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Lecture 0: Course Introduction

We begin the course with an overview of the ideas and themes to be discussed this quarter.

Probability and Statistics

It’s helpful to contrast statistics and statistical inference with probability.

• Probability: The distribution of the data is given to us, and we want to calculate
something (e.g., probabilities) related to possible outcomes/events.

• Statistics (statistical inference): The distribution of the data is unknown, and we want
to infer properties of the distribution (e.g., the value of some parameter, like the mean)
from the observed data.

The mathematical framework of probability is what allows us to do statistical inference.

Parametric Modeling

A common approach to statistical inference begins by assuming the data comes from some
reasonably simple model with one or more unknown parameters.

• Such models are typically approximations or simplifications of reality.

• They require assumptions about the data.

Example 0.0.1: Suppose we model a collection of quantitative data X1, . . . ,Xn as being
independent and identically distributed from a normal distribution with a mean µ and a
variance σ2. This requires us to make several assumptions:

• The observations are independent.

• The observations all have the same distribution.

• The distribution is normal.

The unknown parameters of interest here might be µ, σ2, or both. ♢

There are several different types of parametric inference that we could consider about an
unknown parameter θ:

• We could estimate θ with a specific value.

• We could make a binary decision between two hypotheses about the value of θ.

• We could produce some set of values (like an interval) that we think contains θ.

We’ll talk about each of these this quarter.
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Frequentist and Bayesian Paradigms

There are two schools of thought about how probabilities can and can’t be interpreted:

• Everyone agrees that probabilities can represent long-term frequencies of random events.

• The frequentist approach considers this to be the only meaningful interpretation of
probability.

• The Bayesian approach believes that probabilities can also represent an individual’s
(possibly subjective) degree of belief about something unknown.

This difference in opinion leads to different interpretations of statistical inference:

• For frequentists, an unknown parameter is fixed (even though it’s unknown).

• For Bayesians, an unknown parameter is a random variable that can be discussed in
probabilistic terms.

Example 0.0.2: Suppose θ is an unknown parameter, and we’re interested in whether or
not θ > 0. Under the frequentist approach, we would say that θ either is or isn’t greater
than zero, and we simply don’t know which. Hence, ideas such as “the probability that θ > 0
based on the data” don’t really make sense for frequentists. However, such probabilities are
indeed considered meaningful under the Bayesian approach. ♢

Most classical statistical methods are frequentist. However, Bayesian methods have grown
in popularity in recent decades. We’ll discuss both this quarter.

Course Overview

We’ll begin the quarter by discussing key concepts from probability, much of which may be
review from your previous courses. Then we’ll use these concepts to cover the three kinds of
statistical inference we mentioned earlier.

Major Themes

There are several major themes that will come up throughout the course:

• We want to develop general approaches for solving statistical problems, as opposed to
just a “grab bag” of methods for certain specific situations.

• We want to evaluate and compare different procedures to figure out if (or when) one
is better than another.

• We’ll often be interested in the asymptotic behavior of various statistical procedures,
i.e., the behavior in the limit as the sample size tends to infinity. We’ll see that such
asymptotic behavior often obeys fairly general rules.
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Lecture 1: Basic Probability

This lecture covers concepts from probability that will be needed later.

1.1 Random Variables and Distributions

For our purposes, random variables will be one of two types: discrete or continuous. (Also
see the note immediately after Example 1.1.3.)

Discrete Random Variables

A random variable X is discrete if its set of possible values X is finite or countably infinite.

• The probability mass function (pmf) of a discrete random variable X is the nonnegative
function p(x) = P (X = x), where x denotes each possible value that X can take. It is
always true that ∑x∈X p(x) = 1.

• The cumulative distribution function (cdf) of a random variable X is F (x) = P (X ≤ x).
If X is discrete, then F (x) = ∑{t∈X ∶ t≤x} p(t), and so the cdf consists of constant sections
separated by jump discontinuities.

Specific types of discrete random variables include binomial, geometric, Poisson, and discrete
uniform random variables.

Example 1.1.1: A fair coin is flipped three times. Let X be the total number of heads.
The set of possible values of X is X = {0,1,2,3}, a finite set, so X is discrete. Its pmf
is p(0) = p(3) = 1/8, p(1) = p(2) = 3/8. We can also recognize X as a binomial random
variable. ♢

Example 1.1.2: A fair coin is flipped repeatedly until it comes up heads. Let X be the total
number of flips needed to obtain heads. The set of possible values of X is X = {1,2,3, . . .},
a countably infinite set, so X is discrete. Its pmf is p(x) = 2−x for every x ∈ {1,2,3, . . .}. We
can also recognize X as a geometric random variable. ♢

Continuous Random Variables

A random variable X is continuous if its possible values form an uncountable set (e.g., some
interval on R) and the probability that X equals any such value exactly is zero.

• The probability density function (pdf) of a continuous random variable X is a nonneg-

ative function f(x) such that ∫
b

a f(x) dx = P (a ≤ X ≤ b) for any a, b ∈ R. It is always
true that ∫

∞

−∞
f(t) dt = 1.

• Again, the cdf of a random variable X is F (x) = P (X ≤ x). If X is continuous, then
F (x) = P (X ≤ x) = ∫

x

−∞
f(t) dt, and so the cdf is a continuous function.

• Note that the pdf can be obtained by differentiating the cdf.
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Specific types of continuous random variables include normal, exponential, beta, gamma,
chi-squared, Student’s t, and continuous uniform random variables.

