3

5 ~�

������

������

2

2

. (72)

By Theorem 2.1 the solution equals

~�ridge :=

0

@

2

4 X
p
�I

3

5
T 2

4 X
p
�I

3

5

1

A

�1 2

4 X
p
�I

3

5
T 2

4~y
0

3

5 (73)

=
�
XTX + �I

��1
XT~y. (74)

When � ! 0 then ~�ridge converges to the least-squares estimator. When � ! 1, it converges to
zero.

The approximation X~�ridge corresponding to the ridge-regression estimate is no longer the orthog-
onal projection of the data onto the column space of the feature matrix. It is a modified projection
where the component of the data in the direction of each left singular vector of the feature matrix
is shrunk by a factor of �2

i / (�
2
i + �) where �i is the corresponding singular value. Intuitively, this

reduces the influence of the directions corresponding to the smaller singular values which are the
ones responsible for more noise amplification.

Corollary 3.7 (Modified projection). For any X 2 Rn⇥p and ~y 2 Rn we have

~yridge := X~�ridge (75)

=
pX

i=1

�2
i

�2
i + �

h~y, ~uii ~ui, (76)

where ~u1, . . . , ~up are the left singular vectors of X and �1 � . . . � �p the corresponding singular
values.

Proof. Let X = USV T be the SVD of X. By the theorem,

X~�ridge := X
�
XTX + �I

��1
XT~y (77)

= USV T
�
V S2V T + �V V T

��1
V SUT~y (78)

= USV TV
�
S2 + �I

��1
V TV SUT~y (79)

= US
�
S2 + �I

��1
SUT~y, (80)

since V is an orthogonal matrix.
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The following theorem shows that, under the assumption that the data indeed follow a linear
model, the ridge-regression estimator can be decomposed into a term that depends on the signal
and a term that depends on the noise.

Theorem 3.8 (Ridge-regression estimate). If ~y := X~�⇤ + ~z, where X 2 Rn⇥p, ~z 2 Rn and
~�⇤ 2 Rp, then the solution of Problem (70) is equal to

~�ridge = V

2

6666664

�2
1

�2
1+�

0 · · · 0

0 �2
2

�2
2+�

· · · 0

· · ·

0 0 · · · �2
p

�2
p+�

3

7777775
V T ~�⇤ + V

2

6666664

�1

�2
1+�

0 · · · 0

0 �2

�2
2+�

· · · 0

· · ·

0 0 · · · �p

�2
p+�

3

7777775
UT~z, (81)

where X = USV T is the SVD of X and �1, . . . , �p are the singular values.

Proof. By Theorem 2.1 the solution equals

~�ridge =
�
XTX + �I

��1
XT

⇣
X~�⇤ + ~z

⌘
(82)

=
�
V S2V T + �V V T

��1
⇣
V S2V T ~�⇤ + V SUT~z

⌘
(83)

= V
�
S2 + �I

��1
V T

⇣
V S2V T ~�⇤ + V SUT~z

⌘
(84)

= V
�
S2 + �I

��1
S2V T ~�⇤ + V

�
S2 + �I

��1
SUT~z, (85)

because V is an orthogonal matrix.

If we consider the di↵erence between the true coe�cients ~�⇤ and the ridge-regression estimator,
the term that depends on ~�⇤ is usually known as the bias of the estimate, whereas the term that
depends on the noise is the variance. The reason is that if we model the noise as being random
and zero mean, then the mean or bias of the ridge-regression estimator equals the first term and
the variance is equal to the variance of the second term.

Corollary 3.9 (Bias of ridge-regression estimator). If the noise vector ~z is random and zero mean,

E
⇣
~�ridge � ~�⇤

⌘
= V

2

666664

�
�2
1+�

0 · · · 0

0 �
�2
2+�

· · · 0

· · ·
0 0 · · · �

�2
p+�

3

777775
V T ~�⇤. (86)

Proof. The result follows from the lemma and linearity of expectation.

Increasing � increases the bias, moving the mean of the estimator farther from the true value of the
coe�cients, but in exchange dampens the noise component. In statistics jargon, we introduce bias
in order to reduce the variance of the estimator. Calibrating the regularization parameter allows
us to adapt to the conditioning of the predictor matrix and the noise level in order to achieve a
good tradeo↵ between both terms.
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Figure 6: Coe�cients in the ridge-regression model (blue) for di↵erent values of the regularization
parameter � (horizontal axis). The fit to the data improves as we reduce � (green). The relative error of

the coe�cient estimate
���
���~�⇤ � ~�ridge

���
���
2
/
���
���~�⇤

���
���
2
is equal to one when � is large (because ~�ridge = 0), then

it decreases as � is reduced and finally it blows up due to noise amplification (red).

Example 3.10 (Noise amplification (continued)). By Theorem 3.8, the ridge-regression estimator
for the regression problem in Example 3.3 equals

~�ridge � ~�⇤ = V

2

4
�

1+� 0

0 �
0.012+�

3

5V T ~�⇤ � V

2

4
1

1+� 0

0 0.01
0.012+�

3

5UT~z, (87)

The regularization � should be set so to achieve a good balance between the two terms in the
error. Setting � = 0.01

~�ridge � ~�⇤ = �V

2

40.001 0

0 0.99

3

5V T ~�⇤ + V

2

40.99 0

0 0.99

3

5UT~z (88)

=

2

40.329
0.823

3

5 . (89)

The error is reduced significantly with respect to the least-squares estimate, we have
���
���~�ridge � ~�⇤

���
���
2

||~z||2
= 7.96. (90)

Figure 6 shows the values of the coe�cients for di↵erent values of the regularization parameter.
They vary wildly due to the ill conditioning of the problem. The figure shows how least squares
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(to the left where � ! 0) achieves the best fit to the data, but this does not result in a smaller
error in the coe�cient vector. � = 0.01 achieves a good compromise. At that point the coe�cients
are smaller, while yielding a similar fit to the data as least squares. 4

3.3 Ridge regression as maximum-a-posteriori estimation

From a probabilistic point of view, we can view the ridge-regression estimate as a maximum-a-
posteriori (MAP) estimate. In Bayesian statistics, the MAP estimate is the mode of the posterior
distribution of the parameter that we aim to estimate given the observed data.

Definition 3.11 (Maximum-a-posteriori estimator). The maximum-a-posteriori (MAP) estimator
of a random vector of parameters ~� 2 Rm given a realization of the data vector ~y is

~�MAP (~y) := argmax
~�

f~� | ~y

⇣
~� | ~y

⌘
, (91)

where f~� | ~y is the conditional pdf of the parameter ~� given the data ~y.

In contrast to ML estimation, the parameters of interest (in our case the regression coe�cients)
are modeled as random variables, not as deterministic quantities. This allows us to incorporate
prior assumptions about them through their marginal distribution. Ridge regression is equivalent
to modeling the distribution of the coe�cients as an iid Gaussian random vector.

Lemma 3.12 (Proof in Section 5.3). Let ~y 2 Rn be a realization of a random vector

~y := X~� + ~z, (92)

where ~� and ~z are iid Gaussian random vectors with mean zero and variance �2
1 and �2

2, re-
spectively. If X 2 Rn⇥m is known, then the MAP estimate of ~� is equal to the ridge-regression
estimate

~�MAP = argmin
~�

���
���~y �X~�

���
���
2

2
+ �

���
���~�
���
���
2

2
, (93)

where � := �2
2/�

2
1.

3.4 Cross validation

An important issue when applying ridge regression, and also other forms of regularization, is how
to calibrate the regularization parameter �. With real data, we do not know the true value of the
coe�cients as in Example 3.3 (otherwise we wouldn’t need to do regression in the first place!). In
addition, we cannot rely on how well the model fits the data, since this will always occur for � = 0,
which can lead to overfitting and noise amplification. However, we can evaluate the fit achieved by
the model on new data, di↵erent from the ones used to estimate the regression coe�cients. If the
fit is accurate, this is a strong indication that the model is not overfitting the noise. Calibrating
the regularization parameter using a di↵erent set of data is known as cross validation.
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Algorithm 3.13 (Cross validation). Given a set of examples
�
y(1), ~x (1)

�
,
�
y(2), ~x (2)

�
, . . . ,

�
y(n), ~x (n)

�
, (94)

which are centered and normalized, to determine the best value for � we:

1. Partition the data into a training set Xtrain 2 Rntrain⇥p, ~ytrain 2 Rntrain and a validation set
Xval 2 Rnval⇥p, ~yval 2 Rnval, such that ntrain + nval = n.

2. Fit the model using the training set for every � in a set ⇤ (usually a logarithmic grid of
values)

~�ridge (�) := argmin
~�

���
���~ytrain �Xtrain

~�
���
���
2

2
+ �

���
���~�
���
���
2

2
(95)

and evaluate the fitting error on the validation set

err (�) :=
���
���~ytrain �Xtrain

~�ridge(�)
���
���
2

2
. (96)

3. Choose the value of � that minimizes the validation-set error

�cv := argmin
�2⇤

err (�) . (97)

In practice, more sophisticated cross-validation procedures are applied to make an e�cient use of
the data. For example, in k-fold cross validation we randomly partition the data into k sets of
equal size. Then we evaluate the fitting error k times, each time using one of the k sets as the
validation set and the rest as the training set.

Finally, it is important to note that if we have used the validation set to fit the regularization
parameter, we cannot use it to evaluate our results. This wouldn’t be fair, since we have calibrated
one the parameter to do well precisely on those data! It is crucial to evaluate the model on a test
set that is completely di↵erent from both the training and validation tests.

Example 3.14 (Prediction of house prices). In this example we consider the problem of predicting
the price of a house2. The features that we consider are:

1. Area of the living room.

2. Condition (an integer between 1 and 5 evaluating the state of the house).

3. Grade (an integer between 7 and 12 evaluating the house).

4. Area of the house without the basement.

5. Area of the basement.

6. The year it was built.

7. Latitude.

8. Longitude.

2The data are available at http://www.kaggle.com/harlfoxem/housesalesprediction
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Figure 7: Coe�cients in the ridge-regression model (blue) for di↵erent values of the regularization
parameter � (horizontal axis). The relative `2-norm error evaluated on the training data is shown in
green. The relative `2-norm error evaluated on the validation data is shown in purple.

9. Average area of the living room of the houses within 15 blocks.

We use 15 houses to train the data, a validation set of 15 houses to calibrate the regularization
parameter of the ridge regression model and a test set of 15 houses to evaluate the results. The
feature matrix has significant correlations (the condition number is equal to 9.94), so we decide to
apply ridge regression. Figure 7 shows the value of the coe�cients obtained by fitting the model
to the training set for di↵erent values of �. It also shows the corresponding relative `2-norm fit

���
���~y �X~�ridge

���
���
2

||~y||2
(98)

to the training and validation sets. For small � the model fits the training set much better than
the validation set, a clear indication that it is overfitting. The validation-set error is minimized
for � = 0.27. For that value the error is 0.672 on the validation set and 0.799 on the test set. In
contrast, the error of the least-squares estimator is 0.906 on the validation set and 1.186 on the
test set. Figure 8 shows the prices estimated by the least-squares and the ridge-regression models
plotted against the true prices. The least-squares estimate is much more accurate on the training
set than on the validation and test sets due to overfitting. Adding regularization and computing
a ridge-regression estimate substantially improves the prediction results on the test set. 4

4 Classification

In this section, we consider the problem of classification. The goal is to learn a model that assigns
one of several predefined categories to a set of examples, represented by the values of certain
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Training Validation Test

Figure 8: Prices estimated by the least-squares (blue) and the ridge-regression (orange) models plotted
against the true prices for the training, validation and test sets.

features, as in the case of regression. To be more precise, we have available n examples of category
labels and their corresponding features

�
y(1), ~x (1)

�
,
�
y(2), ~x (2)

�
, . . . ,

�
y(n), ~x (n)

�
. (99)

The label y(i) indicates what category example i belongs to. Here, we consider the simple case
where there are only two categories and set the labels to equal either 0 or 1. Our aim is to predict
the label y(i) 2 {0, 1} from p real-valued features ~x (i) 2 Rp. This is a regression problem, where
the response is binary.

4.1 Perceptron

Inspired by linear regression, let us consider how to use a linear model to perform classification.
A reasonable idea is to fit a vector of coe�cients ~� such that the label is predicted to equal 1 if
h~x (i), ~�i is larger than a certain quantity, and 0 if it is smaller. This requires finding ~� 2 Rp and
�0 such that

y(i) =

(
1 if �0 + h~x (i), ~�i > 0

0 otherwise
(100)

for as many 1  i  n as possible. This method is called the perceptron algorithm. The model is
fit by considering each feature vector sequentially and updating ~� if the current classification is
wrong. This method is guaranteed to converge if the data are linearly separable, i.e. if there is a
hyperplane in the p-dimensional feature space Rp separating the two classes. However, if this is
not the case, then the method becomes unstable.

4.2 Logistic regression

Logistic regression is an example of a generalized linear model. Generalized linear models extend
the linear regression paradigm by incorporating a link function that performs an entry-wise non-
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Figure 9: The logistic function used as a link function in logistic regression.

linear transformation of the output of a linear model. In the case of logistic regression, this link
function is the logistic function

g (t) :=
1

1 + exp(�t)
, (101)

depicted in Figure 9. The output of g is always between 0 and 1. We can interpret the function as
a smoothed version of the step function used by the perceptron algorithm, as it maps large values
to 1 and small values to 0.

The logistic-regression model is of the form

y(i) ⇡ g
⇣
�0 + h~x (i), ~�i

⌘
. (102)

To simplify notation, from now on we assume that one of the feature vectors is equal to a constant,
so that �0 is included in ~�. The logistic-regression estimator is obtained by calibrating ~� in order
to optimize the fit to the training data. This can be achieved by maximizing the log-likelihood
function derived in the following theorem.

Theorem 4.1 (Logistic-regression cost function). Assume that y(1), . . . , y(n) are independent
samples from Bernoulli random variables with parameter

py(i) (1) := g
⇣
h~x (i), ~�i

⌘
, (103)

where the vectors ~x (1), . . . , ~x (n) 2 Rp are known. The maximum-likelihood estimate of ~� given
y(1), . . . , y(n) is equal to

~�ML :=
nX

i=1

y(i) log g
⇣
h~x (i), ~�i

⌘
+
�
1� y(i)

�
log

⇣
1� g

⇣
h~x (i), ~�i

⌘⌘
. (104)
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Proof. The likelihood L
⇣
~�
⌘

is defined as the joint pmf of the random variables y
(1), . . . , y(n)

interpreted as a function of the coe�cient vector. Due to the independence assumption,

L
⇣
~�
⌘
:= py(1),...,y(n)

�
y(1), . . . , y(n)

�
(105)

=
nY

i=1

g
⇣
h~x (i), ~�i

⌘y(i) ⇣
1� g

⇣
h~x (i), ~�i

⌘⌘1�y(i)

. (106)

Maximizing this nonnegative function is the same as maximizing its logarithm, so the proof is
complete.

Even though it is quite implausible that the probabilistic assumptions assumed in this theorem
actually hold in practice, the corresponding log-likelihood function is very useful. It penalizes
classification errors in a smooth way and is easy to optimize (as we will see later on).

Definition 4.2 (Logistic-regression estimator). Given a set of examples
�
y(1), ~x (1)

�
,
�
y(2), ~x (2)

�
,

. . . ,
�
y(n), ~x (n)

�
, we define the logistic-regression coe�cient vector as

~�LR :=
nX

i=1

y(i) log g
⇣
h~x (i), ~�i

⌘
+
�
1� y(i)

�
log

⇣
1� g

⇣
h~x (i), ~�i

⌘⌘
, (107)

where we assume that one of the features is always equal to one, so we don’t have to fit an intercept.
For a new feature vector ~x the logistic-regression prediction is

yLR :=

(
1 if g

⇣
h~x, ~�LRi

⌘
� 0,

0 otherwise.
(108)

The value g
⇣
h~x, ~�LRi

⌘
can be interpreted as the probability under the model that the label of the

example equals 1.

Example 4.3 (Flower classification). The Iris data set was compiled by the statistician Ronald
Fisher in 1936. It contains examples of three species of flowers, together with measurements
of the length and width of their sepal and petal. In this example, we consider the problem of
distinguishing between two of the species using only the sepal lengths and widths.

We assume that we just have access to 5 examples of Iris setosa (label 0) with sepal lengths 5.4,
4.3, 4.8, 5.1 and 5.7, and sepal widths 3.7, 3, 3.1, 3.8 and 3.8, and to 5 examples of Iris versicolor
(label 1) with sepal lengths 6.5, 5.7, 7, 6.3 and 6.1, and sepal widths 2.8, 2.8, 3.2, 2.3 and 2.8.
We want to classify two new examples: one has a sepal length of 5.1 and width 3.5, the other
has length 5 and width 2. �0 = 2.06. After centering and normalizing the data set (note that we
ignore the labels to center and normalize), we fit a logistic regression model, where the coe�cient
vector equals

~�LR =

2

4 32.1

�29.6

3

5 (109)

and the intercept �0 equals 2.06. The coe�cients suggest that versicolor has larger sepal length
than setosa, but smaller sepal width. The following table shows the values of the features, their
inner product with ~�LR and the output of the logistic function.
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Figure 10: The data used in Example 4.3 is plotted in di↵erent colors depending on the corresponding
flower species. The direction of ~�LR is shown as a black arrow. The heat map corresponds to the value

of g
⇣
h~x, ~�LRi+ �0

⌘
at every point. The two new examples are depicted as white diamonds.

Figure 11: The data from the Iris data set plotted in di↵erent colors depending on the corresponding
flower species. The direction of ~�LR is shown as a black arrow. The heat map corresponds to the value

of g
⇣
h~x, ~�LRi+ �0

⌘
at every point.
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Figure 12: The coe�cient vector ~�LR obtained by fitting a logistic-regression model to distinguish be-
tween 6 and 9. The vector is reshaped so that each coe�cient is shown at the position of the corresponding
pixel.

i 1 2 3 4 5 6 7 8 9 10

~x (i)[1] -0.12 -0.56 -0.36 -0.24 0.00 0.33 0.00 0.53 0.25 0.17

~x (i)[2] 0.38 -0.09 -0.02 0.45 0.45 -0.22 -0.22 0.05 -0.05 -0.22

h~x (i), ~�LRi+ �0 -12.9 -13.5 -8.9 -18.8 -11.0 19.1 8.7 17.7 26.3 13.9

g
⇣
h~x (i), ~�LRi+ �0

⌘
0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

Figure 10 shows the data, which are linearly separable, the direction of ~�LR (black arrow) and

a heat map of values for g
⇣
h~x, ~�LRi

⌘
which shows are assigned to what category and with how

much certainty. The two new examples are depicted as white diamonds, the first is assigned to
setosa and the second to versicolor with almost total certainty. Both decisions are correct.

Figure 11 shows the result of trying to classify between Iris virginica and Iris versicolor based
on petal length and sepal width. In this case the data is not linearly separable, but the logistic-
regression model still partitions the space in a way that approximately separates the two classes.

The value of the likelihood g
⇣
h~x, ~�LRi

⌘
allows us to quantify the certainty with which the model

classifies each example. Note that the examples that are misclassified are assigned low values. 4

Example 4.4 (Digit classification). In this example we use the MNIST data set3 to illustrate
image classification. We consider the task of distinguishing a digit from another. The feature
vector ~xi contains the pixel values of an image of a 6 (~yi = 1) or a 9 (~yi = 0). We use 2000
training examples to fit a logistic regression model. The coe�cient vector is shown in Figure 12,
the intercept is equal to 0.053. The model manages to fit the training set perfectly. When tested
on 2000 new examples, it achieves a test error rate of 0.006. Figure 13 shows some test examples
and the corresponding probabilities assigned by the model. 4

3Available at http://yann.lecun.com/exdb/mnist/
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~x ~�T~x g
⇣
~�T~x+ �0

⌘
Pred.

True
label

~x ~�T~x g
⇣
~�T~x+ �0

⌘
Pred.

True
label

20.88 1.00 6 6 18.22 1.00 6 6

16.41 1.00 6 6 -14.71 0.00 9 9

-15.83 0.00 9 9 -17.02 0.00 9 9

7.612 0.9995 6 9 0.434 0.606 6 9

7.822 0.9996 6 9 -5.984 0.0025 9 6

-2.384 0.084 9 6 -1.164 0.238 9 6

Figure 13: Examples of digits in the MNIST data set along with the value of ~�T~x+�0 and the probability
assigned by the model.
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5 Proofs

5.1 Proof of Lemma 2.2

To ease notation let eX := X cent and ex := XT~1. Note that

~y cent = ~y � 1

n
~1~1T~y, (110)

eX = X � 1

n
~1 exT . (111)

By Theorem 2.1
2

4
~�LS

�LS,0

3

5 =

✓h
X ~1

iT h
X ~1

i◆�1 h
X ~1

iT
~y (112)

=

2

4X
TX ex

exT n

3

5
�1 2

4X
T~y

~1T~y

3

5 . (113)

We now apply the following lemma.

Lemma 5.1. For any matrices A 2 Rm⇥, let

B = A� 1

n
exexT (114)

be invertible, then
2

4A ex

exT n

3

5
�1

=

2

4 B�1 � 1
nB

�1ex

� 1
nex

TB�1 1
n + 1

n2 exTB�1ex

3

5 (115)

Proof. One can check the result by multiplying the two matrices and verifying that the product
is the identity.

Setting A := XTX, we have

B = XTX � 1

n
exexT (116)

=

✓
X � 1

n
~1 exT

◆T ✓
X � 1

n
~1 exT

◆
(117)

= eXT eX. (118)

As a result, by the lemma
2

4
~�LS

�LS,0

3

5 =

2

4

⇣
eXT eX

⌘�1

� 1
n

⇣
eXT eX

⌘�1

ex

� 1
nex

T
⇣
eXT eX

⌘�1
1
n + 1

n2 exT
⇣
eXT eX

⌘�1

ex

3

5

2

4X
T~y

~1T~y

3

5 (119)

=

2

4

⇣
eXT eX

⌘�1

XT
⇣
~y � 1

n
~1~1T~y

⌘

� 1
nex

T
⇣
eXT eX

⌘�1

XT
⇣
~y � 1

n
~1~1T~y

⌘
+

~1T ~y
n

3

5 , (120)
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which implies

X~�LS + �LS,0
~1 = X

⇣
eXT eX

⌘�1

XT~y cent � 1

n
~1exT

⇣
eXT eX

⌘�1

XT~y cent + av (~y)~1 (121)

= eX
⇣
eXT eX

⌘�1

XT~y cent + av (~y)~1 (122)

= eX
⇣
eXT eX

⌘�1 eXT~y cent + av (~y)~1, (123)

where the last inequality follows from

eXT~y cent =

✓
X � 1

n
~1~1TX

◆T ✓
~y � 1

n
~1~1T~y

◆
(124)

= XT~y � 1

n
XT~1~1T~y � 1

n
XT~1~1T~y +

1

n2
XT~1~1T~1~1T~y (125)

= XT~y � 1

n
XT~1~1T~y (126)

= XT~y cent. (127)

Since ~� cent
LS =

⇣
eXT eX

⌘�1 eXT~y cent the proof is complete.

5.2 Proof of Lemma 3.4

The orthogonal projection of Xi onto the span of Xj equals

Pspan(Xj) Xi = hXi, XjiXj (128)

so

����Pspan(Xj) Xi

����2
2
= hXi, Xji2 ||Xj||22 = 1� ✏2 (129)

and
���
���Pspan(Xj)

? Xi

���
���
2

2
= ||Xi||22 �

����Pspan(Xj) Xi

����2
2
= ✏2. (130)

Consider the unit norm vector ~w 2 Rp

~w[l] :=

8
><

>:

1p
2

if l = i

� 1p
2

if l = j

0 otherwise.

(131)
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We have

||X ~w||22 =
1

2
||Xi �Xj||22 (132)

=
1

2

���
���Pspan(Xj) Xi + Pspan(Xj)

? Xi �Xj

���
���
2

2
(133)

=
1

2

����Pspan(Xj) Xi �Xj

����2
2
+

1

2

���
���Pspan(Xj)

? Xi

���
���
2

2
(134)

=
1

2
||hXi, XjiXj �Xj||22 +

✏2

2
(135)

=
hXi, Xji2

2
||Xj||22 +

✏2

2
(136)

= ✏2. (137)

Finally by Theorem 2.7 in Lecture Notes 2

�p = min
||v||2=1

||X~v||2 � ||X ~w||2 = ✏. (138)

5.3 Proof of Lemma 3.12

By Bayes’ rule, the posterior pdf of ~x given ~y is equal to

f~� | ~y

⇣
~� | ~y

⌘
=

f~�,~y

⇣
~�, ~y

⌘

f~y (~y)
(139)

so for fixed ~y

argmax
~�

f~� | ~y

⇣
~� | ~y

⌘
= argmax

~�
f~�,~y

⇣
~�, ~y

⌘
(140)

= argmax
~�

f~�

⇣
~�
⌘
f~y | ~�

⇣
~y | ~�

⌘
. (141)

Since all the quantities are nonnegative, we can take logarithms

argmax
~�

f~� | ~y

⇣
~� | ~y

⌘
= argmax

~�
log f~�

⇣
~�
⌘
+ log f~y | ~�

⇣
~y | ~�

⌘
. (142)

Since, conditioned on ~� = ~�, ~y is iid Gaussian with mean X~� and variance �2
2

log f~y | ~�

⇣
~y | ~�

⌘
= log

nY

i=1

1p
2⇡�2

exp

✓
� 1

2�2
2

⇣
~y[i]�

⇣
X~�

⌘
[i]
⌘2
◆

(143)

= log
1p

(2⇡)n�n
2

exp

✓
� 1

2�2
2

���
���~y �X~�

���
���
2

2

◆
(144)

= � 1

2�2
2

���
���~y �X~�

���
���
2

2
+ log

1p
(2⇡)n�n

2

. (145)
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Similarly,

log f~�

⇣
~�
⌘
= � 1

2�2
1

���
���~�
���
���
2

2
+ log

1p
(2⇡)n�n

1

. (146)

Setting

� :=
�2
2

�2
1

, (147)

combining (142), (145) and (146) and ignoring the terms that do not depend on ~� completes the
proof.
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Optimization-based data analysis Fall 2017

Lecture Notes 7: Convex Optimization

1 Convex functions

Convex functions are of crucial importance in optimization-based data analysis because they can
be e�ciently minimized. In this section we introduce the concept of convexity and then discuss
norms, which are convex functions that are often used to design convex cost functions when fitting
models to data.

1.1 Convexity

A function is convex if and only if its curve lies below any chord joining two of its points.

Definition 1.1 (Convex function). A function f : Rn ! R is convex if for any ~x, ~y 2 Rn
and any

✓ 2 (0, 1),

✓f (~x) + (1� ✓) f (~y) � f (✓~x+ (1� ✓) ~y) . (1)

The function is strictly convex if the inequality is always strict, i.e. if ~x 6= ~y implies that

✓f (~x) + (1� ✓) f (~y) > f (✓~x+ (1� ✓) ~y) . (2)

A concave function is a function f such that �f is convex.

Linear functions are convex, but not strictly convex.

Lemma 1.2. Linear functions are convex but not strictly convex.

Proof. If f is linear, for any ~x, ~y 2 Rn and any ✓ 2 (0, 1),

f (✓~x+ (1� ✓) ~y) = ✓f (~x) + (1� ✓) f (~y) . (3)

Condition (1) is illustrated in Figure 1. The following lemma shows that when determining whether
a function is convex we can restrict our attention to its behavior along lines in Rn.

Lemma 1.3 (Proof in Section 4.1). A function f : Rn ! R is convex if and only if for any two

points ~x, ~y 2 Rn
the univariate function g~x,~y : [0, 1] ! R defined by

g~x,~y (↵) := f (↵~x+ (1� ↵) ~y) (4)

is convex. Similarly, f is strictly convex if and only if g~x,~y is strictly convex for any ~x 6= ~y.

1



f (✓~x+ (1� ✓)~y)

✓f (~x) + (1� ✓)f (~y)

f (~x)

f (~y)

Figure 1: Illustration of condition (1) in Definition 1.1. The curve corresponding to the function must

lie below any chord joining two of its points.

Convex functions are easier to optimize than nonconvex functions because once we find a local
minimum of the function we are done: every local minimum is guaranteed to be a global minimum.

Theorem 1.4 (Local minima are global). Any local minimum of a convex function is also a global

minimum.

Proof. We prove the result by contradiction. Let ~xloc be a local minimum and ~xglob a global
minimum such that f (~xglob) < f (~xloc). Since ~xloc is a local minimum, there exists � > 0 for which
f (~xloc)  f (~x) for all ~x 2 Rn such that ||~x� ~xloc||2  �. If we choose ✓ 2 (0, 1) small enough,
~x✓ := ✓~xloc + (1� ✓) ~xglob satisfies ||~x✓ � ~xloc||2  � and therefore

f (~xloc)  f (~x✓) (5)

 ✓f (~xloc) + (1� ✓) f (~xglob) by convexity of f (6)

< f (~xloc) because f (~xglob) < f (~xloc). (7)

1.2 Norms

Many of the cost functions that we consider in data analysis involve norms. Conveniently, all
norms are convex.

Lemma 1.5 (Norms are convex). Any valid norm ||·|| is a convex function.

Proof. By the triangle inequality inequality and homogeneity of the norm, for any ~x, ~y 2 Rn and
any ✓ 2 (0, 1)

||✓~x+ (1� ✓) ~y||  ||✓~x||+ ||(1� ✓) ~y|| = ✓ ||~x||+ (1� ✓) ||~y|| . (8)
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The following lemma establishes that the composition between a convex function and an a�ne
function is convex. In particular, this means that any function of the form

f (~x) :=
���
���A~x+~b

���
��� (9)

is convex for any fixed matrix A and vector ~b with suitable dimensions.

Lemma 1.6 (Composition of convex and a�ne function). If f : Rn ! R is convex, then for any

A 2 Rn⇥m
and any ~b 2 Rn

, the function

h (~x) := f
⇣
A~x+~b

⌘
(10)

is convex.

Proof. By convexity of f , for any ~x, ~y 2 Rm and any ✓ 2 (0, 1)

h (✓~x+ (1� ✓) ~y) = f
⇣
✓
⇣
A~x+~b

⌘
+ (1� ✓)

⇣
A~y +~b

⌘⌘
(11)

 ✓f
⇣
A~x+~b

⌘
+ (1� ✓) f

⇣
A~y +~b

⌘
(12)

= ✓ h (~x) + (1� ✓)h (~y) . (13)

The number of nonzero entries in a vector is often called the `0 “norm” of the vector. Despite its
name, it is not a valid norm (it is not homogeneous: for any ~x ||2~x||0 = ||~x||0 6= ||~x||0). In fact,
the `0 “norm” is not even convex.

Lemma 1.7 (`0 “norm” is not convex). The `0 “norm” defined as the number of nonzero entries

in a vector is not convex.

Proof. We provide a simple counterexample with vectors in R2 that can be easily extended to
vectors in Rn. Let ~x := ( 1

0 ) and ~y := ( 0
1 ), then for any ✓ 2 (0, 1)

||✓~x+ (1� ✓) ~y||0 = 2 > 1 = ✓ ||~x||0 + (1� ✓) ||~y||0 . (14)

Example 1.8 (Promoting sparsity). Finding sparse vectors that are consistent with observed data
is often very useful in data analysis. Let us consider a toy problem where the entries of a vector
are constrained to be of the form

~vt :=

2

4
t

t� 1
t� 1

3

5 . (15)

Our objective is to fit t so that ~vt is as sparse as possible or, in other words, minimize ||~vt||0.
Unfortunately this function is nonconvex. The graph of the function is depicted in Figure 2. In
contrast, if we consider

f (t) := ||~vt|| (16)
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1
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4
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t

||t||0
||t||1
||t||2
||t||1

Figure 2: Graph of the function (16) for di↵erent norms and for the nonconvex `0 “norm”.

where ||·|| is a valid norm, then we can exploit local information to find the global minimum
(we will discuss how to do this in more detail later on) because the function is convex in t by
Lemma 1.6. This is impossible to do for ||~vt||0 because it is constant except at two isolated points.
Figure 2 shows f for di↵erent norms.

The `1 norm is the best choice for our purposes: it is convex and its global minimum is at the
same location as the minimum `0 “norm” solution. This is not a coincidence: minimizing the `1
norm tends to promote sparsity. When compared to the `2 norm, it penalizes small entries much
more (✏2 is much smaller than |✏| for small ✏), as a result it tends to produce solutions that contain
a small number of larger nonzero entries. 4

The rank of a matrix interpreted as a function of its entries is also not convex.

Lemma 1.9 (The rank is not convex). The rank of matrices in Rn⇥n
interpreted as a function

from Rn⇥n
to R is not convex.

Proof. We provide a counterexample that is very similar to the one in the proof of Lemma 1.7.
Let

X :=


1 0
0 0

�
, Y :=


0 0
0 1

�
. (17)

For any ✓ 2 (0, 1)

rank (✓X + (1� ✓)Y ) = 2 > 1 = ✓ rank (X) + (1� ✓) rank (Y ) . (18)

4



Figure 3: Values of di↵erent norms for the matrix M (t) defined by (19). The rank of the matrix for

each t is marked in green.

Example 1.10 (Promoting low-rank structure). Finding low-rank matrices that are consistent
with data is useful in applications of PCA where data may be corrupted or missing. Let us consider
a toy problem where our goal is to find t so that

M (t) :=

2

4
0.5 + t 1 1
0.5 0.5 t
0.5 1� t 0.5

3

5 , (19)

is as low rank as possible. In Figure 3 we compare the rank, the operator norm, the Frobenius
norm and the nuclear norm of M (t) for di↵erent values of t. As expected, the rank is highly
nonconvex, whereas the norms are all convex, which follows from Lemma 1.6. The value of t that
minimizes the rank is the same as the one that minimizes the nuclear norm. In contrast, the values
of t that minimize the operator and Frobenius norms are di↵erent. Just like the `1 norm promotes
sparsity, the nuclear norm, which the `1 norm of the singular values, promotes solutions with low
rank, which is the `0 “norm” of the singular values. 4

2 Di↵erentiable convex functions

2.1 First-order conditions

The gradient is the generalization of the concept of derivative, which captures the local rate of
change in the value of a function, in multiple directions.
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Definition 2.1 (Gradient). The gradient of a function f : Rn ! R at a point ~x 2 Rn
is defined

to be the unique vector rf(~x) 2 Rn
satisfying

lim
~p!0

f(x+ ~p)� f(x)�rf(~x)T~p

k~pk2
= 0,

assuming such a vector rf(~x) exists. If rf(~x) exists then it is given by the vector of partial

derivatives:

rf (~x) =

2

6666664

@f(~x)
@~x[1]

@f(~x)
@~x[2]

· · ·
@f(~x)
@~x[n]

3

7777775
. (20)

If the gradient exists at every point, the function is said to be di↵erentiable.

The gradient encodes the variation of the function in every direction.

Lemma 2.2. If a function f : Rn ! R is di↵erentiable, the directional derivative f 0
~u of f at ~x

equals

f 0
~u (~x) := lim

h!0

f (~x+ h~u)� f (~x)

h
(21)

= hrf (~x) , ~ui (22)

for any unit-norm vector ~u 2 Rn
.

We omit the proof of the lemma, which is a basic result from multivariable calculus. An important
corollary is that the gradient provides the direction of maximum positive and negative variation
of the function.

Corollary 2.3. The direction of the gradient rf of a di↵erentiable function f : Rn ! R is the

direction of maximum increase of the function. The opposite direction is the direction of maximum

decrease.

Proof. By the Cauchy-Schwarz inequality

|f 0
~u (~x)| =

���rf (~x)T ~u
��� (23)

 ||rf (~x)||2 ||~u||2 (24)

= ||rf (~x)||2 (25)

with equality if and only if ~u = ± rf(~x)
||rf(~x)||2

.

Figure 4 shows the gradient of a function f : R2 ! R at di↵erent locations. The gradient is
orthogonal to the contour lines of the function. The reason is that by definition the function does
not change along the contour lines, so the directional derivatives in those directions are zero.

6



Figure 4: Contour lines of a function f : R2 ! R. The gradients at di↵erent points are represented by

black arrows, which are orthogonal to the contour lines.

The first-order Taylor expansion of a di↵erentiable function is a linear function that approximates
the function around a certain point. Geometrically, in one dimension this linear approximation
is a line that is tangent to the curve (x, f(x)). In multiple dimensions, it is a hyperplane that is
tangent to the hypersurface (~x, f (~x)) at that point.

Definition 2.4 (First-order approximation). The first-order or linear approximation of a di↵er-

entiable function f : Rn ! R at ~x is

f 1
~x (~y) := f (~x) +rf (~x)T (~y � ~x) . (26)

By construction, the first-order approximation of a function at a given point is a linear function
that has exactly the same directional derivatives at that point. The following theorem establishes
that a function f is convex if and only if the linear approximation f 1

~x is a lower bound of f for
any ~x 2 Rn. Figure 5 illustrates the condition.

Theorem 2.5 (Proof in Section 4.2). A di↵erentiable function f : Rn ! R is convex if and only

if for every ~x, ~y 2 Rn

f (~y) � f (~x) +rf (~x)T (~y � ~x) . (27)

It is strictly convex if and only if

f (~y) > f (~x) +rf (~x)T (~y � ~x) . (28)

An immediate corollary is that for a convex function, any point at which the gradient is zero is a
global minimum. If the function is strictly convex, the minimum is unique. This is very useful for
minimizing such functions, once we find a point where the gradient is zero we are done!
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x

f (~y)

f 1
x (~y)

Figure 5: An example of the first-order condition for convexity. The first-order approximation at any

point is a lower bound of the function.

f

epi (f)

Figure 6: Epigraph of a function.

Corollary 2.6. If a di↵erentiable function f is convex and rf (~x) = 0, then for any ~y 2 R

f (~y) � f (~x) . (29)

If f is strictly convex then for any ~y 6= ~x

f (~y) > f (~x) . (30)

For any di↵erentiable function f and any ~x 2 Rn let us define the hyperplane Hf,~x ⇢ Rn+1 that
corresponds to the first-order approximation of f at ~x,

Hf,~x :=

8
<

:~y | ~y[n+ 1] = f 1
~x

0

@

2

4
~y[1]
· · ·
~y[n]

3

5

1

A

9
=

; . (31)
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The epigraph is the subset of Rn+1 that lies above the graph of the function. Recall that the
graph is the set of vectors in Rn+1 obtained by concatenating ~x 2 Rn and f (~x) for every ~x 2 Rn.
Figure 6 shows the epigraph of a convex function.

Definition 2.7 (Epigraph). The epigraph of a function f : Rn ! R is the set

epi (f) :=

8
<

:~x | f

0

@

2

4
~x[1]
· · ·
~x[n]

3

5

1

A  ~x[n+ 1]

9
=

; . (32)

Geometrically, Theorem 2.5 establishes that the epigraph of a convex function always lies above
Hf,~x. By construction, Hf,~x and epi (f) intersect at ~x. This implies that Hf,~x is a supporting
hyperplane of epi (f) at ~x.

Definition 2.8 (Supporting hyperplane). A hyperplane H is a supporting hyperplane of a set S
at ~x if

• H and S intersect at ~x,

• S is contained in one of the half-spaces bounded by H.

The optimality condition in Corollary 2.6 has a very intuitive geometric interpretation in terms of
the supporting hyperplane Hf,~x. rf = 0 implies that Hf,~x is horizontal if the vertical dimension
corresponds to the n + 1th coordinate. Since the epigraph lies above hyperplane, the point at
which they intersect must be a minimum of the function.

2.2 Second-order conditions

The Hessian matrix of a function contains its second-order partial derivatives.

Definition 2.9 (Hessian matrix). A di↵erentiable function f : Rn ! R is twice di↵erentiable at

~x 2 Rn
if there is a matrix r2f(~x) 2 Rn⇥n

such that

lim
~p!0

krf(x+ h)�rf(x)�r2f(x)~pk2
kpk2

= 0.

If r2f(~x) exists then it is given by

r2f (~x) =

2

6666664

@2f(~x)
@~x[1]2

@2f(~x)
@~x[1]@~x[2] · · · @2f(~x)

@~x[1]@~x[n]

@2f(~x)
@~x[1]@~x[2]

@2f(~x)
@~x[1]2 · · · @2f(~x)

@~x[2]@~x[n]

· · ·
@2f(~x)

@~x[1]@~x[n]
@2f(~x)

@~x[2]@~x[n] · · · @2f(~x)
@~x[n]2

3

7777775
. (33)

If a function has a Hessian matrix at every point, we say that the function is twice di↵erentiable.

If each entry of the Hessian is continuous, we say f is twice continuously di↵erentiable.
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x

f (~y)

f 2
x (~y)

Figure 7: Second-order approximation of a function.

Note that by (33) if f : R ! Rn is di↵erentiable everywhere and twice di↵erentiable at ~x 2 Rn

then the Hessian r2f(~x) is always a symmetric matrix.

As you might recall from basic calculus, curvature is the rate of change of the slope of the function
and is consequently given by its second derivative. The Hessian matrix encodes the curvature of
the function in every direction, another basic result from multivariable calculus.

Lemma 2.10. If a function f : Rn ! R is twice di↵erentiable, the second directional derivative

f 00
~u of f at ~x equals

f 00
~u (~x) = ~uTr2f (~x) ~u, (34)

for any unit-norm vector ~u 2 Rn
.

The Hessian and the gradient of a twice-di↵erentiable function can be used to build a quadratic
approximation of the function. This approximation is depicted in Figure 7 for a one-dimensional
function.

Definition 2.11 (Second-order approximation). The second-order or quadratic approximation of

f at ~x is

f 2
~x (~y) := f (~x) +rf (~x) (~y � ~x) +

1

2
(~y � ~x)T r2f (~x) (~y � ~x) (35)

By construction, the second-order approximation of a function at a given point is a quadratic form
that has exactly the same directional derivatives and curvature at that point. This second-order
approximation is a quadratic form.

Definition 2.12 (Quadratic functions/forms). A quadratic function q : Rn ! R is a second-order

polynomial in several dimensions. Such polynomials can be written in terms of a symmetric matrix

A 2 Rn⇥n
, a vector ~b 2 Rn

and a constant c

q (~x) := ~xTA~x+~bT~x+ c. (36)

A quadratic form is a (pure) quadratic function where ~b = 0 and c = 0.

10



The quadratic form f 2
~x (~y) becomes an arbitrarily good approximation of f as we approach ~x, even

if we divide the error by the squared distance between ~x and ~y. We omit the proof that follows
from multivariable calculus.

Lemma 2.13. The quadratic approximation f 2
~x : Rn ! R at ~x 2 Rn

of a twice di↵erentiable

function f : Rn ! R satisfies

lim
~y!~x

f (~y)� f 2
~x (~y)

||~y � ~x||22
= 0 (37)

To find the maximum curvature of a function at a given point, we can compute an eigendecom-
position of its Hessian.

Theorem 2.14. Let A = U⇤UT
be the eigendecomposition of a symmetric matrix A, where

�1 � · · · � �n (which can be negative) are the eigenvalues and ~u1, . . . , ~un the corresponding

eigenvectors. Then

�1 = max
{||~x||2=1 | ~x2Rn}

~xTA~x, (38)

~u1 = argmax
{||~x||2=1 | ~x2Rn}

~xTA~x, (39)

�n = min
{||~x||2=1 | ~x2Rn}

~xTA~x, (40)

~un = argmin
{||~x||2=1 | ~x2Rn}

~xTA~x. (41)

Proof. By Theorem 4.3 in Lecture Notes 2 the eigendecomposition of A is the same as its SVD,
except that some of the eigenvalues may be negative (which flips the direction of the corresponding
eigenvectors with respect to the singular vectors). The result then follows from Theorem 2.7 in
the same lecture notes.

Corollary 2.15. Consider the eigendecomposition of the Hessian matrix of a twice-di↵erentiable

function f at a point ~x. The maximum curvature of f at ~x is given by the largest eigenvalue of

r2f (~x) and is in the direction of the corresponding eigenvector. The smallest curvature, or the

largest negative curvature, of f at ~x is given by the smallest eigenvalue of r2f (~x) and is in the

direction of the corresponding eigenvector.

If all the eigenvalues of a symmetric matrix A 2 Rn⇥n are nonnegative, the matrix is said to be pos-
itive semidefinite. The pure quadratic form corresponding to such matrices is always nonnegative.

Lemma 2.16 (Positive semidefinite matrices). The eigenvalues of a symmetric matrix A 2 Rn⇥n

are all nonnegative if and only if

~xTA~x � 0 (42)

for all ~x 2 Rn
. Such matrices are called positive semidefinite.

11



Convex Concave Neither

Figure 8: Quadratic forms for which the Hessian is positive definite (left), negative definite (center) and

neither positive nor negative definite (right).

Proof. By Theorem 2.14, the matrix has an eigendecomposition A = U⇤UT where the eigenvectors
~u1, . . . , ~un form an orthonormal basis so that

~xTA~x = ~xTU⇤UT~x (43)

=
nX

i=1

�ih~ui, ~xi2. (44)

If the eigenvalues are positive the matrix is positive definite. If the eigenvalues are all nonposi-
tive, the matrix is negative semidefinite. If they are negative, the matrix is negative definite. By
Corollary 2.15 a twice-di↵erentiable function has positive (resp. nonnegative) curvature in every

direction if its Hessian is positive definite (resp. semidefinite) and it has negative (resp. nonposi-
tive) curvature in every direction if the Hessian is negative definite (resp. semidefinite). Figure 8
illustrates this in the case of quadratic forms in two dimensions.