Example 1.1.3: Let X be the amount of time in hours that an electrical component func-
tions before breaking down. This random variable might have the pdf

f(x) = λ exp(−λx) I[0,∞)(x) =

⎧⎪⎪
⎨
⎪⎪⎩

λ exp(−λx) if x ≥ 0,

0 if x < 0,

which we recognize as an exponential distribution. The probability that the part functions
for at least c hours is P (X ≥ 100) = ∫

∞

c f(x) dx = exp(−cλ). ♢

Note: The cdf is a more general description of a random variable than the pmf or pdf,
since it has a single definition that applies for both discrete and continuous random
variables. In fact, there is no difficulty in writing down the cdf of a “mixed” random
variable that is neither wholly discrete nor wholly continuous. Such a cdf would sim-
ply include both jump discontinuities and regions where it is continuously increasing.
However, such “mixed” random variables have neither a pmf nor a pdf in the senses
considered here.

Clarification of Notation

We may sometimes need to clarify our notation for pmfs or pdfs in two ways:

• When dealing with more than one random variable, we may need to explicitly denote
the random variable to which a pmf or pdf corresponds. If so, we will write p(X)(x) or
f (X)(x) for the pmf or pdf (respectively) of X evaluated at x.

• A pmf or pdf often depends on one or more parameters. We may need to explicitly
indicate the value of a parameter at which the pmf or pdf is calculated. If so, we will
write pθ(x) or fθ(x) for the pmf or pdf evaluated at the parameter value θ.

Of course, we may write p
(X)

θ (x) or f
(X)

θ (x) when both types of clarification are needed.

Transformations of Random Variables

Let X be a random variable, and let Y = g(X), where g is some strictly increasing function.
The cdf of Y can be easily obtained from the cdf of X:

F (Y )(y) = P (Y ≤ y) = P [g(X) ≤ y] = P [X ≤ g−1(y)] = F (X)[g−1(y)],

where g−1 denotes the inverse function of g.

• If X is discrete, then the pmf of Y is

p(Y )(y) = P (Y = y) = P [g(X) = y] = ∑
{x∈X ∶ g(x)=y}

P (X = x) = ∑
{x∈X ∶ g(x)=y}

p(X)(x).

• If X is continuous, then the pdf of Y can be obtained by differentiating the cdf of Y :

f (Y )(y) =
d

dy
F (Y )(y) = {[F (X)]

′

[g−1(y)]}{(g−1)
′

(y)} =
f (X)[g−1(y)]

g′[g−1(y)]
.
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Multiple Random Variables

Let X and Y be discrete random variables that take values in X and Y, respectively.

• The joint pmf of X and Y is p(X,Y )(x, y) = P (X = x,Y = y).

Note: When we write p(x, y) without clarification, we mean the joint pmf p(X,Y )
(x, y).

• The marginal pmfs of X and Y are, respectively,

p(X)(x) = P (X = x) = ∑
y∈Y

P (X = x,Y = y) = ∑
y∈Y

p(X,Y )(x, y),

p(Y )(y) = P (Y = y) = ∑
x∈X

P (X = x,Y = y) = ∑
x∈X

p(X,Y )(x, y).

• The conditional pmfs of X given Y and of Y given X are, respectively,

p(X ∣Y )(x ∣ y) = P (X = x ∣ Y = y) =
P (X = x,Y = y)

P (Y = y)
=
p(X,Y )(x, y)

p(Y )(y)
,

p(Y ∣X)(y ∣ x) = P (Y = y ∣X = x) =
P (X = x,Y = y)

P (X = x)
=
p(X,Y )(x, y)

p(X)(x)
.

Now let X and Y be continuous random variables instead.

• The joint pdf of X and Y is a nonnegative function f (X,Y )(x, y) such that

∬
A
f (X,Y )(x, y) dx dy = P [(X,Y ) ∈ A] for any set A ⊂ R2 .

Note: When we write f(x, y) without clarification, we mean the joint pdf f (X,Y )
(x, y).

• The marginal pdfs of X and Y are, respectively,

f (X)(x) = ∫
∞

−∞

f (X,Y )(x, y) dy, f (Y )(y) = ∫
∞

−∞

f (X,Y )(x, y) dx.

• The conditional pdfs of X given Y and of Y given X are, respectively,

f (X ∣Y )(x ∣ y) =
f (X,Y )(x, y)

f (Y )(y)
, f (Y ∣X)(y ∣ x) =

f (X,Y )(x, y)

f (X)(x)
.

Note: It may seem intuitively reasonable to think of f (X ∣Y )
(x ∣ y) as “the pdf of X

given that Y = y,” so that ∫A f (X ∣Y )
(x ∣ y) dx = P (X ∈ A ∣ Y = y) for any set A ⊂ R.

However, this is not technically correct. The quantity P (X ∈ A ∣ Y = y) cannot even
be properly defined using our definition of conditional probability:

P (X ∈ A ∣ Y = y) =
P (X ∈ A,Y = y)

P (Y = y)
=

0
0

since Y is a continuous random variable. See the note on page 146 of DeGroot and
Schervish for additional explanation of what conditional pdfs actually represent.
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Indepdenence

Random variables X and Y are called independent if P (X ∈ A, Y ∈ B) = P (X ∈ A) P (Y ∈ B)

for all sets A and B. Random variables X and Y are independent if and only if their joint
pmf or pdf factorizes into their marginal pmfs or pdfs, i.e., p(X,Y )(x, y) = p(X)(x) p(Y )(y) or
f (X,Y )(x, y) = f (X)(x) f (Y )(y) for all x and y.

1.2 Expectation and Related Concepts

There are several quantities that we can calculate to summarize random variables.

Expectation

For our purposes, the expectation or expected value E(X) of a random variable X is defined
as E(X) = ∑x∈X xp(x) if X is discrete and E(X) = ∫

∞

−∞
xf(x) dx if X is continuous.

Similarly, the expectation of a function g(X) of a random variable X can be computed as
E[g(X)] = ∑x∈X g(x)p(x) or E[g(X)] = ∫

∞

−∞
g(x) f(x) dx.

Note: If you’re familiar with more advanced notions of integration, you might recognize
that a more general formula for all cases above is E[g(X)] = ∫

∞

−∞
g(x) dF (x).