For univariate functions that are twice di↵erentiable, convexity is dictated by the curvature. The
following lemma establishes that univariate functions are convex if and only if their curvature is
always nonnegative.

Lemma 2.17 (Proof in Section 4.4). A twice-di↵erentiable function g : R ! R is convex if and

only if g00 (x) � 0 for all x 2 R.

A corollary of this result is that twice-di↵erentiable functions in Rn are convex if and only if their
Hessian is positive semidefinite at every point.

Corollary 2.18. A twice-di↵erentiable function f : Rn ! R is convex if and only if for every

~x 2 Rn
, the Hessian matrix r2f (~x) is positive semidefinite.

Proof. By Lemma 1.3 we just need to show that the univariate function g~a,~b defined by (4) is

convex for all ~a,~b 2 Rn. By Lemma 2.17 this holds if and only if the second derivative of g~a,~b
is nonnegative. This quantity is nonnegative for all ~a,~b 2 Rn if and only if r2f (~x) is positive
semidefinite for any ~x 2 Rn.

12



Remark 2.19 (Strict convexity). If the Hessian is positive definite, then the function is strictly

convex (the proof is essentially the same). However, there are functions that are strictly convex

for which the Hessian may equal zero at some points. An example is the univariate function

f (x) = x4
, for which f 00 (0) = 0.

We can interpret Corollary 2.18 in terms of the second-order Taylor expansion of f : Rn ! R at
~x: f is convex if and only if this quadratic approximation is always convex.

3 Minimizing di↵erentiable convex functions

In this section we describe di↵erent techniques for solving the optimization problem

min
~x2Rn

f (~x) , (45)

when f is di↵erentiable and convex. By Theorem 1.4 any local minimum of the function is also
a global minimum. This motivates trying to make progress towards a solution by exploiting local
first and second order information.

3.1 Gradient descent

Gradient descent exploits first-order local information encoded in the gradient to iteratively ap-
proach the point at which f achieves its minimum value. The idea is to take steps in the direction
of steepest descent, which is �rf (~x) by Corollary 2.3.

Algorithm 3.1 (Gradient descent, aka steepest descent). Set the initial point ~x (0)
to an arbitrary

value in Rn
. Update by setting

~x (k+1) := ~x (k) � ↵k rf
�
~x (k)

�
, (46)

where ↵k > 0 is a nonnegative real number which we call the step size, until a stopping criterion

is met.

Examples of stopping criteria include checking whether the relative progress
����~x (k+1) � ~x (k)

����
2

||~x (k)||2
(47)

or the norm of the gradient are below a predefined tolerance. Figure 9 shows two examples in
which gradient descent is applied in one and two dimensions. In both cases the method converges
to the minimum.

In the examples of Figure 9 the step size is constant. In practice, determining a constant step
that is adequate for a particular function can be challenging. Figure 10 shows two examples to
illustrate this. In the first, the step size is too small and as a result convergence is extremely slow.
In the second the step size is too large which causes the algorithm to repeatedly overshoot the
minimum and eventually diverge.

13



f : R ! R f : R2 ! R

Figure 9: Iterations of gradient descent applied to a univariate (left) and a bivariate (right) function.

The algorithm converges to the minimum in both cases.

Ideally, we would like to adapt the step size automatically as the iterations progress. A possibility
is to search for the minimum of the function along the direction of the gradient,

↵k := argmin
↵

h (↵) (48)

= argmin
↵2R

f
�
~x (k) � ↵krf

�
~x (k)

��
. (49)

This is called a line search. Recall that the restriction of an n-dimensional convex function to a
line in its domain is also convex. As a result the line-search problem is a one-dimensional convex
problem. However, it may still be costly to solve. The backtracking line search is an alternative
heuristic that produces very similar results in practice at less cost. The idea is to ensure that we
make some progress in each iteration, without worrying about actually minimizing the univariate
function.

Algorithm 3.2 (Backtracking line search with Armijo rule). Given ↵0 � 0 and �, ⌘ 2 (0, 1), set
↵k := ↵0 �i

for the smallest integer i such that ~x (k+1) := ~x (k) � ↵krf
�
~x (k)

�
satisfies

f
�
~x (k+1)

�
 f

�
~x (k)

�
� 1

2
↵k

����rf
�
~x (k)

�����2
2
, (50)

a condition known as Armijo rule

Figure 11 shows the result of applying gradient descent with a backtracking line search to the
same example as in Figure 10. In this case, the line search manages to adjust the step size so that
the method converges.

Example 3.3 (Gradient descent for least squares). Gradient descent can be used to minimize the
least-squares cost function

minimize~�2Rp

���
���~y �X~�

���
���
2

2
, (51)
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Small step size Large step size

Figure 10: Iterations of gradient descent when the step size is small (left) and large (right). In the first

case the convergence is very small, whereas in the second the algorithm diverges away from the minimum.

The initial point is bright red.

Figure 11: Gradient descent using a backtracking line search based on the Armijo rule. The function is

the same as in Figure 10.
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described in Section 2 of Lecture Notes 6 to fit a linear regression model from n examples of the
form,

�
y(1), ~x (1)

�
,
�
y(2), ~x (2)

�
, . . . ,

�
y(n), ~x (n)

�
. (52)

The cost function is convex by Lemma 1.6 (also its Hessian XTX is positive semidefinite). The
gradient of the quadratic function

f(~�) :=
���
���~y �X~�

���
���
2

2
(53)

= ~�TXTX~� � 2~�TXT~y + ~yT~y (54)

equals

rf(~�) = 2XTX~� � 2XT~y (55)

so the gradient descent updates are

~�(k+1) = ~�(k) + 2↵kX
T
⇣
~y �X~�(k)

⌘
(56)

= ~�(k) + 2↵k

nX

i=1

⇣
~y(i) � hx(i), ~�(k)i

⌘
x(i). (57)

This has a very intuitive interpretation in terms of the examples: if ~y(i) is larger than hx(i), ~�(k)i
we add a small multiple of x(i) in order to reduce the di↵erence, if it is smaller we subtract it.

Gradient descent is not the best first-order iterative optimization method for least-squares min-
imization. The conjugate-gradients method is better suited for this problem. We refer to [5] for
an excellent tutorial on this method. 4

Example 3.4 (Gradient ascent for logistic regression). Since gradient descent minimizes convex
functions, gradient ascent (where we climb in the direction of the gradient) can be used to maximize
concave functions. In particular, let us consider the logistic regression log-likelihood cost function

f(~�) :=
nX

i=1

y(i) log g
⇣
h~x (i), ~�i

⌘
+
�
1� y(i)

�
log
⇣
1� g

⇣
h~x (i), ~�i

⌘⌘
(58)

from Definition 4.2 of Lecture Notes 6, where g (t) = (1� exp�t)� 1 the labels y(i), 1  i  n,
are equal to 0 or 1, and the features ~x (i) are vectors in Rn. We establish that this cost function is
concave in Corollary 3.23. The gradient of this cost function is given in the following lemma.

Lemma 3.5. The gradient of the function f in equation (58) equals

rf(~�) =
nX

i=1

y(i)
⇣
1� g(h~x (i), ~�i)

⌘
~x (i) �

�
1� y(i)

�
g(h~x (i), ~�i)~x (i). (59)

Proof. The result follows from the identities

g0 (t) = g (t) (1� g (t)) , (60)

(1� g (t))0 = �g (t) (1� g (t)) . (61)

and the chain rule. 4
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The gradient ascent updates

~�(k+1) := ~�(k) + ↵k

nX

i=1

y(i)
⇣
1� g(h~x (i), ~�(k)i)

⌘
~x (i) �

�
1� y(i)

�
g(h~x (i), ~�(k)i)~x (i). (62)

have an intuitive interpretation. If ~y(i) equals 1, we add x(i) scaled by the error 1 � g(h~x (i), ~�i)
to push g(h~x (i), ~�i) up towards ~y(i). Similarly, if ~y(i) equals 0, we subtract x(i) scaled by the error
g(h~x (i), ~�i) to push g(h~x (i), ~�i) down towards ~y(i). 4

3.2 Convergence of gradient descent

In this section we analyze the convergence of gradient descent. We begin by introducing a notion
of continuity for functions from Rn to Rm.

Definition 3.6 (Lipschitz continuity). A function f : Rn ! Rm
is Lipschitz continuous with

Lipschitz constant L if for any ~x, ~y 2 Rn

||f (~y)� f (~x)||2  L ||~y � ~x||2 . (63)

We focus on functions that have Lipschitz-continuous gradients. The following theorem shows
that these functions are upper bounded by a quadratic function.

Theorem 3.7 (Proof in Section 4.5). If the gradient of a function f : Rn ! R is Lipschitz

continuous with Lipschitz constant L,

||rf (~y)�rf (~x)||2  L ||~y � ~x||2 (64)

then for any ~x, ~y 2 Rn

f (~y)  f (~x) +rf (~x)T (~y � ~x) +
L

2
||~y � ~x||22 . (65)

The quadratic upper bound immediately implies a bound on the value of the cost function after
k iterations of gradient descent.

Corollary 3.8. Let ~x (i)
be the ith iteration of gradient descent and ↵i � 0 the ith step size, if rf

is L-Lipschitz continuous,

f
�
~x (k+1)

�
 f

�
~x (k)

�
� ↵k

✓
1� ↵kL

2

◆ ����rf
�
~x (k)

�����2
2
. (66)

Proof. Applying the quadratic upper bound we obtain

f
�
~x (k+1)

�
 f

�
~x (k)

�
+rf

�
~x (k)

�T �
~x (k+1) � ~x (k)

�
+

L

2

����~x (k+1) � ~x (k)
����2

2
. (67)

The result follows because ~x (k+1) � ~x (k) = �↵krf
�
~x (k)

�
.
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We can now establish that if the step size is small enough, the value of the cost function at each
iteration will decrease (unless we are at the minimum, where the gradient is zero).

Corollary 3.9 (Gradient descent is a descent method). If ↵k  1
L

f
�
~x (k+1)

�
 f

�
~x (k)

�
� ↵k

2

����rf
�
~x (k)

�����2
2
. (68)

Note that up to now we are not assuming that the function we are minimizing is convex. Gra-
dient descent will make local progress even for nonconvex functions if the step size is su�ciently
small. We now establish global convergence for gradient descent applied to convex functions with
Lipschitz-continuous gradients.

Theorem 3.10. We assume that f is convex, rf is L-Lipschitz continuous and there exists a

point ~x ⇤
at which f achieves a finite minimum. If we set the step size of gradient descent to

↵k = ↵  1/L for every iteration,

f
�
~x (k)

�
� f (~x ⇤) 

����~x (0) � ~x ⇤
����2

2

2↵ k
(69)

Proof. By the first-order characterization of convexity

f
�
~x (k�1)

�
+rf

�
~x (k�1)

�T �
~x ⇤ � ~x (k�1)

�
 f (~x ⇤) , (70)

which together with Corollary 3.9 yields

f
�
~x (k)

�
� f (~x ⇤)  rf

�
~x (k�1)

�T �
~x (k�1) � ~x ⇤�� ↵

2

����rf
�
~x (k�1)

�����2
2

(71)

=
1

2↵

⇣����~x (k�1) � ~x ⇤����2
2
�
����~x (k�1) � ~x ⇤ � ↵rf

�
~x (k�1)

�����2
2

⌘
(72)

=
1

2↵

⇣����~x (k�1) � ~x ⇤����2
2
�
����~x (k) � ~x ⇤����

2

⌘
(73)

Using the fact that by Corollary 3.9 the value of f never increases, we have

f
�
~x (k)

�
� f (~x ⇤)  1

k

kX

i=1

f
�
~x (k)

�
� f (~x ⇤) (74)

 1

2↵ k

⇣����~x (0) � ~x ⇤����2
2
�
����~x (k) � ~x ⇤����2

2

⌘
(75)


����~x (0) � ~x ⇤

����2
2

2↵ k
. (76)

The theorem assumes that we know the Lipschitz constant of the gradient beforehand. However,
the following lemma establishes that a backtracking line search with the Armijo rule is capable of
adjusting the step size adequately.
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Lemma 3.11 (Backtracking line search). If the gradient of a function f : Rn ! R is Lipschitz

continuous with Lipschitz constant L the step size obtained by applying a backtracking line search

using the Armijo rule with ⌘ = 0.5 satisfies

↵k � ↵min := min

⇢
↵0,

�

L

�
. (77)

Proof. By Corollary 3.8 the Armijo rule with ⌘ = 0.5 is satisfied if ↵k  1/L. Since there must
exist an integer i for which �/L  ↵0�i  1/L this establishes the result.

We can now adapt the proof of Theorem 3.10 to establish convergence when we apply a back-
tracking line search.

Theorem 3.12 (Convergence with backtracking line search). If f is convex and rf is L-Lipschitz
continuous. Gradient descent with a backtracking line search produces a sequence of points that

satisfy

f
�
~x (k)

�
� f (~x ⇤) 

����~x (0) � ~x ⇤
����2

2

2↵min k
, (78)

where ↵min := min
�
↵0, �

L

 
.

Proof. Following the reasoning in the proof of Theorem 3.10 up until equation (73) we have

f
�
~x (k)

�
� f (~x ⇤)  1

2↵i

⇣����x(k�1) � x⇤����2
2
�
����x(k) � x⇤����

2

⌘
. (79)

By Lemma 3.11 ↵i � ↵min, so we just mimic the steps at the end of the proof of Theorem 3.10 to
obtain

f
�
x(k)
�
� f (x⇤)  1

k

kX

i=1

f
�
x(k)
�
� f (x⇤) (80)

=
1

2↵min k

⇣����x(0) � x⇤����2
2
�
����x(k) � x⇤����2

2

⌘
(81)


����x(0) � x⇤

����2
2

2↵min k
. (82)

The results that we have proved imply that we need O (1/✏) to compute a point at which the cost
function has a value that is ✏ close to the minimum. However, in practice gradient descent and
related methods often converge much faster.
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3.3 Accelerated gradient descent

The following theorem by Nesterov shows that no algorithm that uses first-order information can
converge faster than O (1/

p
✏) for the class of functions with Lipschitz-continuous gradients. The

proof is constructive, see Section 2.1.2 of [4] for the details.

Theorem 3.13 (Lower bound on rate of convergence). There exist convex functions with L-
Lipschitz-continuous gradients such that for any algorithm that selects x(k)

from

x(0) + span
�
rf

�
x(0)
�
,rf

�
x(1)
�
, . . . ,rf

�
x(k�1)

� 
(83)

we have

f
�
x(k)
�
� f (x⇤) �

3L
����x(0) � x⇤

����2
2

32 (k + 1)2
. (84)

This rate is in fact optimal. The convergence of O (1/
p
✏) can be achieved if we modify gradient

descent by adding a momentum term.

Algorithm 3.14 (Nesterov’s accelerated gradient descent). Set the initial point ~x (0)
to an arbi-

trary value in Rn
. Update by setting

y(k+1) = x(k) � ↵krf
�
x(k)
�
, (85)

x(k+1) = �k y
(k+1) + �k y

(k), (86)

where ↵k is the step size and �k and �k are nonnegative real parameters, until a stopping criterion

is met.

Intuitively, the momentum term y(k) prevents the algorithm from overreacting to changes in the
local slope of the function. We refer the interested reader to [3, 4] for more details.

Example 3.15 (Digit classification). In this example we apply both gradient descent and accel-
erated gradient descent to train a logistic-regression model on the MNIST data set1. We consider
the task of determining whether a digit is a 5 or not. The feature vector ~xi contains the pixel
values of an image of a 5 (~yi = 1) or another number (~yi = 0). We use di↵erent numbers of
training examples to fit a logistic regression model. The cost function is maximized by running
gradient descent and accelerated gradient descent until the gradient is smaller than a certain value.
Figure 12 shows the time taken by both algorithms for di↵erent training-set sizes. 4

3.4 Stochastic gradient descent

Cost functions used to fit models from data are often additive, in the sense that we can write them
as a sum of m terms, each of which often depends on just one measurement,

f (~x) =
1

m

mX

i=1

fi (~x) . (87)

1
Available at http://yann.lecun.com/exdb/mnist/
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Figure 12: Time taken by gradient descent and accelerated gradient descent to train a logistic-regression

model on the MNIST data set for di↵erent training-set sizes.

Two important examples are the least-squares and logistic-regression log-likelihood functions dis-
cussed in Examples 3.3 and 3.4. In those cases each term fi corresponds to a di↵erent example
in the training set. If the training set is extremely large, then computing the whole gradient may
be computationally infeasible. Stochastic gradient descent circumvents this issue by using the
gradient of individual components instead.

Algorithm 3.16 (Stochastic gradient descent). Set the initial point ~x (0)
to an arbitrary value in

Rn
. Until a stopping criterion is met, update by:

1. Choosing a random subset of b indices B, where b ⌧ m is the batch size.

2. Setting

~x (k+1) := ~x (k) � ↵k

X

i2B
rfi

�
~x (k)

�
(88)

where ↵k > 0 is the step size.

Apart from its computational e�ciency, an advantage of stochastic gradient descent is that it can
be applied in online settings, where we need to optimize a function that depends on a large data
set but only have access to portions of the data set at a time.

Intuitively, stochastic gradient descent replaces the gradient of the whole function by

mX

i=1

1i2Brfi
�
~x (k+1)

�
. (89)

If B is generated so that every index has the same probability p of belonging to it, then this is an
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unbiased estimate of rf

E

 
mX

i=1

1i2Brfi
�
~x (k)

�
!

=
mX

i=1

E (1i2B)rfi
�
~x (k)

�
(90)

=
mX

i=1

P (i 2 B)rfi
�
~x (k)

�
(91)

= mprf
�
~x (k)

�
. (92)

Intuitively, the direction of the stochastic-gradient descent is the one of steepest descent on average.
However, the variation in the estimate can make stochastic gradient descent diverge unless the
step size is diminishing. We refer to [1] for more details on this algorithm.

Example 3.17 (Stochastic gradient descent for least squares and logistic regression). By the
derivation in Example 3.3, in the case of least squares the stochastic gradient descent update is

~�(k+1) := ~�(k) + 2↵k

X

i2B

⇣
~y(i) � hx(i), ~�(k)i

⌘
x(i), (93)

Similarly, by the derivation in Example 3.4, the update for stochastic gradient ascent applied to
logistic regression is

~�(k+1) := ~�(k) + ↵k

X

i2B
y(i)
⇣
1� g(h~x (i), ~�(k)i)

⌘
~x (i) �

�
1� y(i)

�
g(h~x (i), ~�(k)i)~x (i). (94)

In both cases the algorithm is very intuitive: instead of adjusting ~� using all of the examples, we
just use the ones in the batch. 4

Example 3.18 (Digit classification). In this example we apply stochastic gradient descent for
to train a logistic-regression model on the MNIST data set for the same task as Example 3.18.
Figure 13 shows the convergence of the algorithm for di↵erent batch sizes. 4

3.5 Newton’s method

Newton’s method minimizes a convex function by iteratively minimizing its quadratic approxi-
mation. The following simple lemma derives a closed form for the minimum of the quadratic
approximation at a given point.

Lemma 3.19. The minimum of the second-order approximation of a convex function f at ~x 2 Rn

f 2
~x (~y) := f (~x) +rf (~x) (~y � ~x) +

1

2
(~y � ~x)T r2f (~x) (~y � ~x) , (95)

which has a positive definite Hessian at ~x, is equal to

argmin
~y2Rn

f 2
~x (~y) = ~x�r2f (~x)�1 rf (~x) . (96)
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Figure 13: Convergence of stochastic gradient descent when fitting a logistic-regression model on the

MNIST data set. The plot shows the value of the cost function on the training set for di↵erent batch

sizes. Note that the updates for smaller batch sizes are much faster so the horizontal axis does not reflect

running time.

Proof. If the Hessian is positive definite, then f 2
~x is strictly convex and it has a unique global

minimum. Its gradient equals

rf 2
~x (y) = rf (~x) +r2f (~x) (~y � ~x) (97)

so it is equal to zero if

r2f (~x) (~y � ~x) = �rf (~x) . (98)

If the Hessian is positive definite, then it is also full rank. The only solution to this system
of equations is consequently ~y = ~x � r2f (~x)�1 rf (~x), which must be the minimum of f 2

~x by
Corollary 2.6 because the gradient vanishes.

The idea behind Newton’s method is that convex functions are often well approximated by
quadratic functions, especially close to their minimum.

Algorithm 3.20 (Newton’s method). Set the initial point ~x (0)
to an arbitrary value in Rn

. Update

by setting

~x (k+1) := ~x (k) �r2f
�
~x (k)

��1 rf
�
~x (k)

�
(99)

until a stopping criterion is met.

Figure 14 illustrates Newton’s method in a one-dimensional setting. When applied to a quadratic
function, the algorithm converges in one step: if we start at the origin it is equivalent to computing
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Figure 14: Newton’s method applied to a one-dimensional convex function. The quadratic approxima-

tions to the function at each iteration are depicted in red.

the closed-form solution for least squares derived in Theorem 2.1 of Lectures Notes 6. This is
illustrated in Figure 15, along with another example where the function is convex but not quadratic.
Newton’s method can provide significant acceleration for problems of moderate sizes where the
quadratic approximation is accurate, but often inverting the Hessian may be computationally
expensive.

Example 3.21 (Newton’s method for logistic regression). The following lemma derives the Hes-
sian of the logistic regression log-likelihood cost function (58).

Lemma 3.22. The Hessian of the function f in equation (58) equals

r2f(~�) = �XTG(~�)X, (100)

where the rows of X 2 Rn⇥p
contain the feature vectors ~x (1)

, . . .~x (n)
and G is a diagonal matrix

such that

G(~�)ii := g(h~x (i), ~�i)
⇣
1� g(h~x (i), ~�i)

⌘
, 1  i  n. (101)

Proof. By the identities (60) and (61) and the chain rule we have

@2f (~x)

@~x[j]@~x[l]
= �

nX

i=1

g(h~x (i), ~�i)
⇣
1� g(h~x (i), ~�i)

⌘
~x(i)[j]~x(i)[l] (102)

for 1  j, l  p. 4

Corollary 3.23. The logistic regression log-likelihood cost function (58) is concave.
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Quadratic function Convex function

Figure 15: Newton’s method applied to a quadratic function (left) and to a convex function that is not

quadratic.