It is possible for an expectation to be ∞ or −∞, or to fail to exist altogether.

Note: The formal way to compute E[g(X)] is to first compute the sum/integral sepa-
rately over the positive and negative values of g(X) and then add the results together.
If the positive part yields ∞ and the negative part yields −∞, then the final “answer”
is ∞−∞, which is undefined.

Example 1.2.1: Let X have a t distribution with one degree of freedom (also known as a
Cauchy distribution), which has the pdf f(x) = [π(1 + x2)]−1 for all x ∈ R. Since the pdf is
symmetric about zero, it might seem as though E(X) should be zero. However, this is false:

E(X) = ∫

∞

−∞

x

π(1 + x2)
dx = ∫

∞

0

x

π(1 + x2)
dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
positive part

+∫

0

−∞

x

π(1 + x2)
dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
negative part

=∞−∞.

Thus, E(X) does not exist. ♢

In the presence of multiple random variables, the sum or integral should be taken over the
joint pdf, i.e., E[g(X,Y )] = ∬R2 g(x, y) f(x, y) dx dy or E[g(X,Y )] = ∑x∈X ∑y∈Y g(x, y)p(x, y).
For functions of X only or Y only, the sum or integral may equivalently be taken over the
corresponding marginal pmf or pdf.

Clarification of Notation

The pmf or pdf of X often depends on one or more parameters. In general, the value of
E[g(X)] may also depend on these same parameters. To explicitly indicate this, we will
write Eθ[g(X)] for the expectation of g(X) computed with a parameter value θ.

Note: You may have seen people write things like “EX[g(X)]” for what we’ve called
E[g(X)] or Eθ[g(X)]. The “EX[g(X)]” notation is problematic for multiple reasons,
and we will not use such notation in this course.
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Variance

The variance Var(X) of a random variable X is defined as Var(X) = E{[X −E(X)]2}. An
equivalent (an typically easier) formula is Var(X) = E(X2)−[E(X)]2. Similarly, the variance
of a function g(X) of a random variable X is Var[g(X)] = E{[g(X)]2} − {E[g(X)]}2.

Note: If E[g(X)] is infinite or does not exist, then Var[g(X)] does not exist either.
If E[g(X)] is finite, then Var[g(X)] is guaranteed to exist, although it may be ∞.
It can be shown that if E{[g(X)]

2
} is finite, then E[g(X)] is finite as well. Thus, if

Var[g(X)] <∞, then E[g(X)] exists and is finite.

We will write Varθ[g(X)] when necessary to explicitly indicate the dependence of the vari-
ance on a parameter value θ.

Covariance

The covariance Cov(X,Y ) of a random variable X and a random variable Y is defined
as Cov(X,Y ) = E{[X − E(X)][Y − E(Y )]}. An equivalent (and typically easier) for-
mula is Cov(X,Y ) = E(XY ) − E(X)E(Y ). Similarly, the covariance of g(X) and h(Y )

is Cov[g(X), h(Y )] = E[g(X)h(Y )] −E[g(X)]E[h(Y )].

Note: If either E[g(X)] or E[h(Y )] does not exist, then Cov[g(X), h(Y )] does not
exist either. However, if Var[g(X)] <∞ and Var[h(Y )] <∞, then Cov[g(X), h(Y )] is
guaranteed to exist and be finite (see the Cauchy-Schwarz inequality below).

The variance is simply a special case of the covariance:

Var[g(X)] = E{[g(X)]2} − {E[g(X)]}2 = E[g(X) g(X)] −E[g(X)]E[g(X)]

= Cov[g(X), g(X)].

We will write Covθ[g(X), h(Y )] when necessary to explicitly indicate the dependence of the
covariance on a parameter value θ.

Working with Expectations, Variances, and Covariances

Two key properties of expectation are as follows:

• If a and b are constants, then E[a + b g(X)] = a + bE[g(X)].

• If X and Y are independent, then E[g(X)h(Y )] = E[g(X)]E[h(Y )].

These properties can be used to derive other useful identities involving expectations, vari-
ances, and covariances. Suppose that a and b are constants.

• Var[a + b g(X)] = b2 Var[g(X)].

• Cov[a + b g(X), h(Y )] = Cov[g(X), a + bh(Y )] = b Cov[g(X), h(Y )].

• If X and Y are independent, then Cov[g(X), h(Y )] = 0. (The converse is false.)

• If X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y ). A consequence
of this result is that Var(n−1∑

n
i=1Xi) = n−1 Var(X1) if X1, . . . ,Xn are iid (independent

and identically distributed).
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Cauchy-Schwarz Inequality

If Var[g(X)] <∞ and Var[h(Y )] <∞, then Cov[g(X), h(Y )] exists and is finite, and

∣Cov[g(X), h(Y )]∣ ≤
√

Var[g(X)] Var[h(Y )],

with equality if and only if g(X) = a+ bh(Y ) with probability 1 for some constants a and b.

Note: The Cauchy-Schwarz inequality is actually a much more general result than just
what is stated above.

Conditional Expectation and Variance

The expectation E[g(X)] is computed using the pmf or pdf of X. We may also wish to
consider the expectation of g(X) conditional on the value of some other random variable Y .
We call this the conditional expectation of g(X) given Y = y and compute it using the
conditional pmf or pdf of X given Y = y:

E[g(X) ∣ Y = y] = ∑
x∈X

g(x)p(X ∣Y )(x ∣ y) or E[g(X) ∣ Y = y] = ∫
∞

−∞

g(x) f (X ∣Y )(x ∣ y) dx.

Notice that computing E[g(X) ∣ Y = y] yields a function of y, not a random variable.
However, we can consider plugging the random variable Y into this function, which does
yield a random variable. This random variable is what we mean when we write E[g(X) ∣ Y ].