Proof. The Hessian is negative semidefinite, for any arbitrary ~�,~v 2 Rp

~vTr2f(~�)~v = �
nX

i=1

G(~�)ii (X~v) [i]2  0 (103)

since the entries of G(~�) are nonnegative. 4

The Newton updates are consequently of the form

~�(k+1) := ~�(k) �
⇣
XTG(~�(k))X

⌘�1

rf(~�(k)). (104)

A potentially problematic feature of this application of Newton’s method is that the Hessian
XTG(~�)X may become ill conditioned if most of the examples are classified correctly, since in
that case the matrix G mostly contains zeros. Intuitively, in this case the cost function is very flat

in certain directions. 4

4 Proofs

4.1 Proof of Lemma 1.3

The proof for strict convexity is exactly the same, replacing the inequalities by strict inequalities.

f being convex implies that g~x,~y is convex for any ~x, ~y 2 Rn
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For any ↵, �, ✓ 2 (0, 1)

g~x,~y (✓↵ + (1� ✓) �) = f ((✓↵ + (1� ✓) �) ~x+ (1� ✓↵� (1� ✓) �) ~y) (105)

= f (✓ (↵~x+ (1� ↵) ~y) + (1� ✓) (�~x+ (1� �) ~y)) (106)

 ✓f (↵~x+ (1� ↵) ~y) + (1� ✓) f (�~x+ (1� �) ~y) by convexity of f

= ✓g~x,~y (↵) + (1� ✓) g~x,~y (�) . (107)

g~x,~y being convex for any ~x, ~y 2 Rn implies that f is convex

For any ↵, �, ✓ 2 (0, 1)

f (✓~x+ (1� ✓) ~y) = g~x,~y (✓) (108)

 ✓g~x,~y (1) + (1� ✓) g~x,~y (0) by convexity of g~x,~y (109)

= ✓f (~x) + (1� ✓) f (~y) . (110)

4.2 Proof of Theorem 2.5

The proof for strict convexity is almost exactly the same; we omit the details.

The following lemma, proved in Section 4.3 below establishes that the result holds for univariate
functions

Lemma 4.1. A univariate di↵erentiable function g : R ! R is convex if and only if for all

x, y 2 R

g (y) � g0 (x) (y � x) + g (x) (111)

and strictly convex if and only if for all x, y 2 R

g (y) > g0 (x) (y � x) + g (x) . (112)

To complete the proof we extend the result to the multivariable case using Lemma 1.3.

If f (~y) � f (~x) +rf (~x)T (~y � ~x) for any ~x, ~y 2 Rn then f is convex

By Lemma 1.3 we just need to show that the univariate function g~a,~b defined by (4) is convex for

all ~a,~b 2 Rn. Applying some basic multivariate calculus yields

g0
~a,~b

(↵) = rf
⇣
↵~a+ (1� ↵)~b

⌘T ⇣
~a�~b

⌘
. (113)

Let ↵, � 2 R. Setting ~x := ↵~a+ (1� ↵)~b and ~y := � ~a+ (1� �)~b we have

g~a,~b (�) = f (~y) (114)

� f (~x) +rf (~x)T (y � ~x) (115)

= f
⇣
↵~a+ (1� ↵)~b

⌘
+rf

⇣
↵~a+ (1� ↵)~b

⌘T ⇣
~a�~b

⌘
(� � ↵) (116)

= g~a,~b (↵) + g0
~a,~b

(↵) (� � ↵) by (113), (117)
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which establishes that g~a,~b is convex by Lemma 4.1 above.

If f is convex then f (~y) � f (~x) +rf (~x)T (~y � ~x) for any ~x, ~y 2 Rn

By Lemma 1.3, g~x,~y is convex for any ~x, y 2 Rn.

f (~y) = g~x,~y (1) (118)

� g~x,~y (0) + g0~x,~y (0) by convexity of g~x,~y and Lemma 4.1 (119)

= f (~x) +rf (~x)T (y � ~x) by (113). (120)

4.3 Proof of Lemma 4.1

g being convex implies g (y) � g0 (x) (y � x) + g(x) for all x, y 2 R

If g is convex then for any x, y 2 R and any 0  ✓  1

✓ (g (y)� g (x)) + g (x) � g (x+ ✓ (y � x)) . (121)

Rearranging the terms we have

g (y) � g (x+ ✓ (y � x))� g (x)

✓
+ g (x) . (122)

Setting h = ✓ (y � x), this implies

g (y) � g (x+ h)� g (x)

h
(y � x) + g (x) . (123)

Taking the limit when h ! 0 yields

g (y) � g0 (x) (y � x) + g(x). (124)

If g (y) � g0 (x) (y � x) + g(x) for all x, y 2 R then g is convex

Let z = ✓x+ (1� ✓) y, then by if g (y) � g0 (x) (y � x) + g(x)

g (x) � g0 (z) (x� z) + g (z) (125)

= g0 (z) (1� ✓) (x� y) + g (z) (126)

g (y) � g0 (z) (y � z) + g (z) (127)

= g0 (z) ✓ (y � x) + g (z) (128)

Multiplying (126) by ✓, then (128) by 1� ✓ and summing the inequalities, we obtain

✓g (x) + (1� ✓) g (y) � g (✓x+ (1� ✓) y) . (129)
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4.4 Proof of Lemma 2.17

The second derivative of g is nonnegative anywhere if and only if the first derivative is nonde-
creasing, because g00 is the derivative of g0.

If g is convex g0 is nondecreasing

By Lemma 4.1, if the function is convex then for any x, y 2 R such that y > x

g (x) � g0 (y) (x� y) + g (y) , (130)

g (y) � g0 (x) (y � x) + g (x) . (131)

Rearranging, we obtain

g0 (y) (y � x) � g (y)� g (x) � g0 (x) (y � x) . (132)

Since y � x > 0, we have g0 (y) � g0 (x).

If g0 is nondecreasing, g is convex

For arbitrary x, y, ✓ 2 R, such that y > x and 0 < ✓ < 1, let ⌘ = ✓y + (1� ✓) x. Since y > ⌘ > x,
by the mean-value theorem there exist �1 2 [x, ⌘] and �2 2 [⌘, y] such that

g0 (�1) =
g (⌘)� g (x)

⌘ � x
, (133)

g0 (�2) =
g (y)� g (⌘)

y � ⌘
. (134)

Since �1 < �2, if g0 is nondecreasing

g (y)� g (⌘)

y � ⌘
� g (⌘)� g (x)

⌘ � x
, (135)

which implies

⌘ � x

y � x
g (y) +

y � ⌘

y � x
g (x) � g (⌘) . (136)

Recall that ⌘ = ✓y + (1� ✓) x, so that ✓ = (⌘ � x) / (y � x) and ✓ = (⌘ � x) / (y � x) and
1� ✓ = (y � ⌘) / (y � x). (136) is consequently equivalent to

✓g (y) + (1� ✓) g (x) � g (✓y + (1� ✓) x) . (137)

4.5 Proof of Proposition 3.7

Consider the function

g (~x) :=
L

2
~xT~x� f (~x) . (138)

We first establish that g is convex using the following lemma, proved in Section 4.6 below.
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Lemma 4.2 (Monotonicity of gradient). A di↵erentiable function f : Rn ! R is convex if and

only if

(rf (~y)�rf (~x))T (~y � ~x) � 0. (139)

By the Cauchy-Schwarz inequality, Lipschitz continuity of the gradient of f implies

(rf (~y)�rf (~x))T (~y � ~x)  L ||~y � ~x||22 , (140)

for any ~x, ~y 2 Rn. This directly implies

(rg (~y)�rg (~x))T (~y � ~x) = (L~y � L~x+rf (~x)�rf (~y))T (~y � ~x) (141)

= L ||~y � ~x||22 � (rf (~y)�rf (~x))T (~y � ~x) (142)

� 0 (143)

and hence that g is convex. By the first-order condition for convexity,

L

2
~yT~y � f (~y) = g (~y) (144)

� g (~x) +rg (~x)T (~y � ~x) (145)

=
L

2
~xT~x� f (~x) + (L~x�rf (~x))T (~y � ~x) . (146)

Rearranging the inequality we conclude that

f (~y)  f (~x) +rf (~x)T (~y � ~x) +
L

2
||~y � ~x||22 . (147)

4.6 Proof of Lemma 4.2

Convexity implies (rf (~y)�rf (~x))T (~y � ~x) � 0 for all ~x, ~y 2 Rn

If f is convex, by the first-order condition for convexity

f (~y) � f (~x) +rf (~x)T (~y � ~x) , (148)

f (~x) � f (~y) +rf (~y)T (~x� ~y) , (149)

(150)

Adding the two inequalities directly implies the result.

(rf (~y)�rf (~x))T (~y � ~x) � 0 for all ~x, ~y 2 Rn implies convexity

Recall the univariate function ga,b : [0, 1] ! R defined by

ga,b (↵) := f (↵a+ (1� ↵) b) , (151)

for any a, b 2 Rn. By multivariate calculus, g0a,b (↵) = rf (↵ a+ (1� ↵) b)T (a� b). For any
↵ 2 (0, 1) we have

g0a,b (↵)� g0a,b (0) = (rf (↵ a+ (1� ↵) b)�rf (b))T (a� b) (152)

=
1

↵
(rf (↵ a+ (1� ↵) b)�rf (b))T (↵ a+ (1� ↵) b� b) (153)

� 0 because (rf (y)�rf (x))T (y � x) � 0 for any x, y. (154)
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This allows us to prove that the first-order condition for convexity holds. For any ~x, ~y

f (~x) = g~x,~y (1) (155)

= g~x,~y (0) +

Z 1

0

g0~x,~y (↵) d↵ (156)

� g~x,~y (0) + g0~x,~y (0) (157)

= f (~y) +rf (~y) (~x� ~y) . (158)
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Optimization-based data analysis Fall 2017

Lecture Notes 8:
Convex Nondi↵erentiable Functions

1 Applications

1.1 Sparse regression

In our description of linear regression in Lecture Notes 6, we assume implicitly that all features
are related to the response. However, this is often not the case in applications: some measured
features may be unrelated and should not be included in the model. Selecting relevant features is
a crucial problem in statistics, which is known as model selection. In this section, we consider the
problem of selecting a small subset of relevant features that yield a good linear approximation to
the data. This is equivalent to finding a sparse vector of coe�cients ~� such that

y(i) ⇡
D
~x (i), ~�

E
. (1)

The number of selected features is equal to the number of nonzero entries in ~�.

When fitting a sparse linear model we have two objectives:

• Achieving a good fit to the data;
���
���X~� � ~y

���
���
2

2
should be as small as possible.

• Using a small number of features; ~� should be as sparse as possible.

This suggests minimizing a cost function that simultaneously promotes a good fit to the data and
sparsity in the vector of coe�cients. In Lecture Notes 6 we describe the ridge-regression estimator,
that uses an `2-norm regularization term to ensure that the norm of the coe�cients is not too large.
Here we would like to control the number of nonzeros in the support of the coe�cient, i.e. its `0
“norm” instead. However, this “norm” is not convex and very di�cult to minimize (see Example
1.8 in Lecture Notes 7). Instead, we incorporate an `1-norm regularization that promotes sparsity,
but is still convex. In statistics, the solution to an `1-norm-regularized least-squares problem is
called the lasso estimator, introduced in [9] (see also [6]).

Definition 1.1 (The lasso). For X 2 Rn⇥p
and ~y 2 Rp

, the lasso estimate is the minimizer of the

optimization problem

~�lasso := argmin
~�

1

2

���
���~y �X~�

���
���
2

2
+ �

���
���~�
���
���
1
, (2)

where � > 0 is a fixed regularization parameter.

1



Lasso Ridge regression

Figure 1: Coe�cients of the lasso and ridge-regression estimates in the sparse regression problem in
Example 1.4 for ↵ = 1, 5 examples (n = 5), ⇢ := �0.43 and di↵erent values of the regularization
parameter �.

The following lemma shows that sums of convex functions are convex, so the lasso cost function
is indeed convex.

Lemma 1.2 (Nonnegative weighted sums). The weighted sum of m convex functions f1, . . . , fm

f :=
mX

i=1

↵i fi (3)

is convex as long as the weights ↵1, . . . ,↵ 2 R are nonnegative.

Proof. By convexity of f1, . . . , fm, for any ~x, ~y 2 Rm and any ✓ 2 (0, 1)

f (✓~x+ (1� ✓) ~y) =
mX

i=1

↵i fi (✓~x+ (1� ✓) ~y) (4)



mX

i=1

↵i (✓fi (~x) + (1� ✓) fi (~y)) (5)

= ✓ f (~x) + (1� ✓) f (~y) . (6)

Corollary 1.3 (Regularized least squares). Regularized least-squares cost functions of the form

||A~x� ~y||22 + ||~x|| , (7)

where ||·|| is an arbitrary norm, are convex.

Example 1.4 (Sparse regression with two features). We consider a simple sparse regression prob-
lem where the response only depends on one feature,

~y := ↵~x1 + ~z, (8)

2



where ~y 2 Rn is the response vector, ~x 2 Rn contains the relevant feature and ~z 2 Rn is additive
noise. In our data set, there are two features ~x1 and ~x2, which is irrelevant to the response.
However, we don’t know this a priori, so we use the feature matrix

X :=
⇥
~x1 ~x2

⇤
(9)

to fit a linear-regression model with both features by minimizing the least-squares cost function.
Both features are normalized so that ||~x1||2 = ||~x2||2 = 1. The correlation between them equals

⇢ := h~x1, ~x2i . (10)

Unfortunately, the least-square estimate of the vector of coe�cients is dense

~�LS =
�
XTX

��1
XT~y (11)

=

2

41 ⇢

⇢ 1

3

5
�1 2

4~x
T
1 ~y

~xT
2 ~y

3

5 (12)

=
1

1� ⇢2

2

4 1 �⇢

�⇢ 1

3

5

2

4 ↵ + ~xT
1 ~z

↵⇢+ ~xT
2 ~z

3

5 (13)

=

2

4↵

0

3

5+
1

1� ⇢2

2

4h~x1 � ⇢~x2, ~zi

h~x2 � ⇢~x1, ~zi

3

5 (14)

unless the noise happens to be orthogonal to both ~x1 and ~x2, which is not the case with high
probability. Ridge regression also produces a dense estimate. In contrast, the lasso estimate is
sparse and correctly identifies the right feature. The value of the coe�cients for the ridge-regression
and lasso estimators are shown in Figure 1 for ↵ = 1, 5 examples (n = 5) and ⇢ := �0.43. For
large � both estimators are equal to zero, as the regularization term dominates. For small �
the estimators tend to the least-squares estimators. For intermediate values of �, the `1-norm
regularization term promotes a sparse coe�cient vector, whereas the `2-norm regularization term
does not. 4

Example 1.5 (Prostate cancer data set). In this example, we apply the lasso to a sparse regres-
sion problem related to the study of prostate cancer.1 The response is the level of prostate-specific
antigen (PSA) measured for a specific patient (high levels of PSA are an indication of cancer),
whereas the features are characteristics of the patient, including age, weight and other measure-
ments. We fit a sparse linear model to the data using the lasso. The training set contains 60
patients, whereas the test set contains 37 patients. Figure 2 shows the coe�cients for di↵erent
values of the regularization parameter �. The least-squares estimate (� ! 0) achieves the smallest
`2 error on the training set using all of the features. The lasso estimate with � between 0.1 and
0.5 incurs in a larger training error but achieves a similar, or better test error, with a smaller
number of coe�cients (5 instead of 8), suggesting that the 3 remaining features are not related to
the response. 4

1The data is available here.

3
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Figure 2: Coe�cients, training error and test error of the lasso estimate for di↵erent values of the
regularization parameter � when applied to the sparse-regression problem in Example 1.5.

1.2 Robust principal-component analysis

Outliers may severely distort the results of applying principal-component analysis (PCA) to a set
of data that lie close to a low-dimensional subspace. Even one outlier can have a significant e↵ect,
as illustrated in the following example.

Example 1.6 (PCA with an outlier). A data set contains five examples with three features each.
We apply PCA to these data by computing the SVD of the matrix

Y :=

2

4
�2 �1 5 1 2
�2 �1 0 1 2
�2 �1 0 1 2

3

5 . (15)

All data points are aligned with the vector
⇥
1 1 1

⇤T
except for the third one, due to an outlier

that has corrupted one of the features (shown in red). Due of this outlier, the data matrix has
rank 2 instead of 1 and the principal directions are not aligned on the line that contains most of
the points. Figure 3 shows the data points, as well as the principal directions when the outlier is
present and when it is absent. 4

This is an example of a general phenomenon where a small number of corrupted entries disrupts
low-rank structure in a matrix, making it appear high rank, despite the correlations between
columns (or rows). As a result, computing the SVD does not uncover the low-rank component of
the data. An alternative is to fit a low rank + sparse model to the data, where the sparse com-
ponent accounts for the outliers and the low-rank component reveals the underlying correlations.

4



Figure 3: The data points in Example 1.6 are plotted in red. On the left, the data contains no outliers
and the principal direction (blue) corresponding to the only nonzero singular value of the SVD of the data
matrix is aligned with all the points. On the right, adding the outlier distorts the principal directions (in
blue), which are two instead of one because the rank of the matrix increases by one.

+ =

L S Y

Figure 4: Y is obtained by summing a low-rank matrix L and a sparse matrix S.

Figure 4 shows a simulated example of this model. As illustrated in Examples 1.8 and 1.10, it is
usually not tractable to maximize sparsity and minimize rank directly. An alternative that often
works well is to penalize the `1 and nuclear norm respectively. This technique introduced by [3,5]
is often called robust PCA (RPCA), since it aims to obtain a low-rank component that is not
a↵ected by the presence of outliers.

Algorithm 1.7 (Robust PCA). For Y 2 Rn⇥m
, the robust PCA estimator of the low-rank com-

ponent in Y is the minimizer of the optimization problem

LRPCA := argmin
L

||L||⇤ + � ||Y � L||1 , (16)

where � > 0 is a fixed regularization parameter. Here ||·||1 denotes the sum of absolute values of

the entries of the matrix; it is the `1 norm of the vectorized matrix. SRPCA := Y � LRPCA is the

estimator of the sparse component.
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Figure 5: Values of the entries of the low-rank and sparse components for di↵erent values of � computed
by applying RPCA to the data in Example 1.6.

Once the low-rank component has been recovered, PCA can be applied to it to determine its
principal directions. Figure 5 shows the result of applying RPCA to the data in Example 1.6.
If the parameter � is in certain range, then the low-rank component exactly uncovers the rank-1
structure in the data and the sparse component identifies the outlier. In general, the regularization
parameter � determines the weight of the two structure-inducing terms in the cost function.
Figure 6 shows the low-rank and sparse components of the matrix in Figure 4 for di↵erent values
of �. If � is too small, then it is cheap to increase the content of the sparse component, which
consequently won’t be very sparse. Similarly, if � is too large, then the low-rank component
won’t be low-rank, as the nuclear-norm term has less influence. Setting � correctly allows to
achieve a perfect decomposition. In practice, the regularization parameter is usually set using
cross validation.

Example 1.8 (Background subtraction). In computer vision, the problem of background sub-
traction is that of separating the background and foreground of a video sequence. In particular
we consider a scene with a static background. If we stack the video frames in a matrix Y , where
each column corresponds to a vectorized frame, and the background is completely static, then all
the frames are equal to a certain vector ~x 2 Rm (m is the number of pixels in each frame) and the
matrix is rank 1,

Y =
⇥
~x ~x · · · ~x

⇤
= ~x

⇥
1 1 · · · 1

⇤
. (17)

If the background is not completely static, but instead experiences gradual changes, then the
matrix containing the frames will be approximately low rank. If there are sudden events in
the foreground that occupy a small part of the field of view and do not last very long, then
this is equivalent to adding a sparse component (most entries are equal to zero) to the low-rank
background. The two components can consequently be separated using the robust PCA algorithm.
The results of applying this method to a real video sequence are shown in Figure 7. 4
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Figure 6: RPCA estimates of the low-rank and sparse components of the matrix in Figure 4 for di↵erent
values of the regularization parameter. For � := 1/

p
n the components are recovered perfectly.
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Figure 7: Background subtraction results from a video. This example is due to Stephen Becker. The
code is available at http://cvxr.com/tfocs/demos/rpca.
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Figure 8: A nondi↵erentiable convex function (blue). The red supporting lines are specified by subgra-
dients that determine their slope.

2 Subgradients

2.1 Definition and properties

By Theorem 2.5 in Lecture Notes 7, di↵erentiable functions are convex if and only if their epigraph
has a supporting hyperplane at every point. In more detail, a di↵erentiable function f : Rn

! R
is convex if and only at any point ~x 2 Rn there exists a vector ~g such that

f (~y) � f (~x) + h~g, ~y � ~xi (18)

for every ~y 2 Rn. In the case of di↵erentiable functions, ~g is the gradient of f at ~x. Non-
di↵erentiable functions do not have gradients, but the existence of a supporting hyperplane still
characterizes convexity. The vector ~g that corresponds to such a hyperplane is called a subgradient.

Definition 2.1 (Subgradient). The subgradient of a function f : Rn
! R at ~x 2 Rn

is a vector

~g 2 Rn
such that

f (~y) � f (~x) + ~g T (~y � ~x) , for all ~y 2 Rn. (19)

The set of all subgradients is called the subdi↵erential of the function at ~x.

Figure 8 shows a one-dimensional nondi↵erentiable convex function, along with some of the hy-
perplanes that support its epigraph. The following theorem establishes that a function is convex
if and only if a subgradient exists at every point.

Theorem 2.2 (Proof in Section 4.1). A function f : Rn
! R is convex if and only if it has a

non-empty subdi↵erential at any ~x 2 Rn
. It is strictly convex if and only for all ~x 2 Rn

there

exists a subgradient ~g 2 Rn
such that

f (~y) � f (~x) + ~g T (~y � ~x) , for all ~y 2 Rn. (20)

Subgradients are a useful tool to characterize the minima of nondi↵erentiable convex functions.

9



Theorem 2.3 (Optimality condition). A convex function attains its minimum value at a vector

x if and only if the zero vector is a subgradient of f at x. If the function is strictly convex, then

the minimum is unique.

Proof. By the definition of subgradient, if ~g := ~0 is a subgradient at ~x, then for any ~y 2 Rn

f (~y) � f (~x) + ~g T (~y � ~x) = f (~x) , (21)

which is equivalent to ~x being a global minimum of the function. If the function is strictly convex,
then the inequality is strict for all ~y 6= ~x.

A useful property is that the sum of subgradients of two or more functions is a subgradient of
their sum.

Lemma 2.4 (Sum of subgradients). Let ~g1 and ~g2 be subgradients at ~x 2 Rn
of f1 : Rn

! R and

f2 : Rn
! R respectively. Then ~g := ~g1 + ~g2 is a subgradient of f := f1 + f2 at ~x.

Proof. For any ~y 2 Rn

f (~y) = f1 (~y) + f2 (~y) (22)

� f1 (~x) + ~g T
1 (~y � ~x) + f2 (~y) + ~g T

2 (~y � ~x) (23)

� f (~x) + ~g T (~y � ~x) . (24)

Another useful property is that the subgradient of a function scaled by a constant can be obtained
by scaling the subgradient.

Lemma 2.5 (Subgradient of scaled function). Let ~g1 be a subgradient at ~x 2 Rn
of f1 : Rn

! R.
Then for any nonnegative ⌘ 2 R ~g2 := ⌘~g1 is a subgradient of f2 := ⌘f1 at ~x.

Proof. For any ~y 2 Rn

f2 (~y) = ⌘f1 (~y) (25)

� ⌘
�
f1 (~x) + ~g T

1 (~y � ~x)
�

(26)

� f2 (~x) + ~g T
2 (~y � ~x) . (27)

2.2 Examples of subdi↵erentials

If a function is di↵erentiable at a given point, then the gradient is the only subgradient at that
point.