Note: A formal treatment of conditional expectation is a bit more complicated than
this, but the explanation above is good enough for our purposes.

Similarly, the conditional variance of g(X) is

Var[g(X) ∣ Y = y] = E{[g(X)]2 ∣ Y = y} − {E[g(X) ∣ Y = y]}2.

Again, we might consider either Var[g(X) ∣ Y = y], which is a function of y, or Var[g(X) ∣ Y ],
which is this same function evaluated at Y (yielding a random variable).

Iterated Expectation and Variance Formulas

Sometimes the expectation or variance of one random variable may be easier to compute
when conditioned on another random variable. The marginal (unconditional) expectations
and variances can be computed using the following formulas:

• E[g(X)] = E{E[g(X) ∣ Y ]}.

• Var[g(X)] = E{Var[g(X) ∣ Y ]} +Var{E[g(X) ∣ Y ]}.

These results are also sometimes called the law of total expectation and law of total variance,
respectively.
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Example 1.2.2: Let X be the number of heads in Y independent flips of a fair coin, and
let Y have a discrete uniform distribution on {1, . . . ,5}. Then p(X ∣Y )(x ∣ y) is the pmf of a
Bin(y,1/2) distribution, so E(X ∣ Y = y) = y/2 and Var(X ∣ Y = y) = y/4 by standard results
that we can look up. Also, E(Y ) = 3 and Var(Y ) = 2, again by standard results. Then

E(X) = E[E(X ∣ Y )] = E(Y /2) = E(Y )/2 = 3/2,

Var(X) = E[Var(X ∣ Y )] +Var[E(X ∣ Y )]

= E(Y /4) +Var(Y /2) = E(Y )/4 +Var(Y )/4 = 3/4 + 2/4 = 5/4.

We could have obtained the same results without using these formulas, but the calculations
would have been considerably more tedious. ♢

1.3 Convergence Concepts

We now consider the limiting behavior of sequences of random variables. In particular, we
consider concepts and results related to convergence of such sequences.

Convergence of Real Numbers

Recall that a sequence of real numbers {an ∶ n ≥ 1} converges to a (an → a as n →∞) if for
every ε > 0, there exists N ≥ 1 such that ∣an − a∣ ≤ ε for every n ≥ N .

Convergence of Random Variables

For our purposes, there are two main notions of convergence for random variables. Let
{Xn ∶ n ≥ 1} be a sequence of random variables, and X be another random variable. Let Fn
denote the cdf of Xn, and let F denote the cdf of X.

• We say that {Xn ∶ n ≥ 1} converges in probability to X (written Xn →P X as n →∞)
if for every ε > 0, P (∣Xn −X ∣ > ε)→ 0.

• We say that {Xn ∶ n ≥ 1} converges in distribution to X (written Xn →D X as n→∞)
if Fn(x)→ F (x) at every point x where F is continuous.

Note that convergence in distribution is defined by convergence of cdfs, rather than the values
of the actual random variables. For this reason, it is sometimes simply written as Fn →D F
or Xn →D F . We may also replace F with its “common name,” e.g., Xn →D N(0,1).

Note: Convergence in distribution is also called convergence in law or weak convergence.

Theorem 1.3.1. If Xn →P X, then Xn →D X.

Thus, convergence in probability is stronger than convergence in distribution. However, in
the case where the limiting random variable X is actually a constant, they are equivalent,
as formalized in the following theorem.

Theorem 1.3.2. Let a ∈ R be a constant. Then Xn →P a if and only if Xn →D a.

The next theorems provide additional useful results about convergence of random variables.
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Theorem 1.3.3 (Continuous Mapping Theorem). Let Xn →P a for some constant a ∈ R,
and let g ∶ R→ R be continuous at a. Then g(Xn)→P g(a).

Theorem 1.3.4 (Slutsky’s Theorem). If Xn →D X, Yn →P b, and Zn →P a, where a, b ∈ R
are constants, then XnYn +Zn →D bX + a.

Weak Law of Large Numbers and Central Limit Theorem

We now state two extremely important asymptotic results: the weak law of large numbers
and the central limit theorem.

Theorem 1.3.5 (Weak Law of Large Numbers, or WLLN). Let {Xn ∶ n ≥ 1} be a sequence
of iid random variables with E(∣X1∣) < ∞. Let Xn = n−1∑

n
i=1Xi. Then Xn →P E(X1) as

n→∞.

Thus, the WLLN formalizes the intuitive notion that the expectation of a random variable
may be interpreted as its long-run average.

Note: Yes, there also exists a strong law of large numbers, which is similar but deals
with a stronger form of convergence called almost sure convergence or convergence with
probability 1. In more sophisticated versions of these theorems, the iid assumption can
be relaxed much more for the weak law than for the strong law.

Theorem 1.3.6 (Central Limit Theorem, or CLT). Let {Xn ∶ n ≥ 1} be a sequence of iid
random variables with Var(X1) = σ2 < ∞ and E(X1) = µ. Let Xn = n−1∑

n
i=1Xi. Then

√
n(Xn − µ)→D N(0, σ2) as n→∞.

Informally, the central limit theorem states that for large n, Xn is approximately normal
with mean µ and variance σ2/n. Notice that the WLLN and CLT yield different results
because the CLT scales the quantity Xn − µ by an extra factor of

√
n:

• The WLLN says that Xn − µ→P 0.

• The CLT says that
√
n(Xn − µ)→D N(0, σ2).

Delta Method

Let {Yn ∶ n ≥ 1} be a sequence of random variables such that
√
n(Yn − a) →D Z for some

random variable Z and some constant a ∈ R. Let g ∶ R→ R be a function. What can we say
about the asymptotic behavior of g(Yn)?

• First, note that since 1/
√
n→ 0,

Yn − a = (1/
√
n)[

√
n(Yn − a)]→D 0 ⋅Z = 0

by Slutsky’s theorem. Thus, Yn →D a, and hence Yn →P a.

• If g is continuous at a, then g(Yn)→P g(a) by continuous mapping theorem.
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However, we can do better than this. Suppose g is differentiable at a, so that we may write
g(Yn) − g(a) ≈ g′(a) (Yn − a) (a first-order Taylor expansion). Then by Slutsky’s theorem,

√
n[g(Yn) − g(a)] ≈ g

′(a)
√
n(Yn − a)→D g

′(a) Z.

This is the basic idea of a technique called the delta method.

Theorem 1.3.7 (Delta Method). Let {Yn ∶ n ≥ 1} be a sequence of random variables such
that

√
n(Yn − a) →D Z for some random variable Z and some constant a ∈ R. Let g ∶ R → R

be continuously differentiable at a. Then
√
n[g(Yn) − g(a)]→D g′(a) Z.

Proof. Formally,
√
n[g(Yn) − g(a)] = g′(Y ⋆

n )
√
n(Yn−a) for some Y ⋆

n between Yn and a. Note
that for any ε > 0, P (∣Y ⋆

n −a∣ > ε) ≤ P (∣Yn−a∣ > ε), and P (∣Yn−a∣ > ε)→ 0 since Yn →P a. Then
Y ⋆

n →P a, so g′(Y ⋆

n )→P g′(a) by the continuous mapping theorem. Since
√
n(Yn − a)→D Z,

the result follows by Slutsky’s theorem.

The following special case is by far the most common use of the delta method.

Corollary 1.3.8 (Delta Method, Normal Case). Let {Yn ∶ n ≥ 1} be a sequence of random
variables such that

√
n(Yn − a) →D N(0, τ 2) for some constants a ∈ R and τ 2 > 0. Let

g ∶ R→ R be continuously differentiable at a. Then
√
n[g(Yn) − g(a)]→D N(0, τ 2[g′(a)]2).

Proof. Take Z ∼ N(0, τ 2) in Theorem 1.3.7.

Example 1.3.9: Suppose X1,X2, . . . are iid from the continuous uniform distribution on
[0,60], and we want to find the asymptotic distribution of (Xn)

−1. We have E(X1) = 30 and
Var(X1) = 300, so

√
n(Xn − 30) →D N(0,300) by the CLT. Our function is g(t) = t−1, and

g(30) = 1/30. Its derivative is g′(t) = −t−2, which is continuous at 30, and g′(30) = −1/900.
Then by the Delta Method,

√
n[(Xn)

−1
−

1

30
]→D N(0, 1/2700),

noting that 300(−1/900)2 = 1/2700. Thus, for large n, (Xn)
−1 is approximately normal, with

mean 1/30 and variance 1/(2700n). ♢
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Lecture 2: Basic Statistical Concepts

A statistic is any random variable that is calculated as a function of the data. In this lecture,
we cover some basic statistical concepts that should be addressed before we proceed further.

• When sampling from a normal distribution, the sample mean X and the sample vari-
ance S2 are two particularly important statistics. We will discuss the distribution of
these statistics and another related statistic.

• Some statistics possess a property called sufficiency. We will define this property and
explain its importance.

• Many common distributions belong to a group called the exponential family. We will
define this group, provide examples of distributions that do and do not belong to it,
and discuss its relevance to statistical inference.

2.1 Sampling from Normal Distributions

Let X1, . . . ,Xn ∼ iidN(µ,σ2), where µ ∈ R and σ2 > 0. A wide variety of statistical procedures
are based on this simple setup, so it is important to study it in detail.

Expectation, Variance, and Covariance for Random Vectors

Let X = (X1, . . . ,Xn) be a random vector. Then E(X) denotes a vector of length p with ith
component E(Xi), and Var(X) denotes a p × p matrix with (i, j)th element Cov(Xi,Xj).

Note: Var(X) is typically called the variance-covariance matrix of X since its ith
diagonal element is Var(Xi).

The various properties of univariate expectations and variances have multivariate extensions.
Suppose that X and Y are random vectors of length p. Also suppose that a ∈ Rp and B is
a p × p matrix.

• E(a +BX) = a +BE(X), and E(X +Y ) = E(X) +E(Y ).

• Var(a +BX) =BVar(X)BT .

Multivariate Normal Distribution

Let Z be a random vector, with θ = E(Z) and V = Var(Z). The distribution of Z is called
multivariate normal, which we write as Z ∼ Np(θ,V ), if and only if aTZ has a (univariate)
normal distribution for all a ∈ Rp. The following properties hold for Z ∼ Np(θ,V ):

• If V is nonsingular, then the elements Z1, . . . , Zp of Z have joint pdf

f(z1, . . . , zp) =
1

(2π)p/2 detV 1/2
exp[−1

2
(z − θ)TV −1(z − θ)].

• Zi and Zj are independent if and only if Vij = Cov(Zi, Zj) = 0.
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Let 0p denote a zeros vector of length p, and let Ip denote the p × p identity matrix. The
distribution Np(0p,Ip) is called the p-variate standard normal distribution and has a useful
property stated in the following lemma.

Lemma 2.1.1. Let A be a p × p matrix that is orthogonal (ATA = AAT = Ip), and let
Z ∼ Np(0p,Ip). Then AZ ∼ Np(0p,Ip).

Proof. For any vector b ∈ Rp, the random vector bTAZ = (ATb)TZ has a (univariate)
normal distribution since Z is multivariate normal. Then AZ is multivariate normal. Now
simply note that E(AZ) =AE(Z) = 0p and Var(AZ) =AIpAT =AAT = Ip.

Chi-Squared Distribution

Let Z ∼ Np(0p,Ip). The distribution of ZTZ = ∑pi=1Z2
i is called a chi-squared distribution

with p degrees of freedom, which we write as χ2
p.