Theorem 2.6 (Subdi↵erential of di↵erentiable functions). If a convex function f : Rn
! R is

di↵erentiable at ~x 2 Rn
, then its subdi↵erential at ~x only contains rf (~x).

10



f(x) = |x|

Figure 9: Examples of supporting lines of the absolute value function at the origin. The subgradients
at the origin determine the slope of the lines.

Proof. By Theorem 2.5 in Lecture Notes 7 rf (~x) is a subgradient at ~x. Now, let ~g be an arbitrary
subgradient at ~x. By the definition of subgradient, for any 1  i  n

f (~x+ ↵~ei) � f (~x) + ~g T↵~ei (28)

= f (~x) + ~g[i]↵, (29)

f (~x) � f (~x� ↵~ei) + ~g T↵~ei (30)

= f (~x� ↵~ei) + ~g[i]↵, (31)

where ~ei is the ith vector in the standard basis (all its entries are equal to zero, except the ith
entry which is equal to one). Combining both inequalities

f (~x)� f (~x� ↵~ei)

↵
 ~g[i] 

f (~x+ ↵~ei)� f (~x)

↵
. (32)

If we let ↵ ! 0, this implies ~g[i] = @f(~x)
@~x[i] . Consequently, ~g = rf(~x).

The following lemma characterizes the subdi↵erential of the absolute value function.

Lemma 2.7 (Subdi↵erential of absolute value). The subdi↵erential of the absolute value function

|·| : R ! R at x is equal to {sign (x)} if x 6= 0 and to {g 2 R | |g|  1} if x = 0.

Proof. If x 6= 0 the function is di↵erentiable and the only subgradient is equal to the derivative
by Theorem 2.6. At x = 0, we need

|y| = f (0 + y) (33)

� f (0) + g (y � 0) (34)

� gy (35)

for all y 2 R, which holds if and only if |g|  1.

As motivated in Section 1.1, the `1 norm is an important nondi↵erentiable convex function in data
analysis. The following theorem characterizes its subdi↵erential.
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Figure 10: On the left the blue lines are contour lines of the `1 norm in R2. The red arrows correspond
to subgradients at a point where the function is nondi↵erentiable. On the right the graph of the function
is shown in blue, and the supporting hyperplane corresponding to one of the subgradients (denoted by ~g
and a red line) is plotted in brown.

Theorem 2.8 (Subdi↵erential of `1 norm). The subdi↵erential of the `1 norm at ~x 2 Rn
is the

set of vectors ~g 2 Rn
that satisfy

~g[i] = sign (~x[i]) if ~x[i] 6= 0, (36)

|~g[i]|  1 if ~x[i] = 0. (37)

The theorem is a direct consequence of Lemma 2.7 and the following result.

Lemma 2.9. The vector ~g 2 Rn
is a subgradient of ||·||1 : Rn

! R at ~x if and only if q[i] is a

subgradient of |·| : R ! R at ~x[i] for all 1  i  n.

Proof. If ~g is a subgradient of ||·||1 at ~x then for any y 2 R

|y| = |~x[i]|+ ||~x+ (y � ~x[i])~ei||1 � ||~x||1 (38)

� |~x[i]|+ ||~x||1 + ~g T (y � ~x[i])~ei � ||~x||1 (39)

= |~x[i]|+ ~g[i] (y � ~x[i]) , (40)

so ~g[i] is a subgradient of |·| at |~x[i]| for any 1  i  n.

If ~g[i] is a subgradient of |·| at |~x[i]| for 1  i  n then for any ~y 2 Rn

||~y||1 =
nX

i=1

|~y [i]| (41)

�

nX

i=1

|~x[i]|+ ~g[i] (~y [i]� ~x[i]) (42)

= ||~x||1 + ~g T (~y � ~x) (43)

so ~g is a subgradient of ||·||1 at ~x.
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Another important nondi↵erentiable convex function in data analysis is the nuclear norm (see
Section 1.2). The following theorem characterizes its subdi↵erential.

Theorem 2.10 (Subdi↵erential of the nuclear norm). Let X 2 Rm⇥n
be a rank-r matrix with

SVD USV T
, where U 2 Rm⇥r

, V 2 Rn⇥r
and S 2 Rr⇥r

contains the nonzero singular values of

X. The subdi↵erential of the nuclear norm at X is the set of matrices of the form

G := UV T +W (44)

where W satisfies

||W ||  1, (45)

UTW = 0, (46)

W V = 0. (47)

Proof. We only prove that a matrix of the form (44) is a valid subgradient. For the converse (all
subgradients are of this form) see [12]. By Pythagoras’ Theorem, for any ~x 2 Rm with unit `2
norm we have

����Prow(X) ~x
����2

2
+
���
���Prow(X)? ~x

���
���
2

2
= ||~x||22 (48)

= 1. (49)

As result, since the rows of UV T are all in row (X) and the rows of W are in row (X)? by
Condition (47)

||G||
2 := max

{||~x||2=1 | ~x2Rn}

||G ~x||22 (50)

= max
{||~x||2=1 | ~x2Rn}

����UV T ~x
����2

2
+ ||W ~x||22 (51)

= max
{||~x||2=1 | ~x2Rn}

����UV T
Prow(X) ~x

����2
2
+
���
���W Prow(X)? ~x

���
���
2

2
(52)


����UV T

����2 ����Prow(X) ~x
����2

2
+ ||W ||

2
���
���Prow(X)? ~x

���
���
2

2
(53)

 1 by condition (45). (54)

Equality (51) follows from Pythagoras’ Theorem because the column spaces of U and W are
orthogonal by condition (46), which also implies

hW,Xi = 0. (55)

By equation (191) in Lecture Notes 2
⌦
UV T , X

↵
= ||X||⇤ . (56)

For any matrix Y 2 Rm⇥n

||Y ||⇤ � hG, Y i by (54) and Theorem 2.6 in Lecture Notes 2 (57)

= hG,Xi+ hG, Y �Xi (58)

=
⌦
UV T , X

↵
+ hG, Y �Xi by (55) (59)

= ||X||⇤ + hG, Y �Xi by (56). (60)
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2.3 Analysis of the lasso estimator

In this section we derive an exact characterization of the solution to the lasso estimator for Ex-
ample 1.4. This illustrates how to use the subdi↵erential of a convex cost function to understand
the performance of its minimizer as an estimator.

Lemma 2.11 (Sparse regression with two features). Assume that ↵ � 0 and n � 2. The lasso

estimator for the sparse-regression problem in Example 1.4 is of the form

~�lasso =


↵ + ~xT

1 ~z � �
0

�
(61)

as long as

��~xT
2 ~z � ⇢~xT

1 ~z
��

1� |⇢|
 �  ↵ + ~xT

1 ~z. (62)

Proof. The lasso cost function is strictly convex if n � 2 and the matrix X is full rank (i.e. ⇢ 6= 0),
because the quadratic term corresponds to a positive definite quadratic form. By Theorem 2.3, to
establish that ~�lasso is the unique minimizer it su�ces to prove that the zero vector is a subgradient
of the cost function at ~�lasso.

The gradient of the quadratic term

q
⇣
~�
⌘
:=

1

2

���
���X~� � ~y

���
���
2

2
(63)

at ~�lasso equals

rq
⇣
~�lasso

⌘
= XT

⇣
X~�lasso � ~y

⌘
. (64)

By Theorem 2.8, if only the first entry of ~�lasso is nonzero and nonnegative, then

~g`1 :=


1
�

�
(65)

is a subgradient of the `1 norm at ~�lasso for any � 2 R such that |�|  1. By Lemmas 2.4 and 2.5,

the sum of rq
⇣
~�lasso

⌘
and �~g`1 is a subgradient of the lasso cost function at ~�lasso. If only the

first entry of ~�lasso is nonzero, this subgradient equals

~glasso := XT
⇣
X~�lasso � ~y

⌘
+ �


1
�

�
(66)

= XT
⇣
~�lasso[1]~x1 � ↵~x1 � ~z

⌘
+ �


1
�

�
(67)

=

2

4
~xT
1

⇣
~�lasso[1]~x1 � ↵~x1 � ~z

⌘
+ �

~xT
2

⇣
~�lasso[1]~x1 � ↵~x1 � ~z

⌘
+ ��

3

5 (68)

=

"
~�lasso[1]� ↵� ~xT

1 ~z + �

⇢~�lasso[1]� ⇢↵� ~xT
2 ~z + ��

#
. (69)
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Figure 11: Coe�cients of the lasso estimates in the sparse regression problem in Example 1.4 for ↵ = 1,
5 examples (n = 5), ⇢ := �0.43 and di↵erent values of the regularization parameter �.

The expression is equal to zero if

~�lasso[1] = ↵ + ~xT
1 ~z � �, (70)

� =
⇢↵ + ~xT

2 ~z � ⇢~�lasso[1]

�
(71)

=
~xT
2 ~z � ⇢~xT

1 ~z

�
+ ⇢. (72)

In order to ensure that ~glasso is a valid subgradient for this choice, we need to check that (1) ~�lasso[1]
is indeed nonnegative, which is the case if � satisfies equation (62), and (2) that |�|  1. By the
triangle inequality

|�| 

����
~xT
2 ~z � ⇢~xT

1 ~z

�

����+ |⇢| (73)

 1, (74)

as long as � satisfies equation (62). We conclude that ~0 is a subgradient of the cost function
at ~�lasso, which establishes that ~�lasso as given by equation (61) is the unique solution to the
optimization problem.

The lemma establishes that in this example the lasso estimator detects the relevant feature vector,
setting the coe�cient of the irrelevant feature vector to zero, for a certain range of �. Within
that range the coe�cient corresponding to the relevant predictor scales linearly with �. This is
confirmed in Figure 11.
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2.4 Analysis of robust PCA

In this section we analyze the RPCA estimator showing that it succeeds for the data in Exam-
ple 1.6. This is a cartoon example, but similar arguments can be used to analyze the algorithm in
a more general setting [4]. The main idea is to construct a subgradient of the cost function at the
ground truth that is equal to zero. This implies that the true low-rank and sparse components are
a solution to the problem, but not necessarily the unique solution. The following result shows that
if the subgradient satisfies two small additional constraints, then the solution is indeed unique.

Lemma 2.12 (Lemma 2.4 in [4]). Let L⇤
, S⇤

2 Rm⇥n
and

Y := L⇤ + S⇤. (75)

L⇤
is a rank-r matrix with SVD UL⇤SL⇤V T

L⇤, where UL⇤ 2 Rm⇥r
, VL⇤ 2 Rn⇥r

and SL⇤ 2 Rr⇥r

contains the nonzero singular values of L⇤
. Assume there exists a matrix

G⇤ := UL⇤V T
L⇤ +W, (76)

where W is a matrix satisfying

||W || < 1 (77)

UTW = 0, (78)

W V = 0, (79)

and there also exists a matrix G`1 satisfying

G`1 [i, j] = � sign (S⇤[i, j]) if S⇤[i, j] 6= 0, (80)

|G`1 [i, j]| < 1 otherwise, (81)

where S⇤ := Y � L⇤
, such that

G⇤ + �G`1 = 0. (82)

Then the solution to the robust PCA problem (16) is unique and equal to L⇤
.

Proof. By Theorem 2.10 G⇤ := UL⇤V T
L⇤+W is a subgradient of the nuclear norm at L⇤, whereas by

Theorem 2.8 G`1 is a subgradient of ||·� Y ||1 at L
⇤. As a result by Lemmas 2.4 and 2.5 G⇤+�G`1

is a subgradient of the RPCA cost function at L⇤. By Theorem 2.3 G⇤ + �G`1 = 0 consequently
implies that L⇤ is a solution. Uniqueness follows from the strict inequalities (77) and (81). The
proof is more involved and can be found in [4].

The following lemma establishes that the RPCA estimator recovers the low-rank and sparse com-
ponents for the data in Example 1.6 for any value of the outlier.

Lemma 2.13. Let

Y :=

2

4
�2 �1 ↵ 1 2
�2 �1 0 1 2
�2 �1 0 1 2

3

5 . (83)
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For any value of ↵ the unique solution to the optimization problem

min
L

||L||⇤ + � ||Y � L||1 (84)

is

L⇤ :=

2

4
�2 �1 0 1 2
�2 �1 0 1 2
�2 �1 0 1 2

3

5 (85)

as long as

2
p
30

< � <

r
2

3
. (86)

Proof. In order to satisfy (80) and (76) at L⇤, we set

G⇤ = UL⇤V T
L⇤ +W (87)

=
1

p
30

2

4
1
1
1

3

5 ⇥
�2 �1 0 1 2

⇤
+W, (88)

G`1 [1, 3] = � sign (↵) . (89)

To ensure G⇤ + �G`1 = 0 we set

W := � sign (↵)

2

4
0 0 1 0 0
0 0 �0.5 0 0
0 0 �0.5 0 0

3

5 , (90)

where the entries are chosen so that (78) and (79) both hold, and

G`1 =

2

64

2
�
p
30

1
�
p
30

� sign (↵) �
1

�
p
30

�
2

�
p
30

2
�
p
30

1
�
p
30

sign(↵)
2 �

1
�
p
30

�
2

�
p
30

2
�
p
30

1
�
p
30

sign(↵)
2 �

1
�
p
30

�
2

�
p
30

3

75 . (91)

To complete the proof we need to check conditions (77) and (81). We have

||W ||
2 =

3�2

2
< 1, if � <

r
2

3
, (92)

|G`1 [i, j]|  max

⇢
1

2
,

2

�
p
30

�
< 1, if � >

2
p
30

. (93)
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3 Minimizing nondi↵erentiable convex functions

3.1 Subgradient method

Consider the optimization problem

minimize f (~x) (94)

where f is convex but nondi↵erentiable. This implies that we cannot compute a gradient and
advance in the steepest descent direction as in gradient descent. However, we can generalize the
idea by using subgradients, which exist because f is convex. This is useful as long as it is e�cient
to compute the subgradient of the function.

Algorithm 3.1 (Subgradient method). We set the initial point ~x (0)
to an arbitrary value in Rn

.

Then we compute

~x (k+1) = ~x (k)
� ↵k ~g

(k), (95)

where ~g (k)
is a subgradient of f at ~x (k)

, until a convergence criterion is satisfied.

Interestingly, the subgradient method is not a descent method. The value of the cost function can
actually increase as the iterations progress. However, the method can be shown to converge at a
rate of order O (1/✏2) as long as the step size decreases along iterations, see [11].

We now apply the subgradient method to solve the lasso problem, i.e. least-squares regression
with `1-norm regularization. The cost function in the optimization problem,

minimize
1

2
||A~x� ~y||22 + � ||~x||1 , (96)

is convex but not di↵erentiable. By Theorem 2.8 sign (~x) is a subgradient of the `1 norm at ~x, so

~g(k) = AT
�
A~x (k)

� ~y
�
+ � sign

�
~x (k)

�
(97)

is a subgradient of the cost function at ~x (k).

Algorithm 3.2 (Subgradient method for sparse regression). Set the initial point ~x (0)
to an arbi-

trary value in Rn
. Update by setting

~x (k+1) := ~x (k)
� ↵k

�
AT

�
A~x (k)

� ~y
�
+ � sign

�
~x (k)

��
, (98)

where ↵k > 0 is the step size, until a stopping criterion is met.

Figure 12 shows the result of applying this algorithm to an example in which A 2 R2000⇥1000,
y = A~x⇤ + ~z where ~x⇤ is 100-sparse and ~z is iid Gaussian. The example illustrates that decreasing
the step size at each iteration achieves faster convergence.
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Figure 12: Subgradient method applied to least-squares regression with `1-norm regularization for
di↵erent choices of step size (↵0 is a constant).
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3.2 Proximal gradient method

As we saw in the previous section, convergence of subgradient method is slow, both in terms of
theoretical guarantees and in the example of Figure 12. In this section we introduce an alternative
method that can be applied to a class of functions which is very useful for optimization-based data
analysis.

Definition 3.3 (Composite function). A composite function is a function that can be written as

the sum

f (~x) + h (~x) (99)

where f convex and di↵erentiable and h is convex but not di↵erentiable.

Clearly, the least-squares regression cost function with `1-norm regularization is of this form.

In order to motivate proximal methods, let us begin by interpreting the gradient-descent iteration
as the solution to a local linearization of the function.

Lemma 3.4. The minimum of the function

h (~x) := f
�
~x (k)

�
+rf

�
~x (k)

�T �
~x� ~x (k)

�
+

1

2↵

����~x� ~x (k)
����2

2
(100)

is ~x (k)
� ↵rf

�
~x (k)

�
.

Proof.

~x (k+1) := ~x (k)
� ↵k rf

�
~x (k)

�
(101)

= argmin
~x

����~x�
�
~x (k)

� ↵k rf
�
~x (k)

������2
2

(102)

= argmin
~x

f
�
~x (k)

�
+rf

�
~x (k)

�T �
~x� ~x (k)

�
+

1

2↵k

����~x� ~x (k)
����2

2
. (103)

A natural generalization of gradient descent is to minimize the sum of h and the local first-order
approximation of f .

~x (k+1) = argmin
~x

f
�
~x (k)

�
+rf

�
~x (k)

�T �
~x� ~x (k)

�
+

1

2↵k

����~x� ~x (k)
����2

2
+ h (~x) (104)

= argmin
~x

1

2

����x�
�
~x (k)

� ↵k rf
�
~x (k)

������2
2
+ ↵k h (~x) (105)

= prox↵k h

�
~x (k)

� ↵k rf
�
~x (k)

��
. (106)

We have written the iteration in terms of the proximal operator of the function h.

Definition 3.5 (Proximal operator). The proximal operator of a function h : Rn
! R is

proxh (~y) := argmin
~x

h (~x) +
1

2
||~x� ~y||22 . (107)
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Solving the modified local first-order approximation of the composite function iteratively yields
the proximal-gradient method, which will be useful if the proximal operator of h can be computed
e�ciently.

Algorithm 3.6 (Proximal-gradient method). We set the initial point ~x (0)
to an arbitrary value

in Rn
. Then we compute

~x (k+1) = prox↵k h

�
~x (k)

� ↵k rf
�
~x (k)

��
, (108)

until a convergence criterion is satisfied.

This algorithm may be interpreted as a fixed-point method. Indeed, fixed points of the proximal-
gradient iteration are a minima of the composite function and vice versa. This suggests applying
the iteration repeatedly to minimize the function, although it does not prove convergence (for this
we would need to prove that the operator is contractive, see [11]).

Theorem 3.7 (Fixed point of proximal operator). A vector ~x⇤
is a solution to

minimize f (~x) + h (~x) , (109)

if and only if it is a fixed point of the proximal-gradient iteration

~x⇤ = prox↵h (~x
⇤
� ↵rf (~x⇤)) (110)

for any ↵ > 0.

Proof. ~x⇤ is a solution to the optimization problem if and only if there exists a subgradient ~g of h
at ~x⇤ such that rf (~x⇤) + ~g = 0. ~x⇤ is the solution to

minimize ↵ h (~x) +
1

2
||~x⇤

� ↵rf (~x⇤)� x||22 , (111)

which is the case if and only if there exists a subgradient ~g of h at ~x⇤ such that ↵rf (~x⇤)+↵~g = 0.
As long as ↵ > 0 the two conditions are equivalent.

Proximal methods are very useful for fitting sparse models because the proximal operator of the
`1 norm is very tractable.

Theorem 3.8 (Proximal operator of `1 norm). The proximal operator of the `1 norm weighted by

a constant ↵ > 0 is the soft-thresholding operator

prox↵ ||·||1 (y) = S↵ (~y) (112)

where

S↵ (~y) [i] :=

(
~y [i]� sign (~y [i])↵ if |~y [i]| � ↵,

0 otherwise.
(113)
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Proof. Writing the function as a sum,

↵ ||~x||1 +
1

2
||~y � ~x||22 =

nX

i=1

↵ |~x[i]|+
1

2
(~y[i]� ~x[i])2 (114)

reveals that it decomposes into independent nonnegative terms. The univariate function

h (x) := ↵ |x|+
1

2
(~y[i]� x)2 (115)

is strictly convex and consequently has a unique global minimum. It is also di↵erentiable every-
where except at zero. If x � 0 the derivative is �+x�~y[i], so if ~y[i] � ↵, the minimum is achieved
at ~y[i] � ↵. If ~y[i] < ↵ the function is increasing for x � 0, so the minimizer must be smaller or
equal to zero. The derivative for x < 0 is �↵ + x� ~y[i] so the minimum is achieved at ~y[i] + ↵ if
~y[i]  �↵. Otherwise the function is decreasing for all x < 0. As a result, if �↵ < ~y[i] < ↵ the
minimum must be at zero.

This result yields the following algorithm for least-squares with `1-norm regularization.

Algorithm 3.9 (Iterative Shrinkage-Thresholding Algorithm (ISTA)). We set the initial point

~x (0)
to an arbitrary value in Rn

. Then we compute

~x (k+1) = S↵k �

�
~x (k)

� ↵k A
T
�
A~x (k)

� ~y
��

, (116)

until a convergence criterion is satisfied.

ISTA can be accelerated using a momentum term as in Nesterov’s accelerated gradient method.
This yields a fast version of the algorithm called FISTA.

Algorithm 3.10 (Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)). We set the initial

point ~x (0)
to an arbitrary value in Rn

. Then we compute

~z (0) = ~x (0) (117)

~x (k+1) = S↵k �

�
~z (k)

� ↵k A
T
�
A~z (k)

� ~y
��

, (118)

~z (k+1) = ~x (k+1) +
k

k + 3

�
~x (k+1)

� ~x (k)
�
, (119)

until a convergence criterion is satisfied.

ISTA and FISTA were proposed by Beck and Teboulle in [1]. ISTA is a descent method. It has
the same convergence rate as gradient descent O (1/✏) both with a constant step size and with
a backtracking line search, under the condition that rf be L-Lipschitz continuous. FISTA in
contrast is not a descent method, but it can be shown to converge in O (1/

p
✏) to an ✏-optimal

solution.

To illustrate the performance of ISTA and FISTA, we apply them to the same example used in
Figure 12. Even without applying a backtracking line search both methods converge to a solution
of middle precision (around 10�3 or 10�4) much more rapidly than the subgradient method. The
results are shown in Figure 13.
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Figure 13: ISTA and FISTA applied to least-squares regression with `1-norm regularization.

4 Proofs

4.1 Proof of Theorem 2.2

We prove the statement about convexity. The statement about strict convexity can be proved in
a similar way.

The epigraph of a convex function is a convex set, meaning that it contains the line between any
of its points. As a consequence of the separating-hyperplane theorem, which states that there is
a separating hyperplane between any two disjoint convex sets (we omit the proof which can be
found in any text on convex analysis), such sets have a supporting hyperplane at every point. This
establishes that convex functions defined on Rn have a subgradient at every point.