Lemma 2.1.2. The χ2
p distribution is the Gamma(p/2, 1/2) distribution.

Proof. First, note that the pdf of each Z2
i is

f (Z2
i )(u) =

2 f (Zi)(√u)
2
√
u

= 1√
2π u

exp(−u
2
) = (1/2)1/2

Γ(1/2) u−1/2 exp(−u
2
),

for u > 0 and zero otherwise, which is the pdf of a Gamma(1/2, 1/2) distribution. Then since
Z2

1 , . . . , Z
2
p ∼ iid Gamma(1/2, 1/2), their sum is ∑pi=1Z2

i ∼ Gamma(p/2, 1/2). (This result for
the gamma distribution is stated and proven as Theorem 5.7.7 of DeGroot & Schervish.)

The χ2
p distribution has expectation p and variance 2p.

Joint Distribution of the Sample Mean and Sample Variance

Let X1, . . . ,Xn ∼ iidN(µ,σ2). Two commonly calculated summary statistics are

X = 1

n

n

∑
i=1

Xi, S2 = 1

n − 1

n

∑
i=1

(Xi −X)2 = 1

n − 1
[
n

∑
i=1

X2
i − (X )2], (2.1.1)

called (respectively) the sample mean and sample variance. By basic results on the normal
distribution, it is clear that X ∼ N(µ, σ2/n). The distribution of S2, as well as the joint
distribution of X and S2, is provided by the following theorem.

Theorem 2.1.3. Let X1, . . . ,Xn ∼ iidN(µ,σ2), and let X and S2 be defined as in (2.1.1).
Then X ∼ N(µ, σ2/n), and (n − 1)S2/σ2 ∼ χ2

n−1. Moreover, X and S2 are independent.

Proof. It suffices to prove the result for µ = 0 and σ2 = 1. Let X = (X1, . . . ,Xn) ∼ Nn(0n,In).
Now let A be an orthogonal p × p matrix for which all elements in the first row are n−1/2.
(Such a matrix can always be constructed, e.g., by the Gram-Schmidt process.) Then let
Y = (Y1, . . . , Yn) = AX. Observe that Y ∼ N(0n,In) by Lemma 2.1.1, so the sum of the
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squares of its last n − 1 elements is ∑ni=2 Y 2
i ∼ χ2

n−1. Now note that the first element is
Y1 = n1/2X, so we may write

n

∑
i=2

Y 2
i =

n

∑
i=1

Y 2
i − Y 2

1 = Y TY − Y 2
1 =XTATAX − n(X )2 =XTX − n(X )2 =

n

∑
i=1

X2
i − n(X )2

= (n − 1)S2.

Finally, note that Y1, . . . , Yn are all independent, so Y1 and and ∑ni=2 Y 2
i are independent.

Without the normality assumption, some parts of Theorem 2.1.3 still hold, but others do not.
Suppose X1, . . . ,Xn are iid with E(X1) = µ and Var(X1) = σ2, but suppose their distribution
is not necessarily normal.

• We still have E(X ) = µ and Var(X ) = σ2/n. Also, we still have E(S2) = σ2, which
agrees with Theorem 2.1.3.

• However, the distribution of X is not necessarily normal (though it is approximately
normal for large n by the CLT), and the distribution of (n− 1)S2/σ2 is not necessarily
chi-squared. Moreover, X and S2 are not necessarily independent.

Student’s t Distribution

Let Z ∼ N(0,1) and U ∼ χ2
p be independent random variables. The distribution of the

random variable
Z√
U/p

is called Student’s t distribution with p degrees of freedom, which we write as tp.

Lemma 2.1.4. The pdf of the tp distribution is, for all t ∈ R,

f(t) = Γ[(p + 1)/2]
√
πp Γ(p/2)(1 + t

2

p
)
−(p+1)/2

.

Proof. See pages 483–484 of DeGroot & Schervish.

Various statistical procedures (many of which we will see later this quarter) involve the
random variable

T = X − µ√
S2/n

(2.1.2)

Its distribution is of considerable importance and is given by the following theorem.

Theorem 2.1.5. Let X1, . . . ,Xn ∼ iidN(µ,σ2), and let T be defined as in (2.1.1) and (2.1.2).
Then T ∼ tn−1.

Proof. Let Z = (X − µ)/
√
σ2/n and U = (n − 1)S2/σ2, By Theorem 2.1.3, Z and U are

independent with Z ∼ N(0,1) and U ∼ χ2
n−1. The result follows since T = Z/

√
U/(n − 1).
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2.2 Sufficient Statistics

Suppose we have a random sample X = (X1, . . . ,Xn) from some distribution with an un-
known parameter θ. It is often the case that the “information” about θ that is contained in
the sample X can be entirely summarized by some statistic Y = r(X). This idea is called
sufficiency.

Definition of Sufficiency

A statistic Y = r(X) is said to be sufficient for an unknown parameter θ if and only if the
conditional distribution of the sample X given the value of Y does not depend on θ.

Example 2.2.1: Let X1, . . . ,Xn ∼ iid Bin(1, θ), and let Y = ∑ni=1Xi. Then the conditional
pmf of X = (X1, . . . ,Xn) given Y is

p
(X ∣Y )

θ (x ∣ y) = Pθ(X1 = x1, . . . ,Xn = xn, Y = y)
Pθ(Y = y)

= Pθ(X1 = x1, . . . ,Xn = xn)
Pθ(∑ni=1Xi = y)

=

n

∏
i=1

θxi(1 − θ)1−xi

(n
y
)θy(1 − θ)n−y

= θy(1 − θ)n−y

(n
y
)θy(1 − θ)n−y

= 1

(n
y
)
.

if y = ∑ni=1 xi (and zero if y ≠ ∑ni=1 xi). This does not depend on θ, so Y is sufficient for θ. ♢

Factorization Theorem

The following result usually provides an easier way to show sufficiency of a statistic. It is
also useful for identifying the sufficient statistic in the first place.

Theorem 2.2.2 (Factorization Theorem). Let θ be an unknown parameter, and let X be a
sample with joint pmf pθ(x) (if X is discrete) or joint pdf fθ(x) (if X is continuous). A
statistic r(X) is sufficient for θ if and only if there exist functions g(u, θ) and h(x) such that
pθ(x) = g[r(x), θ] h(x) (if X is discrete) or fθ(x) = g[r(x), θ] h(x) (if X is continuous).

Proof. See the proof of Theorem 7.7.1 of DeGroot & Schervish for a proof of the discrete
case. The proof of the continuous case is beyond the scope of this course.

The following result is in some sense already implied by the factorization theorem, but we
state it separately for clarity.

Theorem 2.2.3. Let r(X) be sufficient for θ, and let q be an injective (one-to-one) function.
Then q[r(X)] is sufficient for θ.

Proof. Let g(u, θ) and h(x) be the functions that exist by the factorization theorem as
applied to r(X). Without loss of generality, let the codomain of q be its range, so that q is
bijective and hence has an inverse function q−1. Now simply apply the factorization theorem
to q[r(x)] with g̃(u, θ) = g[q−1(u), θ].
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Example 2.2.4: For the situation of Example 2.2.1, we could simply note that the joint
pmf of the sample X is pθ(x) = ∏n

i=1 θ
xi(1 − θ)1−xi = θy(1 − θ)n−y, where y = ∑ni=1 xi. Then

Y = ∑ni=1Xi is sufficient for θ by the factorization theorem with g(y, θ) = θy(1 − θ)n−y and
h(x) = 1. Note that n−1Y is also sufficient for θ by Theorem 2.2.3. ♢

Now consider the case of a sample from a normal distribution. Here the sufficient statistic
varies according to which parameters are unknown.

Example 2.2.5: Let X1, . . . ,Xn ∼ iidN(µ,σ2), where µ ∈ R is unknown but σ2 > 0 is known.
The joint pdf of the sample is

fµ(x) =
n

∏
i=1

1√
2πσ2

exp[−(xi − µ)2

2σ2
]

= 1

(2πσ2)n/2 exp[− 1

2σ2

n

∑
i=1

(xi − µ)2]

= 1

(2πσ2)n/2 exp[− 1

2σ2
(
n

∑
i=1

x2
i − 2µ

n

∑
i=1

xi + µ2)]

= exp[− 1

2σ2
(−2µ

n

∑
i=1

xi + µ2)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g(y,µ)

1

(2πσ2)n/2 exp(− 1

2σ2

n

∑
i=1

x2
i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(x)

,

where y = ∑ni=1 xi. Thus, ∑ni=1Xi is sufficient for µ by the factorization theorem. Note that
X is also sufficient for θ by Theorem 2.2.3. ♢

Example 2.2.6: Let X1, . . . ,Xn ∼ iidN(µ,σ2), where µ ∈ R and σ2 > 0 are both unknown.
The joint pdf of the sample is the same as in Example 2.2.5, but we now factor it differently:

fµ(x) =
1

(2πσ2)n/2 exp[− 1

2σ2
(
n

∑
i=1

x2
i − 2µ

n

∑
i=1

xi + µ2)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g[(y1,y2),(µ,σ2)]

,

where y1 = ∑ni=1 xi and y2 = ∑ni=1 x2
i , and where h(x) = 1. Thus, (∑ni=1Xi, ∑ni=1X2

i ) is
sufficient for (µ,σ2) by the factorization theorem. Note that (X,S2) is also sufficient for θ
by Theorem 2.2.3. ♢

Minimal Sufficiency

Note from the factorization theorem that if r(X) is sufficient for θ, then [r(X), s(X)] is
also a sufficient for θ. However, since r(X) alone is sufficient for θ, the combined statistic
[r(X)], s(X)] fails to reduce the data as much as possible.

Example 2.2.7: In Example 2.2.5, we saw that if X1, . . . ,Xn ∼ iidN(µ,σ2) with µ ∈ R
unknown and σ2 > 0 known, then X is sufficient for µ. However, (X,S2) is also sufficient
for µ, though it does not reduce the data as much as possible. ♢
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Formally, a statistic is called minimal sufficient for θ if it is a function of every other sufficient
statistic for θ. This may be restated as follows: If r(X) is sufficient for θ but there exists
a non-injective (non–one-to-one) function q such that q[r(X)] is also sufficient for θ, then
r(X) is not minimal sufficient.

Example 2.2.8: In Examples 2.2.5 and Example 2.2.7, we saw that X and (X,S2) were
both sufficient for µ. Note that X is a function of (X,S2), but (X,S2) is not a function
of X. Thus, (X,S2) is not a minimal sufficient statistic for µ. ♢

You may notice that in Example 2.2.8, we did not actually demonstrate that X was a minimal
sufficient statistic for µ, only that (X,S2) was not minimal sufficient for µ. There exist
methods to prove minimal sufficiency, but it is usually clear by inspection that a sufficient
statistic is or is not minimal sufficient.

Note: Since there exists a concept of sufficient statistics, it is not surprising to learn
that there also exists a concept of necessary statistics. A statistic is said to be necessary
for θ if it is a function of every sufficient statistic for θ. It can be seen from this definition
that a minimal sufficient statistic for θ is simply a statistic that is both necessary and
sufficient for θ.

Sufficiency Principle

A common principle in statistical inference is that samples that yield the same sufficient
statistic value should yield the same inference about θ. Mathematically, if r(X) is sufficient
for θ and r(x1) = r(x2), then the inference about θ should be the same regardless of whether
we observe X = x1 or X = x2. This is called the sufficiency principle. Most statistical
procedures that we will see this quarter obey the sufficiency principle.