Now assume that a function has a subgradient at every point. The for any ~x, ~y 2 Rn and ↵ 2 R
there exists a subgradient ~g of f at ↵~x+ (1� ↵) ~y. This implies

f (~y) � f (↵~x+ (1� ↵) ~y) + ~g T (y � ↵~x� (1� ↵) ~y) (120)

= f (↵~x+ (1� ↵) ~y) + ↵~g T (y � ~x) , (121)

f (~x) � f (↵~x+ (1� ↵) ~y) + ~g T (~x� ↵~x� (1� ↵) ~y) (122)

= f (↵~x+ (1� ↵) ~y) + (1� ↵)~g T (y � ~x) . (123)

Multiplying equation (121) by 1� ↵ and equation (123) by ↵ and adding them together yields

↵f (~x) + (1� ↵) f (~y) � f (↵~x+ (1� ↵) ~y) . (124)

We conclude that the function is convex.
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Optimization-based data analysis Fall 2017

Lecture Notes 9:

Constrained Optimization

1 Compressed sensing

1.1 Underdetermined linear inverse problems

Linear inverse problems model measurements of the form

A~x = ~y (1)

where the data ~y 2 Rn are the result of applying a linear operator represented by the matrix
A 2 Rm⇥n to a signal ~x 2 Rm. The aim is to recover ~x from ~y, assuming we know A. Math-
ematically, this is exactly equivalent to the linear-regression problem discussed in Lecture Notes
6. The di↵erence is that in linear regression the matrix consists of measured features, whereas in
inverse problems the linear operator usually has a physical interpretation. For example, in imaging
problems the operator depends on the optical system used to obtain the data.

Each entry of ~y can be interpreted as a separate measurement of ~x

~y[i] = hAi:, ~xi , 1  i  n, (2)

where Ai: is the ith row of A. In many applications, it is desirable to reduce the number of
measurements as much as possible. However, by basic linear algebra, the number of measurements
must be at least equal to m. If m > n the system of equations (1) is underdetermined. Even if A
is full rank, its null space has dimension m � n by Corollary 1.16 in Lecture Notes 2. Any signal
of the form ~x + ~w where ~w belongs to the null space of A is a solution to the system.

As we discussed in Lecture Notes 4 and 5, natural images, speech and other signals are often
compressible: they can be represented as sparse combinations of predefined atoms such as sinusoids
or wavelets. The goal of compressed sensing is to exploit the compressibility of signals in order
to reconstruct them from a smaller number of measurements. The idea is that although it is
impossible to recover an arbitrary m-dimensional signal from n measurements if m > n, it may be
possible to recover an m-dimensional signal that is parametrized by an s-dimensional vector, as
long as s < n. The simplest example of compressible structure is sparsity. We will mostly focus
on this case to illustrate the main ideas behind compressed sensing.

Example 1.1 (Compressed sensing in magnetic-resonance imaging). Magnetic resonance imaging
(MRI) is a popular medical-imaging technique that measures the response of the atomic nuclei
of body tissues to high-frequency radio waves when placed in a strong magnetic field. MRI
measurements can be modeled as samples from the 2D or 3D Fourier transform of the object that
is being imaged, for example a slice of a human brain. An estimate of the corresponding image

1



2D DFT (magnitude) 2D DFT (log. of magnitude)

Figure 1: Image of a brain obtained by MRI, along with the magnitude of its 2D discrete Fourier
transform (DFT) and the logarithm of this magnitude.

can be obtained by computing the inverse Fourier transform of the data, as shown in Figure 1. An
important challenge in MRI is to reduce measurement time: long acquisition times are expensive
and bothersome for the patients, especially for those that are seriously ill and for infants. Gathering
less measurements, or equivalently undersampling the 2D or 3D Fourier transform of the image of
interest, results in shorter data-acquisition times, but poses the challenge of recovering the image
from undersampled data. Fortunately, MR images tend to be compressible in the wavelet domain.
Compressed sensing of MR images consists of recovering the sparse wavelet coe�cients from a
small number of Fourier measurements. 4

Example 1.2 (1D subsampled Fourier measurements). This cartoon example is inspired by com-
pressed sensing in MRI. We consider the problem of recovering a sparse signal from undersampled
Fourier data. The rows of the measurement matrix are a subset of the rows of a DFT matrix,
extracted following two strategies: regular and random subsampling. In regular subsampling we
select the odd rows of the matrix, whereas in random subsampling we just select the rows uniformly
at random. Figure 2 shows the real part of the matrices. Figure 3 shows the underdetermined
linear system corresponding to each of the subsampling strategies for a simple example where the
signal has sparsity 3. 4

1.2 When is sparse estimation well posed?

A first question that arises when we consider sparse recovery from underdetermined measurements
is under what conditions the problem is well posed. In other words, is it possible that there may
be other sparse signals that produce the same measurements? If that is the case, it is impossible to
determine which sparse signal actually generated the data and the problem is ill posed. Whether
this situation may arise or not depends on the spark of the measurement matrix.

Definition 1.3 (Spark). The spark of a matrix is the smallest subset of columns that is linearly
dependent.

2
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Figure 2: Real part of the DFT matrix, as well as the corresponding regularly-subsampled and randomly-
subsampled measurement matrix, represented as a heat map (above) and as samples from continuous
sinusoids (below).

Regular x2 subsampling Random x2 subsampling

Figure 3: Underdetermined linear system of equations corresponding to the subsampled Fourier matrices
in Figure 2.
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The spark sets a fundamental limit to the sparsity of vectors that can be recovered uniquely from
linear measurements.

Theorem 1.4. Let ~y := A~x ⇤, where A 2 Rm⇥n, ~y 2 Rn and ~x ⇤ 2 Rm is a sparse vector with s
nonzero entries. The vector ~x ⇤ is guaranteed to be the only vector with sparsity level equal to s
consistent with the measurements, i.e. the solution of

min
~x

||~x||0 subject to A~x = ~y, (3)

for any choice of ~x ⇤ if and only if

spark (A) > 2s. (4)

Proof. ~x ⇤ is the only sparse vector consistent with the data if and only if there is no other vector
~x0 with sparsity s such that A~x ⇤ = A~x0. This occurs for any choice of ~x ⇤ if and only if for any
pair of vectors ~x1 and ~x2 with sparsity level s, we have

A (~x1 � ~x2) 6= ~0. (5)

Let T1 and T2 denote the support of the nonzero entries of ~x1 and ~x2. Equation (5) can be written
as

AT1[T2~↵ 6= ~0 for any ~↵ 2 R|T1[T2|. (6)

This is equivalent to all submatrices with at most 2s columns (the di↵erence between 2 s-sparse
vectors can have at most 2s nonzero entries) having no nonzero vectors in their null space and
therefore being full rank, which is exactly the meaning of spark (A) > 2s.

If the spark of a matrix is greater than 2s then the matrix represents a linear operator that is
invertible when restricted to act upon s-sparse signals. However, it may still be the case that
two di↵erent sparse vectors could generate data that are extremely close, which would make it
challenging to distinguish them if the measurements are noisy. In order to ensure that stable
inversion is possible, we must in addition require that the distance between sparse vectors is
preserved, so that if ~x1 is far from ~x2 then A~x1 is guaranteed to be far from A~x2. Mathematically,
the linear operator should be an isometry when restricted to act upon sparse vectors.

Definition 1.5 (Restricted-isometry property). A matrix A satisfies the restricted-isometry prop-
erty with constant s if for any s-sparse vector ~x

(1 � s) ||~x||2  ||A~x||2  (1 + s) ||~x||2 . (7)

If a matrix A satisfies the restricted-isometry property (RIP) for a sparsity level 2s then for any pair
of vectors ~x1 and ~x2 with sparsity level s, the distance between their corresponding measurements
~y1 and ~y2 is lower bounded by the di↵erence between the two vectors

||~y2 � ~y1||2 = A (~x1 � ~x2) (8)

� (1 � 2s) ||~x2 � ~x1||2 . (9)
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Figure 4: Correlation between the 20th column and the rest of the columns for the matrices described
in Example 1.2.

Figure 4 shows the correlation between one of the columns in the matrices matrices described
in Example 1.2 and the rest of the columns. For the regularly-subsampled Fourier matrix, there
exists another column that is exactly the same. No method will be able to distinguish the data
corresponding to even 1-sparse vectors, since the contributions of these two columns will be im-
possible to distinguish. The matrix does not even satisfy the RIP for a sparsity level equal to
two.

In the case of the randomly-subsampled Fourier matrix, column 20 is not highly correlated with any
other column. This does not immediately mean that the matrix satisfies the restricted-isometry
property. Unfortunately, verifying that a matrix satisfies the spark or the restricted-isometry
property is not computationally tractable (essentially, one has to check all possible sparse subma-
trices). However, we can prove that the RIP holds with high probability for random matrices. In
the following theorem we prove this statement for Gaussian iid matrices. The proof for random
Fourier measurements is more complicated [8, 10].

Theorem 1.6 (Restricted-isometry property for Gaussian matrices). Let A 2 Rm⇥n be a random
matrix with iid standard Gaussian entries. 1p

mA satisfies the restricted-isometry property for a

constant s with probability 1 � C2
n as long as the number of measurements

m � C1s

2
s

log
⇣n

s

⌘
(10)

for two fixed constants C1, C2 > 0.

Proof. Let us fix an arbitrary support T of size s. The m ⇥ s submatrix AT of A that contains
the columns indexed by T has iid Gaussian entries, so by Theorem 3.7 in Lecture Notes 3 (in
particular equation (81)), its singular values are bounded by

p
m (1 � s)  �s  �1 

p
m (1 + s) (11)
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with probability at least

1 � 2

✓
12

s

◆s

exp

✓
�m2

s

32

◆
. (12)

This implies that for any vector ~x with support T

p
1 � s ||~x||2  1p

m
||A~x||2 

p
1 + s ||~x||2 . (13)

This is not enough for our purposes, we need this to hold for all supports of size s, i.e. on all
possible combinations of s columns selected from the n columns in A. A simple bound on the
binomial coe�cient yields the following bound on the number of such combinations

✓
n

s

◆

⇣en

s

⌘s

. (14)

By the union bound (Theorem 3.4 in Lecture Notes 3), we consequently have that the bounds (13)
hold for any sparse-s vector with probability at least

1 � 2
⇣en

s

⌘s
✓

12

s

◆s

exp

✓
�m2

s

32

◆
= 1 � exp

✓
log 2 + s + s log

⇣n

s

⌘
+ s log

✓
12

s

◆
� m2

s

2

◆

 1 � C2

n
(15)

for some constant C2 as long as m satisfies (10).

1.3 Sparse recovery via `1-norm minimization

Choosing the sparsest vector consistent with the available data is computationally intractable,
due to the nonconvexity of the `0 “norm” ball. Instead, we can minimize the `1 norm in order to
promote sparse solutions.

Algorithm 1.7 (Sparse recovery via `1-norm minimization). Given data ~y 2 Rn and a matrix
A 2 Rm⇥n, the minimum-`1-norm estimate is the solution to the optimization problem

min
~x

||~x||1 subject to A~x = ~y. (16)

Figure 5 shows the minimum `2- and `1-norm estimates of the sparse vector in the sparse re-
covery problem described in Example 1.2. In the case of the regularly-subsampled matrix, both
methods yield erroneous solutions that are sparse. As discussed previously, for that matrix the
sparse-recovery problem is ill posed. In the case of the randomly-subsampled matrix, `2-norm
minimization promotes a solution that contains a lot of small entries. The reason is that large
entries are very expensive because we are minimizing the square of the magnitudes. Such large
entries are not as expensive for the `1-norm cost function. As a result, the algorithm produces
a sparse solution that is exactly equal to the original signal. Figure 6 provides some geometric
intuition as to why the `1-norm minimization problem promotes sparse solutions.
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Figure 5: Minimum `2- and `1-norm estimates of the sparse vector in the sparse recovery problem
described in Example 1.2.

`2 norm `1 norm

Figure 6: Cartoon of the `2- and `1-norm minimization problems for a two-dimensional signal. The
lines represent the hyperplane of signals such that A~x = ~y. The `1-norm ball is spikier, so that as a result
the solution lies on a low-dimensional face of the norm ball. In contrast, the `2-norm ball is rounded and
this does not occur.
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Undersampling pattern Min. `2-norm estimate

Regular

Random

Figure 7: Two di↵erent sampling strategies in 2D k space: regular undersampling in one direction (top)
and random undersampling (bottom). The original data is the same as in Figure 1. On the right we see
the corresponding minimum-`2-norm estimate for each undersampling pattern.

Regular Random

Figure 8: Minimum-`1-norm for the two undersampling patterns shown in Figure 7.
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1.4 Sparsity in a transform domain

If the signal is sparse in a transform domain, then we can modify the optimization problem to
take this into account. Let W represent a wavelet transform, such that we assume that the
corresponding wavelet coe�cients of the image are sparse. In that case, we solve the optimization
problem,

min
~x

||~c||1 subject to AW~c = ~y. (17)

If we want to recover the original ~c ⇤ then we would need to verify that AW should satisfy the
RIP, which would require analyzing the inner products between the rows of the measurement A
(the measurement vectors) and the columns of W (the sparsifying basis functions). However, we
might be fine with any ~c 0 such that A~c 0 = ~x ⇤. In that case, characterizing when the problem is
well posed is more challenging.

Figure 8 shows the result of applying `1-norm minimization to recover an image from the data
corresponding to the images shown in Figure 7. For regular undersampling, then the estimate is
essentially the same as the minimum-`2-norm estimate. This is not surprising, since the minimum-
`2-norm estimate is also sparse in the wavelet domain because it is equal to a superposition of
two shifted copies of the image. In contrast, `1-norm minimization recovers the original image
perfectly when coupled with random projections. Intuitively, `1-norm minimization cleans up the
noisy aliasing caused by random undersampling.

2 Constrained optimization

2.1 Convex sets

A set is convex if it contains all segments connecting points that belong to it.

Definition 2.1 (Convex set). A convex set S is any set such that for any ~x, ~y 2 S and ✓ 2 (0, 1)

✓~x + (1 � ✓) ~y 2 S. (18)

Figure 9 shows a simple example of a convex and a nonconvex set.

The following lemma establishes that the intersection of convex sets is convex.

Lemma 2.2 (Intersection of convex sets). Let S1, . . . , Sm be convex subsets of Rn, \m
i=1Si is convex.

Proof. Any ~x, ~y 2 \m
i=1Si also belong to S1. By convexity of S1 ✓~x + (1 � ✓) ~y belongs to S1 for

any ✓ 2 (0, 1) and therefore also to \m
i=1Si.

The following theorem shows that projection onto non-empty closed convex sets is unique.
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Theorem 2.3 (Projection onto convex set). Let S ✓ Rn be a non-empty closed convex set. The
projection of any vector vx 2 Rn onto S

PS (~x) := arg min
~y2S

||~x � ~y||2 (19)

exists and is unique.

Proof. Existence

Since S is non-empty we can choose an arbitrary point ~y 0 2 S. Minimizing ||~x � ~y||2 over S
is equivalent to minimizing ||~x � ~y||2 over S \ {~y | ||~x � ~y||2  ||~x � ~y 0||2}. Indeed, the solution
cannot be a point that is farther away from ~x than ~y 0. By Weierstrass’s extreme-value theorem,
the optimization problem

minimize ||~x � ~y||22 (20)

subject to s 2 S \ {~y | ||~x � ~y||2  ||~x � ~y 0||2} (21)

has a solution because ||~x � ~y||22 is a continuous function and the feasibility set is bounded and
closed, and hence compact. Note that this also holds if S is not convex.

Uniqueness

Assume that there are two distinct projections ~y1 6= ~y2. Consider the point

~y 0 :=
~y1 + ~y2

2
, (22)

which belongs to S because S is convex. The di↵erence between ~x and ~y 0 and the di↵erence
between ~y1 and ~y 0 are orthogonal vectors,

h~x � ~y 0, ~y1 � ~y 0i =

⌧
~x � ~y1 + ~y2

2
, ~y1 � ~y1 + ~y2

2

�
(23)

=

⌧
~x � ~y1

2
+

~x � ~y2
2

,
~x � ~y1

2
� ~x � ~y2

2

�
(24)

=
1

4

�
||~x � ~y1||2 + ||~x � ~y2||2

�
(25)

= 0, (26)

because ||~x � ~y1|| = ||~x � ~y2|| by assumption. By Pythagoras’ theorem this implies

||~x � ~y1||22 = ||~x � ~y 0||22 + ||~y1 � ~y 0||22 (27)

= ||~x � ~y 0||22 +

����

����
~y1 � ~y2

2

����

����
2

2

(28)

> ||~x � ~y 0||22 (29)

because ~y1 6= ~y2 by assumption. We have reached a contradiction, so the projection is unique.

A convex combination of n points is any linear combination of the points with nonnegative coe�-
cients that add up to one. In the case of two points, this is just the segment between the points.

10



Nonconvex Convex

Figure 9: An example of a nonconvex set (left) and a convex set (right).

Definition 2.4 (Convex combination). Given n vectors ~x1, ~x2, . . . , ~xn 2 Rn,

~x :=
nX

i=1

✓i~xi (30)

is a convex combination of ~x1, ~x2, . . . , ~xn as along as the real numbers ✓1, ✓2, . . . , ✓n are nonnegative
and add up to one,

✓i � 0, 1  i  n, (31)
nX

i=1

✓i = 1. (32)

The convex hull of a set S contains all convex combination of points in S. Intuitively, it is the
smallest convex set that contains S.

Definition 2.5 (Convex hull). The convex hull of a set S is the set of all convex combinations of
points in S.

A possible justification of why we penalize the `1-norm to promote sparse structure is that the
`1-norm ball is the convex hull of 1-sparse vectors with unit norm, which form the intersection
between the `0 “norm” ball and the `1-norm ball. The lemma is illustrated in 2D in Figure 10.

Lemma 2.6 (`1-norm ball). The `1-norm ball is the convex hull of the intersection between the `0
“norm” ball and the `1-norm ball.

Proof. We prove that the `1-norm ball B`1 is equal to the convex hull of the intersection between
the `0 “norm” ball B`0 and the `1-norm ball B`1 by showing that the sets contain each other.

B`1 ✓ C (B`0 \ B`1)

Let ~x be an n-dimensional vector in B`1 . If we set ✓i := |~x[i]|, where ~x[i] is the ith entry of ~x by

11



~x[i], and ✓0 = 1 �
Pn

i=1 ✓i we have
Pn

i=0 ✓i = 1 by construction, ✓i = |~x[i]| � 0 and

✓0 = 1 �
n+1X

i=1

✓i (33)

= 1 � ||~x||1 (34)

� 0 because ~x 2 B`1 . (35)

We can express now ~x as a convex combination of the standard basis vectors multiplied by the
sign of the entries of ~x sign (~x[1])~e1, sign (~x[2])~e2, . . . , sign (~x[n])~en, which belong to B`0 \ B`1

since they have a single nonzero entry with magnitude equal to one, and the zero vector ~0, which
also belongs to B`0 \ B`1 ,

~x =
nX

i=1

✓i sign (~x[i])~ei + ✓0~0. (36)

C (B`0 \ B`1) ✓ B`1

Let ~x be an n-dimensional vector in C (B`0 \ B`1). By the definition of convex hull, we can write

~x =
mX

i=1

✓i~yi, (37)

where m > 0, ~y1, . . . , ~ym 2 Rn have a single entry bounded by one, ✓i � 0 for all 1  i  m andPm
i=1 ✓i = 1. This immediately implies ~x 2 B`1 , since

||~x||1 
mX

i=1

✓i ||~yi||1 by the Triangle inequality (38)


mX

i=1

✓i ||~yi||1 because each ~yi only has one nonzero entry (39)


mX

i=1

✓i (40)

 1. (41)

2.2 Constrained convex programs

In this section we discuss convex optimization problems, which are problems in which a convex
function is minimized over a convex set.

Definition 2.7 (Convex optimization problem). An optimization problem is a convex optimization
problem if it can be written in the form

minimize f0 (~x) (42)

subject to fi (~x)  0, 1  i  m, (43)

hi (~x) = 0, 1  i  p, (44)

where f0, f1, . . . , fm, h1, . . . , hp : Rn ! R are functions satisfying the following conditions

12



Figure 10: Illustration of Lemma (2.6) The `0 “norm” ball is shown in black, the `1-norm ball in blue
and the `1-norm ball in a reddish color.

• The cost function f0 is convex.

• The functions that determine the inequality constraints f1, . . . , fm are convex.

• The functions that determine the equality constraints h1, . . . , hp are a�ne, i.e. hi (~x) =
~aT
i ~x + bi for some ~ai 2 Rn and bi 2 R.

Any vector that satisfies all the constraints in a convex optimization problem is said to be feasible.
A solution to the problem is any vector ~x ⇤ such that for all feasible vectors ~x

f0 (~x) � f0 (~x ⇤) . (45)

If a solution exists f (~x ⇤) is the optimal value or optimum of the optimization problem.

Under the conditions in Definition 2.7 we can check that the feasibility set of the optimization
problem is indeed convex. Indeed, it corresponds to the intersection of several convex sets: the
0-sublevel sets of f1, . . . , fm, which are convex by Lemma 2.9 below, and the hyperplanes hi (~x) =
~aT
i ~x + bi. The intersection is convex by Lemma 2.2.

Definition 2.8 (Sublevel set). The �-sublevel set of a function f : Rn ! R, where � 2 R, is the
set of points in Rn at which the function is smaller or equal to �,

C� := {~x | f (~x)  �} . (46)

Lemma 2.9 (Sublevel sets of convex functions). The sublevel sets of a convex function are convex.

Proof. If ~x, ~y 2 Rn belong to the �-sublevel set of a convex function f then for any ✓ 2 (0, 1)

f (✓~x + (1 � ✓) ~y)  ✓f (~x) + (1 � ✓) f (~y) by convexity of f (47)

 � (48)

13



because both ~x and ~y belong to the �-sublevel set. We conclude that any convex combination of
~x and ~y also belongs to the �-sublevel set.

If both the cost function and the constraint functions of a convex optimization problem are a�ne,
the problem is a linear program.

Definition 2.10 (Linear program). A linear program is a convex optimization problem of the form

minimize ~aT~x (49)

subject to ~cT
i ~x  di, 1  i  m, (50)

A~x = ~b. (51)

It turns out that `1-norm minimization can be cast as a linear program.

Theorem 2.11 (`1-norm minimization as a linear program). The optimization problem

minimize ||~x||1 (52)

subject to A~x = ~b (53)

can be recast as the linear program

minimize
nX

i=1

~t[i] (54)

subject to ~t[i] � ~ei
T~x, (55)

~t[i] � �~ei
T~x, (56)

A~x = ~b. (57)

Proof. To show that the linear problem and the `1-norm minimization problem are equivalent, we
show that they have the same set of solutions.

Let us denote an arbitrary solution of the linear program by
�
~x lp,~t lp

�
. For any solution ~x `1 of the

`1-norm minimization problem, we define ~t `1 such that ~t `1 [i] :=
��~x `1 [i]

��.
�
~x `1 ,~t `1

�
is feasible for

the LP so

����~x `1
����

1
=

nX

i=1

~t `1 [i] (58)

�
nX

i=1

~t lp[i] by optimality of ~t lp (59)

�
����~x lp

����
1

by constraints (55) and (56). (60)

This implies that any solution of the linear program is also a solution of the `1-norm minimization
problem.
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To prove the converse, we fix a solution ~x `1 of the `1-norm minimization problem. Setting ~t `1 [i] :=��~x `1 [i]
��, we show that

�
~x `1 ,~t `1

�
is a solution of the linear program. Indeed,

nX

i=1

t`1i =
����~x `1

����
1

(61)


����~x lp

����
1

by optimality of ~x `1 (62)


nX

i=1

~t lp[i] by constraints (55) and (56). (63)

If the cost function is a positive semidefinite quadratic form and the constraints are a�ne a convex
optimization problem is called a quadratic program (QP).

Definition 2.12 (Quadratic program). A quadratic program is a convex optimization problem of
the form

minimize ~xTQ~x + ~aT~x (64)

subject to ~cT
i ~x  di, 1  i  m, (65)

A~x = ~b, (66)

where Q 2 Rn⇥n is positive semidefinite.

A corollary of Theorem 2.11 is that `1-norm regularized least squares can be cast as a QP.

Corollary 2.13 (`1-norm regularized least squares as a QP). The optimization problem

minimize ||A~x � y||22 + � ||~x||1 (67)

can be recast as the quadratic program

minimize ~xTATA~x � 2~y T~x + �
nX

i=1

~t[i] (68)

subject to ~t[i] � ~ei
T~x, (69)

~t[i] � �~ei
T~x. (70)

2.3 Duality

The Lagrangian of an optimization problem combines the cost function and the constraints.

Definition 2.14. The Lagrangian of the optimization problem in Definition 2.7 is defined as the
cost function augmented by a weighted linear combination of the constraint functions,

L (~x, ~↵,~⌫) := f0 (~x) +
mX

i=1

~↵[i] fi (~x) +
pX

j=1

~⌫[j] hj (~x) , (71)

where the vectors ~↵ 2 Rm, ~⌫ 2 Rp are called Lagrange multipliers or dual variables, whereas ~x is
the primal variable.
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The Lagrangian yields a family of lower bounds to the cost function of the optimization problem
at every feasible point.

Lemma 2.15. As long as ~↵[i] � 0 for 1  i  m, the Lagrangian of the optimization problem in
Definition 2.7 lower bounds the cost function at all feasible points, i.e. if ~x is feasible then

L (~x, ~↵,~⌫)  f0 (~x) . (72)

Proof. If ~x is feasible and ~↵[i] � 0 for 1  i  m then

~↵[i] fi (~x)  0, (73)

~⌫[j] hj (~x) = 0, (74)

which immediately implies (72).

Minimizing over the primal variable yields a family of lower bounds that only depends on the dual
variables. We call the corresponding function the Lagrange dual function.

Definition 2.16 (Lagrange dual function). The Lagrange dual function is the infimum of the
Lagrangian over the primal variable ~x

l (~↵,~⌫) := inf
~x2Rn

L (~x, ~↵,~⌫) . (75)

Theorem 2.17 (Lagrange dual function as a lower bound of the primal optimum). Let ~x ⇤ denote
an optimal value of the optimization problem in Definition 2.7,

l (~↵,~⌫)  ~x ⇤, (76)

as long as ~↵[i] � 0 for 1  i  n.

Proof. The result follows directly from (72),

~x ⇤ = f0 (~x ⇤) (77)

� L (~x ⇤, ~↵, ~⌫) (78)

� l (~↵,~⌫) . (79)

Optimizing the lower bound provided by the Lagrange dual function yields an optimization prob-
lem that is called the dual problem of the original optimization problem. The original problem is
called the primal problem in this context.

Definition 2.18 (Dual problem). The dual problem of the optimization problem from Defini-
tion 2.7 is

maximize l (~↵,~⌫) (80)

subject to ~↵[i] � 0, 1  i  m. (81)
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Note that the cost function is a pointwise supremum of linear (and hence convex) functions.

Lemma 2.19 (Supremum of convex functions). Pointwise supremum of a family of convex func-
tions indexed by a set I

fsup (~x) := sup
i2I

fi (~x) . (82)

is convex.

Proof. For any 0  ✓  1 and any ~x, ~y 2 R,

fsup (✓~x + (1 � ✓) ~y) = sup
i2I

fi (✓~x + (1 � ✓) ~y) (83)

 sup
i2I

✓fi (~x) + (1 � ✓) fi (~y) by convexity of the fi (84)

 ✓ sup
i2I

fi (~x) + (1 � ✓) sup
j2I

fj (~y) (85)

= ✓fsup (~x) + (1 � ✓) fsup (~y) (86)

As a result of the lemma, the dual problem is a convex optimization problem even if the primal is
nonconvex! The following result, which is an immediate corollary to Theorem 2.17, states that the
optimum of the dual problem is a lower bound for the primal optimum. This is known as weak
duality.

Corollary 2.20 (Weak duality). Let ~x ⇤ denote an optimum of the optimization problem in Defi-
nition 2.7 and d⇤ an optimum of the corresponding dual problem,

d⇤  ~x ⇤. (87)

In the case of convex functions, the optima of the primal and dual problems are often equal, i.e.

d⇤ = ~x ⇤. (88)

This is known as strong duality. A simple condition that guarantees strong duality for convex
optimization problems is Slater’s condition.

Definition 2.21 (Slater’s condition). A vector x 2 Rn satisfies Slater’s condition for a convex
optimization problem if

fi (~x) < 0, 1  i  m, (89)

Ax = b. (90)

A proof of strong duality under Slater’s condition can be found in Section 5.3.2 of [2].

The following theorem derives the dual problem for the `1-norm minimization problem with equal-
ity constraints.
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Theorem 2.22 (Dual of `1-norm minimization). The dual of the optimization problem of

min
~x

||~x 2 Rm||1 subject to A~x = ~y (91)

is

max
~⌫2Rn

~y T~⌫ subject to
����AT~⌫

����
1  1. (92)

Proof. The Lagrangian is equal to

L (~x,~⌫) = ||~x||1 + ~⌫ T (~y � A~x) , (93)

so the Lagrange dual function equals

l (~↵,~⌫) := inf
~x2Rn

||~x||1 � (AT~⌫)T~x + ~⌫ T~y. (94)

If (AT~⌫)[i] > 1 then one can set ~x[i] arbitrarily large so that l (~↵,~⌫) ! �1. The same happens
if (AT~⌫)[i] < 1. If

����AT~⌫
����

1  1, by Hölder’s inequality (Theorem 3.16 in Lecture Notes 1)

��(AT~⌫)T~x
��  ||~x||1

����AT~⌫
����

1 (95)

 ||~x||1 , (96)

so the Lagrangian is minimized by setting ~x to zero and l (~↵,~⌫) = ~⌫ T~y. This completes the
proof.

Interestingly, the solution to the dual of the `1-norm minimization problem can often be used to
estimate the support of the primal solution. Figure 11 shows that the vector AT~⌫ ⇤, where A is
the underdetermined linear operator and ~⌫ ⇤ is a solution to Problem (92), reveals the support of
the original signal for the randomly-subsampled data in Example 1.2.

Lemma 2.23. If the exists a feasible vector for the primal problem, then the solution ~⌫ ⇤ to
Problem (92) satisfies

(AT~⌫ ⇤)[i] = sign(~x ⇤[i]) for all ~x ⇤[i] 6= 0 (97)

for all solutions ~x ⇤ to the primal problem.

Proof. If there is a feasible vector for the primal problem, then strong duality holds because the
optimization problem is a linear program with finite cost function. By strong duality

||~x ⇤||1 = ~y T~⌫ ⇤ (98)

= (A~x ⇤)T~⌫ ⇤ (99)

= (~x ⇤)T (AT~⌫ ⇤) (100)

=
mX

i=1

(AT~⌫ ⇤)[i]~x ⇤[i]. (101)
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Figure 11: The vector AT~⌫ ⇤, where A is the underdetermined linear operator and ~⌫ ⇤ is a solution to
Problem (92), reveals the support of the original signal for the randomly-subsampled data in Example 1.2.

By Hölder’s inequality

||~x ⇤||1 �
mX

i=1

(AT~⌫ ⇤)[i]~x ⇤[i] (102)

with equality if and only if

(AT~⌫ ⇤)[i] = sign(~x ⇤[i]) for all ~x ⇤[i] 6= 0. (103)

Consider the following algorithm for sparse recovery. Our goal is to find nonzero locations of a
sparse vector ~x from ~y = A~x. We have access to inner products of ~x and AT ~w for any ~w, since

~yT ~w = (A~x)T ~w (104)

= ~xT (AT ~w). (105)

This suggests maximizing AT ~w, while bounding its magnitude entries by 1. In that case, the
entries where ~x is nonzero should saturate to 1 or -1. This is exactly Problem (92)!

3 Analysis of constrained convex programs

3.1 Minimum `2-norm solution

The best-case scenario for the analysis of constrained convex program is that the optimization
problem has a closed-form solution. This is the case for `2-norm minimization.
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Theorem 3.1. Let A 2 Rm⇥n be a full rank matrix such that m < n. For any ~y 2 Rn the solution
to the optimization problem

arg min
~x

||~x||2 subject to A~x = ~y. (106)

is

~x ⇤ := V S�1UT~y = AT
�
ATA

��1
~y. (107)

Proof. Let us decompose ~x into its projection on the row space of A and on its orthogonal com-
plement

~x = Prow(A) ~x + Prow(A)? ~x. (108)

Let A = USV T be the reduced SVD of A where S contains the nonzero singular values. Since A
is full rank V contains an orthonormal basis of row (A) and we can write Prow(A) ~x = V ~c for some
vector ~c 2 Rn. We have

A~x = AProw(A) ~x (109)

= USV TV ~c (110)

= US~c. (111)

So that the equality constraint is equivalent to

US~c = ~y, (112)

where US is square and invertible because A is full rank, so that

~c = S�1UT~y (113)

and hence for all feasible vectors ~x

Prow(A) ~x = V S�1UT~y. (114)

By Pythagoras’ theorem, minimizing ||~x||2 is equivalent to minimizing

||~x||22 =
����Prow(A) ~x

����2
2
+
���
���Prow(A)? ~x

���
���
2

2
. (115)

Since Prow(A) ~x is fixed by the equality constraint, the minimum is achieved by setting Prow(A)? ~x
to zero and the solution equals

~x ⇤ := V S�1UT~y = AT
�
ATA

��1
~y. (116)

The next lemma exploits the closed-form solution of the minimum `2-norm to explain the aliasing
that occurs for the regularly-subsampled data in Figure 5.
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Lemma 3.2 (Regular subsampling). Let A be the regularly-subsampled DFT matrix in Exam-
ple 1.2 and let

~x :=


~xup

~xdown

�
(117)

be the original signal. The minimum `2-norm estimate equals

~x`2 := arg min
A~x=~y

||~x||2 (118)

=
1

2


~xup + ~xdown

~xup + ~xdown

�
. (119)

Proof. As is obvious in Figure 2 and we discussed in Example 1.15 of Lecture Notes 4, the matrix
A is equal to two concatenated DFT matrices of size m/2 (for simplicity we assume m is even)

A :=
1p
2

⇥
Fm/2 Fm/2

⇤
, (120)

where F ⇤
m/2Fm/2 = Fm/2F ⇤

m/2 = I. By Theorem 3.1

~x`2 = AT
�
ATA

��1
~y (121)

=
1p
2


F ⇤
m/2

F ⇤
m/2

�✓
1p
2

⇥
Fm/2 Fm/2

⇤ 1p
2


F ⇤
m/2

F ⇤
m/2

�◆�1
1p
2

⇥
Fm/2 Fm/2

⇤  ~xup

~xdown

�
(122)

=
1

2


F ⇤
m/2

F ⇤
m/2

�✓
1

2

⇥
Fm/2F ⇤

m/2 + Fm/2F ⇤
m/2

⇤◆�1 �
Fm/2~xup + Fm/2~xdown

�
(123)

=
1

2


F ⇤
m/2

F ⇤
m/2

�
I�1

�
Fm/2~xup + Fm/2~xdown

�
(124)

=
1

2


F ⇤
m/2

�
Fm/2~xup + Fm/2~xdown

�

F ⇤
m/2

�
Fm/2~xup + Fm/2~xdown

�
�

(125)

=
1

2


~xup + ~xdown

~xup + ~xdown

�
. (126)

3.2 Minimum `1-norm solution

Unfortunately, the solution to `1-norm minimization with linear constraints does not have a closed-
form solution. When we considered unconstrained nondi↵erentiable convex problems without
closed-form solutions in Lecture Notes 8, we characterized the solutions by exploiting the fact
that the zero vector is a subgradient of a convex cost function at a point if and only if the point
is a minimizer. Here we will use a di↵erent argument based on the dual problem (which can often
also be interpreted geometrically in terms of subgradients as we discuss below). The main idea is
to construct a dual feasible vector whose existence implies that the original signal which we aim
to recover is the unique solution to the primal.

21



Consider a certain sparse vector ~x ⇤ 2 Rm with support T such that A~x ⇤ = ~y. If there exists
a vector ~⌫ 2 Rn such that AT~⌫ is equal to the sign of ~x on T and has magnitude smaller than
one elsewhere, then ⌫ is feasible for the dual problem 92, so by weak duality ||~x||1 � ~yT~⌫ for any
~x 2 Rm that is feasible for the primal. We then have

||~x||1 � ~yT~⌫ (127)

= (A~x ⇤)T~⌫ (128)

= (~x ⇤)T (AT~⌫) (129)

=
mX

i=1

~x ⇤[i] sign(~x ⇤[i]) (130)

= ||~x ⇤||1 . (131)

Geometrically, AT~⌫ is a subgradient of the `1 norm at ~x ⇤. The subgradient is orthogonal to
the feasibility hyperplane given by A~x = ~y (any vector ~v within the hyperplane is the di↵erence
between two feasible vectors and therefore satisfies A~v = ~0). As a result, for any other feasible
vector ~x

||~x||1 � ||~x ⇤||1 + (AT~⌫)T (~x � ~x ⇤) (132)

= ||~x ⇤||1 + ~⌫T (A~x � A~x ⇤) (133)

= ||~x ⇤||1 . (134)

These two arguments show that the existence of a certain dual vector can be used to establish
that a certain primal feasible vector is a solution, but they do not establish uniqueness. It turns
out that requiring that the magnitude of AT~⌫ be strictly smaller than one on T c is enough to
guarantee it (as long as A is full rank). In that case, we call the dual variable ~⌫ a dual certificate
for the `1-norm minimization problem.

Theorem 3.3 (Dual certificate for `1-norm minimization). Let ~x ⇤ 2 Rm with support T such that
A~x ⇤ = ~y and the submatrix AT containing the columns of A indexed by T is full rank. If there
exists a vector ~⌫ 2 Rn such that

(AT~⌫)[i] = sign(~x ⇤[i]) if ~x ⇤[i] 6= 0 (135)
��(AT~⌫)[i]

�� < 1 if ~x ⇤[i] = 0 (136)

then ~x ⇤ is the unique solution to the `1-norm minimization problem (16).

Proof. For any feasible ~x 2 Rm, let ~h := ~x � ~x ⇤. If AT is full rank then ~hT c 6= 0 unless ~h = 0
because otherwise ~hT would be a nonzero vector in the null space of AT . Condition (136) implies

���
���~hT c

���
���
1

> (AT~⌫)T~hT c , (137)

where ~hT c denotes ~h restricted to the entries indexed by T c. Let PT (·) denote a projection that
sets to zero all entries of a vector except the ones indexed by T . We have

||~x||1 =
���
���~x ⇤ + PT (~h)

���
���
1
+
���
���~hT c

���
���
1

because ~x ⇤ is supported on T (138)

> ||~x ⇤||1 + (AT~⌫)TPT (~h) + (AT~⌫)TPT c (~h) by (137) (139)

= ||~x ⇤||1 + ~⌫TA~h (140)

= ||~x ⇤||1 . (141)
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A strategy to prove that compressed sensing succeeds for a class of signals is to propose a dual-
certificate construction and show that it produces a valid certificate for any signal in the class.
We illustrate this with Gaussian matrices, but similar arguments can be extended to random
Fourier matrices [7] and other measurements [4] (see also [6] for a more recent proof technique
based on approximate dual certificates that provides better guarantees). It is also worth noting
that the restricted-isometry property can be directly used to prove exact recovery via `1-norm
minimization [5], but this technique is less general. Dual certificates can also be used to analyze
other problems such as matrix completion, super-resolution and phase retrieval.

Theorem 3.4 (Exact recovery via `1-norm minimization). Let A 2 Rm⇥n be a random matrix with
iid standard Gaussian entries and ~x ⇤ 2 Rm a vector with s nonzero entries such that A~x ⇤ = ~y.
Then ~x ⇤ is the unique solution to the `1-norm minimization problem (16) with probability at least
1 � 1

n as long as the number of measurements satisfies

m � Cs log n, (142)

for a fixed numerical constant C.

Proof. By Theorem 3.3 all we need to show is that for any support T of size s and any possible
sign pattern ~w := ~x ⇤

T 2 Rs of the nonzero entries of ~x ⇤ there exists a valid dual certificate ~⌫. The
certificate must satisfy

A
T
T~⌫ = ~w. (143)

Ideally we would like to analyze the vector ~⌫ satisfying this underdetermined system of s equations
such that AT

T c~⌫ has the smallest possible `1 norm. Unfortunately, the solution to the optimization
problem

min
⌫

����AT
T c~⌫

����
1 subject to A

T
T~⌫ = ~w (144)

does not have a closed-form solution. However, the solution to

min
~⌫

||~⌫||2 subject to A
T
T~⌫ = ~w (145)

does, so we can analyze it instead. By Theorem 3.1 the solution is

~⌫`2 := A
T
T

�
A

T
TAT

��1
~w. (146)

To control ~⌫`2 we resort to the bound on the singular values of a fixed m ⇥ s submatrix in
equation (11). Setting s := 0.5 we denote by E the event that

0.5
p

m  �s  �1  1.5
p

m, (147)

where

P (E) � 1 � exp
⇣
�C 0m

s

⌘
(148)
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for a fixed constant C 0. Conditioned on E AT is full rank and A
T
TAT is invertible, so ~⌫`2 guarantees

condition (135). In order to verify condition (136), we need to bound A
T
i ~⌫`2 for all indices i 2 T c.

Let USV
T be the SVD of AT . Conditioned on E we have

||~⌫`2 ||2 =
����VS

�1
U

T ~w
����

2
(149)

 ||~w||2
�s

(150)

 2

r
s

m
. (151)

For a fixed i 2 T c and a fixed vector ~v 2 Rn, AT
i ~v/ ||~v||2 is a standard Gaussian random variable,

which implies

P
���AT

i ~v
�� � 1

�
= P

 ��AT
i ~v
��

||~v||2
� ||~v||2

!
(152)

 2 exp
�
� ||~v||22 /2

�
(153)

by the following lemma.

Lemma 3.5 (Proof in Section 4.1). For a Gaussian random variable u with zero mean and unit
variance and any t > 0

P (|u| � t)  2 exp

✓
�t2

2

◆
. (154)

Note that if i /2 T then Ai and ~⌫`2 are independent (they depend on di↵erent and hence indepen-
dent entries of A). This means that due to equation 151

P
���AT

i ~⌫`2

�� � 1 | E
�

= P

✓��AT
i ~v
�� � 1 for ||⌫||2  2

r
s

m

◆
(155)

 2 exp
⇣
�m

8s

⌘
. (156)

As a result,

P
���AT

i ~⌫`2

�� � 1
�

 P
���AT

i ~⌫`2

�� � 1 | E
�

+ P (Ec) (157)

 2 exp
⇣
�m

8s

⌘
+ exp

⇣
�C 0m

s

⌘
. (158)

We now apply the union bound to obtain a bound that holds for all i 2 T c. Since T c has cardinality
at most n

P

 
[

i2T c

���AT
i ~⌫`2

�� � 1
 
!

 n
⇣
2 exp

⇣
�m

8s

⌘
+ exp

⇣
�C 0m

s

⌘⌘
. (159)

We can consequently choose a constant C so that if the number of measurements satisfies

m � Cs log n (160)

we have exact recovery with probability 1 � 1
n .
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4 Proofs

4.1 Proof of Lemma 3.5

By symmetry of the Gaussian probability density function, we just need to bound the probability
that u > t. Applying Markov’s inequality (Theorem 2.6 in Lecture Notes 3) we have

P (u � t) = P
�
exp (ut) � exp

�
t2
��

(161)

 E
�
exp

�
ut � t2

��
(162)

= exp

✓
�t2

2

◆
1p
2⇡

Z 1

�1
exp

 
�(x � t)2

2

!
dx (163)

= exp

✓
�t2

2

◆
. (164)
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Optimization-based data analysis Fall 2017

Lecture Notes 10:
Matrix Factorization

1 Low-rank models

1.1 Rank-1 model

Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To fix
ideas, assume that y[i, j] represents the rating assigned to a movie i by a user j. If we have
available a data set of such ratings, how can we predict new ratings for (i, j) that we have not
seen before? A possible assumption is that some movies are more popular in general than others,
and some users are more generous. This is captured by the following simple model

y[i, j] ⇡ a[i]b[j]. (1)

The features a and b capture the respective contributions of the movie and the user to the ranking.
If a[i] is large, movie [i] receives good ratings in general. If b[j] is large, then user [i] is generous,
they give good ratings in general.

In the model (1) the two unknown parameters a[i] and b[j] are combined multiplicatively. As a
result, if we fit these parameters using observed data by minimizing a least-squares cost function,
the optimization problem is not convex. Figure 1 illustrates this for the function

f (a, b) := (1� ab)2 , (2)

which corresponds to an example where there is only one movie and one user and the rating
equals one. Nonconvexity is problematic because if we use algorithms such as gradient descent to
minimize the cost function, they may get stuck in local minima corresponding to parameter values
that do not fit the data well. In addition, there is a scaling issue: the pairs (a, b) and (ac, b/c)
yield the same cost for any constant c. This motivates incorporating a constraint to restrict the
magnitude of some of the parameters. For example, in Figure 1 we add the constraint |a| = 1,
which is a nonconvex constraint set.

Assume that there are m movies and n users in the data set and every user rates every movie. If
we store the ratings in a matrix Y such that Yij := y[i, j] and the movie and user features in the

vectors ~a 2 Rm and ~b 2 Rn, then equation (1) is equivalent to

Y ⇡ ~a~b
T
. (3)

Now consider the problem of fitting the problem by solving the optimization problem

min
~a2Rm,~b2Rn

���
���Y � ~a~b

T
���
���
F

subject to ||~a||2 = 1. (4)
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a = �1 a = +1

a

b

10.0

20.0

Figure 1: Heat map and contour map for the function (1� ab)2. The dashed line correspond to the set

|a| = 1.

Note that ~a~bT is a rank-1 matrix and conversely any rank-1 matrix can be written in this form
where ||~a||2 = 1 (~a is equal to any of the columns normalized by their `2 norm). The problem is
consequently equivalent to

min
X2Rm⇥n

||Y �X||F subject to rank (X) = 1. (5)

By Theorem 2.10 in Lecture Notes 2 the solution Xmin to this optimization problem is given by
the truncated singular-value decomposition (SVD) of Y

Xmin = �1~u1~v
T
1 , (6)

where �1 is the largest singular value and ~u1 and ~v1 are the corresponding singular vectors. The
corresponding solutions ~amin and ~bmin to problem (4) are

~amin = ~u1, (7)

~bmin = �1~v1. (8)

Example 1.1 (Movies). Bob, Molly, Mary and Larry rate the following six movies from 1 to 5,

A :=

Bob Molly Mary Larry
0

BBBBB@

1

CCCCCA

1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2

(9)

To fit a low-rank model, we first subtract the average rating

µ :=
1

mn

mX

i=1

nX

j=1

Aij, (10)
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from each entry in the matrix to obtain a centered matrix C and then compute its singular-value
decomposition

A� µ~1~1T = USV
T = U

2

664

7.79 0 0 0
0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

3

775V
T
. (11)

where ~1 2 R4 is a vector of ones. The fact that the first singular value is significantly larger than
the rest suggests that the matrix may be well approximated by a rank-1 matrix. This is indeed
the case:

µ~1~1T + �1~u1~v
T
1 =

Bob Molly Mary Larry
0

BBBBB@

1

CCCCCA

1.34 (1) 1.19 (1) 4.66 (5) 4.81 (4) The Dark Knight
1.55 (2) 1.42 (1) 4.45 (4) 4.58 (5) Spiderman 3
4.45 (4) 4.58 (5) 1.55 (2) 1.42 (1) Love Actually
4.43 (5) 4.56 (4) 1.57 (2) 1.44 (1) Bridget Jones’s Diary
4.43 (4) 4.56 (5) 1.57 (1) 1.44 (2) Pretty Woman
1.34 (1) 1.19 (2) 4.66 (5) 4.81 (5) Superman 2

(12)

For ease of comparison the values of A are shown in brackets. The first left singular vector is equal
to

~u1 :=
D. Knight Spiderman 3 Love Act. B.J.’s Diary P. Woman Superman 2
( )�0.45 �0.39 0.39 0.39 0.39 �0.45 .

This vector allows us to cluster the movies: movies with negative entries are similar (in this case
action movies) and movies with positive entries are similar (in this case romantic movies).

The first right singular vector is equal to

~v1 =
Bob Molly Mary Larry
( )0.48 0.52 �0.48 �0.52 . (13)

This vector allows to cluster the users: negative entries indicate users that like action movies but
hate romantic movies (Bob and Molly), whereas positive entries indicate the contrary (Mary and
Larry). 4

1.2 Rank-r model

Our rank-1 matrix model is extremely simplistic. Di↵erent people like di↵erent movies. In order
to generalize it we can consider r factors that capture the dependence between the ratings and
the movie/user

y[i, j] ⇡
rX

l=1

al[i]bl[j]. (14)

The parameters of the model have the following interpretation:

3



• al[i]: movie i is positively (> 0), negatively (< 0) or not (⇡ 0) associated to factor l.

• bl[j]: user j likes (> 0), hates (< 0) or is indi↵erent (⇡ 0) to factor l.

The model learns the factors directly from the data. In some cases, these factors may be
interpretable– for example, they can be associated to the genre of the movie as in Example 1.1 or
the age of the user– but this is not always the case.

The model (14) corresponds to a rank-r model

Y ⇡ AB, A 2 Rm⇥r
, B 2 Rr⇥n

. (15)

We can fit such a model by computing the SVD of the data and truncating it. By Theorem 2.10
in Lecture Notes 2 the truncated SVD is the solution to

min
A2Rm⇥r,B2Rr⇥n

||Y � AB||F subject to ||~a1||2 = 1, . . . , ||~ar||2 = 1. (16)

However, the SVD provides an estimate of the matrices A and B that constrains the columns of
A and the rows of B to be orthogonal. As a result, these vectors do not necessarily correspond to
interpretable factors.

2 Matrix completion

2.1 Missing data

The Netflix Prize was a contest organized by Netflix from 2007 to 2009 in which teams of data
scientists tried to develop algorithms to improve the prediction of movie ratings. The problem
of predicting ratings can be recast as that of completing a matrix from some of its entries, as
illustrated in Figure 2. This problem is known as matrix completion.

At first glance, the problem of completing a matrix such as this one

1 ? 5
? 3 2

�
(17)

may seem completely ill posed. We can just fill in the missing entries arbitrarily! In more mathe-
matical terms, the completion problem is equivalent to an underdetermined system of equations

2

6666664

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7777775

2

6666666666664

M11

M21

M12

M22

M13

M23

3

7777777777775

=

2

6666664

1

3

5

2

3

7777775
. (18)
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???

?

?

Figure 2: A depiction of the Netflix challenge in matrix form. Each row corresponds to a user that ranks

a subset of the movies, which correspond to the columns. The figure is due to Mahdi Soltanolkotabi.

In order to solve the problem, we need to make an assumption on the structure of the matrix that
we aim to complete. In compressed sensing we make the assumption that the original signal is
sparse. In the case of matrix completion, we make the assumption that the original matrix is low
rank. This implies that there exists a high correlation between the entries of the matrix, which
may make it possible to infer the missing entries from the observations. As a very simple example,
consider the following matrix

2

664

1 1 1 1 ? 1
1 1 1 1 1 1
1 1 1 1 1 1
? 1 1 1 1 1

3

775 . (19)

Setting the missing entries to 1 yields a rank 1 matrix, whereas setting them to any other number
yields a rank 2 or rank 3 matrix.

The low-rank assumption implies that if the matrix has dimensions m⇥n then it can be factorized
into two matrices that have dimensions m⇥ r and r ⇥ n. This factorization allows to encode the
matrix using r (m+ n) parameters. If the number of observed entries is larger than r (m+ n)
parameters then it may be possible to recover the missing entries. However, this is not enough to
ensure that the problem is well posed.

2.2 When is matrix completion well posed?

The results of matrix completion will obviously depend on the subset of entries that are observed.
For example, completion is impossible unless we observe at least one entry in each row and column.
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To see why let us consider a rank 1 matrix for which we do not observe the second row,

2

664

1 1 1 1
? ? ? ?
1 1 1 1
1 1 1 1

3

775 =

2

664

1
?
1
1

3

775
⇥
1 1 1 1

⇤
. (20)

As long as we set the missing row to equal the same value, we will obtain a rank-1 matrix consistent
with the measurements. In this case, the problem is not well posed.

In general, we need samples that are distributed across the whole matrix. This may be achieved
by sampling entries uniformly at random. Although this model does not completely describe
matrix completion problems in practice (some users tend to rate more movies, some movies are
very popular and are rated by many people), making the assumption that the revealed entries are
random simplifies theoretical analysis and avoids dealing with adversarial cases designed to make
deterministic patterns fail.

We now turn to the question of what matrices can be completed from a subset of entries samples
uniformly at random. Intuitively, matrix completion can be achieved when the information con-
tained in the entries of the matrix is spread out across multiple entries. If the information is very
localized then it will be impossible to reconstruct the missing entries. Consider a simple example
where the matrix is sparse

2

664

0 0 0 0 0 0
0 0 0 23 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

775 . (21)

If we don’t observe the nonzero entry, we will naturally assume that it was equal to zero.

The problem is not restricted to sparse matrices. In the following matrix the last row does not
seem to be correlated to the rest of the rows,

M :=

2

66664

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
�3 3 �3 3

3

77775
. (22)

This is revealed by the singular-value decomposition of the matrix, which allows to decompose it
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into two rank-1 matrices.

M = U SV
T (23)

=

2

66664

0.5 0
0.5 0
0.5 0
0.5 0
0 1

3

77775


8 0
0 6

� 
0.5 0.5 0.5 0.5
�0.5 0.5 �0.5 0.5

�
(24)

= 8

2

66664

0.5
0.5
0.5
0.5
0

3

77775

⇥
0.5 0.5 0.5 0.5

⇤
+ 6

2

66664

0
0
0
0
1

3

77775

⇥
�0.5 0.5 �0.5 0.5

⇤
(25)

= �1U1V
T
1 + �2U2V

T
2 . (26)

The first rank-1 component of this decomposition has information that is very spread out,

�1U1V
T
1 =

2

66664

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
0 0 0 0

3

77775
. (27)

The reason is that most of the entries of V1 are nonzero and have the same magnitude, so that
each entry of U1 a↵ects every single entry of the corresponding row. If one of those entries is
missing, we can still recover the information from the other entries.

In contrast, the information in the second rank-1 component is very localized, due to the fact that
the corresponding left singular vector is very sparse,

�2U2V
T
2 =

2

66664

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
�3 3 �3 3

3

77775
. (28)

Each entry of the right singular vector only a↵ects one entry of the component. If we don’t observe
that entry then it will be impossible to recover.

This simple example shows that sparse singular vectors are problematic for matrix completion.
In order to quantify to what extent the information is spread out across the low-rank matrix we
define a coherence measure that depends on the singular vectors.

Definition 2.1 (Coherence). Let U SV
T be the singular-value decomposition of an n⇥ n matrix

M with rank r. The coherence µ of M is a constant such that

max
1jn

rX

i=1

U
2
ij 

nµ

r
(29)

max
1jn

rX

i=1

V
2
ij 

nµ

r
. (30)
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This condition was first introduced in [1]. Its exact formulation is not too important. The point is
that matrix completion from uniform samples only makes sense for matrices which are incoherent,
and therefore do not have spiky singular values. There is a direct analogy with the super-resolution
problem, where sparsity is not a strong enough constraint to make the problem well posed and
the class of signals of interest has to be further restricted to signals with supports that satisfy a
minimum separation.

2.3 Minimizing the nuclear norm

We are interested in recovering low-rank matrices from a subset of their entries. Let ~y be a vector
containing the revealed entries and let ⌦ be the corresponding entries. Ideally, we would like to
select the matrix with the lowest rank that corresponds to the measurements,

min
X2Rm⇥n

rank (X) such that X⌦ = ~y. (31)

Unfortunately, this optimization problem is computationally hard to solve. Substituting the rank
with the nuclear norm yields a tractable alternative:

min
X2Rm⇥n

||X||⇤ such that X⌦ = ~y. (32)

The cost function is convex and the constraint is linear, so this is a convex program. In practice,
the revealed entries are usually noisy. They do not correspond exactly to entries from a low-rank
matrix. We take this into account by removing the equality constraint and adding a data-fidelity
term penalizing the `2-norm error over the revealed entries in the cost function,

min
X2Rm⇥n

1

2
||X⌦ � ~y||22 + � ||X||⇤ , (33)

where � > 0 is a regularization parameter.

Example 2.2 (Collaborative filtering (simulated)). We now apply this method to the following
completion problem:

Bob Molly Mary Larry
0

BBBBB@

1

CCCCCA

1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2

(34)

In more detail we apply the following steps:

1. We compute the average observed rating and subtract it from each entry in the matrix. We
denote the vector of centered ratings by y.

2. We solve the optimization problem (32).

8



3. We add the average observed rating to the solution of the optimization problem and round
each entry to the nearest integer.

The result is pretty good,

Bob Molly Mary Larry
0

BBBBB@

1

CCCCCA

1 2 (1) 5 4 The Dark Knight
2 (2) 1 4 5 Spiderman 3
4 5 2 2 (1) Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 (5) 5 Superman 2

(35)

For comparison the original ratings are shown in brackets. 4

2.4 Algorithms

In this section we describe a proximal-gradient method to solve Problem 33. Recall that proximal-
gradient methods allow to solve problems of the form

minimize f (x) + g (x) , (36)

where f is di↵erentiable and we can apply the proximal operator proxg e�ciently.

Recall that the proximal operator norm of the `1 norm is a soft-thresholding operator. Analogously,
the proximal operator of the nuclear norm is applied by soft-thresholding the singular values of
the matrix.

Theorem 2.3 (Proximal operator of the nuclear norm). The solution to

min
X2Rm⇥n

1

2
||Y �X||2F + ⌧ ||X||⇤ (37)

is D⌧ (Y ), obtained by soft-thresholding the singular values of Y = U SV
T

D⌧ (Y ) := U S⌧ (S)V
T
, (38)

S⌧ (S)ii :=

(
Sii � ⌧ if Sii > ⌧,

0 otherwise.
(39)

Proof. Due to the Frobenius norm term, the cost function is strictly convex. This implies that any
point at which there exists a subgradient that is equal to zero is the solution to the optimization
problem. The subgradients of the cost function at X are of the form,

X � Y + ⌧G, (40)

where G is a subgradient of the nuclear norm at X. If we can show that

1

⌧
(Y �D⌧ (Y )) (41)
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is a subgradient of the nuclear norm at D⌧ (Y ) then D⌧ (Y ) is the solution.

Let us separate the singular-value decomposition of Y into the singular vectors corresponding to
singular values greater than ⌧ , denoted by U0 and V0 and the rest

Y = U SV
T (42)

=
⇥
U0 U1

⇤ S0 0
0 S1

� ⇥
V0 V1

⇤T
. (43)

Note that D⌧ (Y ) = U0 (S0 � ⌧I)V T
0 , so that

1

⌧
(Y �D⌧ (Y )) = U0V

T
0 +

1

⌧
U1S1V

T
1 . (44)

By construction all the singular values of U1S1V
T
1 are smaller than ⌧ , so

����

����
1

⌧
U1S1V

T
1

����

����  1. (45)

In addition, by definition of the singular-value decomposition U
T
0 U1 = 0 and V

T
0 V1 = 0. As a

result, (44) is a subgradient of the nuclear norm at D⌧ (Y ) and the proof is complete.

Algorithm 2.4 (Proximal-gradient method for nuclear-norm regularization). Let Y be a matrix

such that Y⌦ = y and let us abuse notation by interpreting X
(k)
⌦ as a matrix which is zero on ⌦c.

We set the initial point X(0) to Y . Then we iterate the update

X
(k+1) = D↵k�

⇣
X

(k) � ↵k

⇣
X

(k)
⌦ � Y

⌘⌘
, (46)

where ↵k > 0 is the step size.

Example 2.5 (Collaborative filtering (real)). The Movielens data set contains ratings from 671
users for 300 movies. The ratings are between 1 and 10. Figure 3 shows the results of applying
algorithm 2.4 (as implemented by this package) using a training set of 9 135 ratings and evaluating
the model on 1 016 test ratings. For large values of � the model is too low rank and is not able
to fit the data, so both the training and test error is high. When � is too small, the model is
not low rank, which results in overfitting: the observed entries are approximated by a high-rank
model that is not able to predict the test entries. For intermediate values of � the model achieves
an average error of about 2/10. 4

2.5 Alternating minimization

Minimizing the nuclear norm to recover a low-rank matrix is an e↵ective method but it has a
drawback: it requires repeatedly computing the singular-value decomposition of the matrix, which
can be computationally heavy for large matrices. A more e�cient alternative is to parametrize
the matrix as AB where A 2 Rm⇥k and B 2 Rk⇥n, which requires fixing a value for the rank of
the matrix k (in practice this can be set by cross validation). The two components A and B can
then be fit by solving the optimization problem

min
eA2Rm⇥k, eB2Rk⇥n

���
���
⇣
eA eB

⌘

⌦
� ~y

���
���
2
. (47)
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Figure 3: Training and test error of nuclear-norm-based collaborative filtering for the data described in

Example 2.5.

This nonconvex problem is usually tackled by alternating minimization. Indeed, if we fix eB = B

the optimization problem over eA is just a least-squares problem

min
eA2Rm⇥k

���
���
⇣
eAB

⌘

⌦
� ~y

���
���
2

(48)

and the same is true for the optimization problem over eB if we fix eA = A. Iteratively solving
these least-squares problems allows to find a local minimum of the cost function. Under certain as-
sumptions, one can even show that a certain initialization coupled with this procedure guaranteees
exact recovery, see [3] for more details.

3 Structured low-rank models

3.1 Nonnegative matrix factorization

As we discussed in Lecture Notes 2, PCA can be used to compute the main principal directions of a
dataset, which can be interpreted as basis vectors that capture as much of the energy as possible.
These vectors are constrained to be orthogonal. Unfortunately, as a result they are often not
necessarily interpretable. For example, when we compute the principal directions and components
of a data set of faces, they both may have negative values, so it is di�cult to interpret the directions
as face atoms that can be added to form a face. This suggests computing a decomposition where
both atoms and coe�cients are nonnegative, with the hope that this will allow us to learn a more
interpretable model.

11



A nonnegative matrix factorization of the data matrix may be obtained by solving the optimization
problem,

minimize
���
���X � Ã B̃

���
���
2

F
(49)

subject to Ãi,j � 0, (50)

B̃i,j � 0, for all i, j (51)

where Ã 2 Rd⇥r and B̃ 2 Rr⇥n for a fixed r. This is a nonconvex problem which is computationally
hard, due to the nonnegative constraint. Several methods to compute local optima have been
suggested in the literature, as well as alternative cost functions to replace the Frobenius norm.
We refer interested readers to [4].

Figure 4 shows the columns of the left matrix A, which we interpret as atoms that can be combined
to form the faces, obtained by applying this method to the faces dataset from Lecture Notes 2
and compares them to the principal directions obtained through PCA. Due to the nonnegative
constraint, the atoms resemble portions of faces (the black areas have very small values) which
capture features such as the eyebrows, the nose, the eyes, etc.

Example 3.1 (Topic modeling). Topic modeling aims to learn the thematic structure of a text
corpus automatically. We will illustrate this application with a simple example. We take six
newspaper articles and compute the frequency of a list of words in each of them. Our final goal
is to separate the words into di↵erent clusters that hopefully correspond to di↵erent topics. The
following matrix contains the counts for each word and article. Each entry contains the number of
times that the word corresponding to column j is mentioned in the article corresponding to row i.

A =

singer GDP senate election vote stock bass market band Articles
0

BBBBB@

1

CCCCCA

6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f

Computing the singular-value decomposition of the matrix– after subtracting the mean of each
entry as in (11)– we determine that the matrix is approximately low rank

A = USV
T = U

2

6666664

23.64 0 0 0
0 18.82 0 0 0 0
0 0 14.23 0 0 0
0 0 0 3.63 0 0
0 0 0 0 2.03 0
0 0 0 0 0 1.36

3

7777775
V

T (52)

Unfortunately the singular vectors do not have an intuitive interpretation as in Section ??. In
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PCA

NMF

Figure 4: Atoms obtained by applying PCA and nonnegative matrix factorization to the faces dataset

in Lecture Notes 2.
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particular, they do not allow to cluster the words

a b c d e f
( )U1 = �0.24 �0.47 �0.24 �0.32 �0.58 �0.47
( )U2 = 0.64 �0.23 0.67 �0.03 �0.18 �0.21
( )U3 = �0.08 �0.39 �0.08 0.77 0.28 �0.40

(53)

or the articles

singer GDP senate election vote stock bass market band
( )V1 = �0.18 �0.24 �0.51 �0.38 �0.46 �0.34 �0.2 �0.3 �0.22
( )V2 = 0.47 0.01 �0.22 �0.15 �0.25 �0.07 0.63 �0.05 0.49
( )V3 = �0.13 0.47 �0.3 �0.14 �0.37 0.52 �0.04 0.49 �0.07

(54)

A problem here is that the singular vectors have negative entries that are di�cult to interpret. In
the case of rating prediction, negative ratings mean that a person does not like a movie. In contrast
articles either are about a topic or they are not: it makes sense to add atoms corresponding to
di↵erent topics to approximate the word count of a document but not to subtract them. Following
this intuition, we apply nonnegative matrix factorization to obtain two matrices W 2 Rm⇥k and
H 2 Rk⇥n such that

M ⇡ WH, Wi,j � 0, 1  i  m, 1  j  k, (55)

Hi,j � 0, 1  i  k, 1  i  n. (56)

In our example, we set k = 3. H1, H2 and H3 can be interpreted as word-count atoms, but also
as coe�cients that weigh the contribution of W1, W2 and W3.

singer GDP senate election vote stock bass market band
( )H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
( )H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
( )H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43

(57)

The latter interpretation allows to cluster the words into topics. The first topic corresponds to the
entries that are not zero (or very small) in H1: senate, election and vote. The second corresponds
to H2: GDP, stock and market. The third corresponds to H3: singer, bass and band.

The entries of W allow to assign the topics to articles. b, e and f are about politics (topic 1), d
and e about economics (topic 3) and a and c about music (topic 3)

a b c d e f
( )W1 = 0.03 2.23 0 0 1.59 2.24
( )W2 = 0.1 0 0.08 3.13 2.32 0
( )W3 = 2.13 0 2.22 0 0 0.03

(58)
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Finally, we check that the factorization provides a good fit to the data. The product WH is equal
to

singer GDP senate election vote stock bass market band Art.
0

BBBBB@

1

CCCCCA

6.89 (6) 1.01 (1) 0.53 (1) 0.54 (0) 0.10 (0) 0.53 (1) 8.83 (9) 0.53 (0) 7.36 (8) a
0.75 (1) 0 (0) 8.32 (9) 5.66 (5) 8.18 (8) 1.15 (1) 0 (0) 0.78 (1) 0.78 (0) b
7.14 (8) 0.99 (1) 0.44 (0) 0.47 (1) 0 (0) 0.47 (0) 9.16 (9) 0.48 (1) 7.62 (7) c
0 (0) 7 (6.91) 0.67 (1) 1.41 (0) 0 (0) 8.28 (9) 0.65 (1) 7.60 (7) 0.69 (0) d

0.53 (0) 5.12 (5) 6.45 (6) 5.09 (7) 5.85 (5) 6.97 (6) 0.48 (0) 6.19 (7) 1.07 (2) e
0.86 (1) 0.01 (0) 8.36 (8) 5.69 (5) 8.22 (9) 1.16 (2) 0.14 (0) 0.79 (0) 0.9 (1) f

For ease of comparison the values of A are shown in brackets. 4

4 Sparse principal-component analysis

In certain cases, it may be desirable to learn sparse atoms that are able to represent a set of
signals. In the case of the faces dataset, this may force the representation to isolate specific face
features such as the mouth, the eyes, etc. In order to fit such a model, we can incorporate a
sparsity constraint on the atoms by using the `1 norm

minimize
���
���X � Ã B̃

���
���
2

2
+ �

kX

i=1

���
���Ãi

���
���
1

(59)

subject to
���
���Ãi

���
���
2
= 1, 1  i  k. (60)

Due to the sparsity-inducing constraint, this problem is computationally hard, as in the case of
nonnegative matrix factorization. We refer the interested reader to [6] for algorithms to compute
local minima. Figure 5 shows the atoms obtained by applying this method to the faces dataset
from Figure 4. The model indeed learns very localized atoms that represent face features.
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