2.3 Exponential Family

Many commonly used distributions can be written in a single general form.

Definition of the Exponential Family

A distribution with unknown parameter θ belongs to the exponential family if its pmf pθ(x)
or pdf fθ(x) can be written as

exp[
k

∑
j=1

ηj(θ) rj(x) − ψ(θ)] h(x) (2.3.1)

for some k ≥ 1 and some functions η1, . . . , ηk, r1, . . . , rk, ψ, h.

Example 2.3.1: Consider the N(µ,σ2) distribution with µ ∈ R unknown and σ2 > 0 known.
The pdf of this distribution is

fµ(x) =
1√

2πσ2
exp[−(x − µ)2

2σ2
] = exp( µ

2σ2
x − µ

2

σ2
) 1√

2πσ2
exp(− x2

2σ2
).
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Then

k = 1, η1(µ) =
µ

σ2
, r1(x) = x, ψ(µ) − µ2

2σ2
, h(x) = 1√

2πσ2
exp(− x2

2σ2
),

and hence this distribution belongs to the exponential family. ♢
Example 2.3.2: Now consider the N(µ,σ2) distribution with µ ∈ R and σ2 > 0 both un-
known. The pdf is the same as in Example 2.3.1, but we now break it up as

fµ,σ2(x) = 1√
2πσ2

exp[−(x − µ)2

2σ2
] = exp[ µ

σ2
x − 1

2σ2
x2 − ( µ

2

2σ2
+ 1

2
logσ2)] 1√

2π
.

Then

k = 2, η1(µ,σ2) = µ

σ2
, r1(x) = x, η2(µ,σ2) = − 1

2σ2
, r2(x) = x2,

ψ(µ,σ2) = µ2

2σ2
+ 1

2
logσ2, h(x) = 1√

2π
,

and hence this distribution belongs to the exponential family. ♢

Members and Non-Members of the Exponential Family

Many common distributions belong to the exponential family, including

• the binomial distribution where the success probability θ is unknown,

• the Poisson distribution where the rate parameter λ is unknown,

• the negative binomial distribution where the success/failure probability θ is unknown
(which includes the geometric distribution as a special case),

• the normal distribution where the mean µ and variance σ2 are unknown,

• the gamma distribution where the shape parameter α and rate parameter β are un-
known (which includes the exponential distribution as a special case), and

• the beta distribution where the shape parameters α and β are unknown.

However, some common distributions do not belong to the exponential family, such as

• the discrete uniform distribution,

• the hypergeometric distribution,

• the continuous uniform distribution,

• Student’s t distribution, and

• Snedecor’s F distribution.

The following rule automatically disqualifies some distributions from the exponential family:
If the support of the distribution (the set of values where the pmf or pdf is nonzero) depends
on an unknown parameter, then the distribution is not in the exponential family. (Note that
this automatically disqualifies the discrete and continuous uniform distributions.)
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Importance of the Exponential Family

When we have a random sample from a distribution in the exponential family, many aspects
of statistical inference become easier.

• Many theorems later in the course will involve regularity conditions that are difficult
to check. However, such regularity conditions are often automatically satisfied if the
sample consists of iid observations from a distribution in the exponential family.

• Some calculations and results take simple, standard forms for distributions in the
exponential family. An example of such a result is given below.

Sufficiency and the Exponential Family

An iid sample from a distribution in the exponential family can always be reduced to a
relatively small number of sufficient statistics by the following theorem.

Theorem 2.3.3. Let X1, . . . ,Xn be iid observations from a distribution in the exponential
family with pmf or pdf as stated in (2.3.1). Then [∑ni=1 r1(Xi), . . . ,∑ni=1 rk(Xi)] is a sufficient
statistic for θ.

Proof. The joint pmf or pdf is of the sample is

n

∏
i=1

exp[
k

∑
j=1

ηj(θ) rj(xi) − ψ(θ)] h(xi) = exp{
k

∑
j=1

[ηj(θ)
n

∑
i=1

rj(xi)] − nψ(θ)}
n

∏
i=1

h(xi),

and we now simply apply the factorization theorem.

Example 2.3.4: Let X1, . . . ,Xn ∼ iidN(µ,σ2), where µ ∈ R is unknown but σ2 > 0 is known.
By applying Theorem 2.3.3 to the pdf as written in Example 2.3.1, it can be seen that

∑ni=1 r1(Xi) = ∑ni=1Xi is sufficient for µ. This result agrees with Example 2.2.5. ♢

Example 2.3.5: Let X1, . . . ,Xn ∼ iidN(µ,σ2), where µ ∈ R and σ2 > 0 are both unknown.
By applying Theorem 2.3.3 to the pdf as written in Example 2.3.2, it can be seen that
[∑ni=1 r1(Xi), ∑ni=1 r2(Xi)] = (∑ni=1Xi, ∑ni=1X2

i ) is sufficient for (µ,σ2). This result agrees
with Example 2.2.6. ♢
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Lecture 3: Frequentist Estimation

Suppose we have an unknown parameter θ and some data X. We may want to use the data
to estimate the value of θ.

• An estimator θ̂ of an unknown parameter θ is any function of the data that is intended
to approximate θ in some sense. Although we typically just write θ̂, it is actually θ̂(X),
a random variable.

• An estimate is the value an estimator takes for a particular set of data values. Thus,
the estimator θ̂(X) would yield the estimate θ̂(x) if we observe the data X = x.

Good and Bad Estimators

Any function of the data can be considered an estimator for any parameter. However, it
may not be a good estimator. A good estimator will “usually” be “close” to the parameter
it estimates, in a sense to be formalized later. It may or may not be obvious whether an
estimator is good, or whether one estimator is better than another.

Example 3.0.1: Suppose X1, . . . ,Xn ∼ iid Exp(λ), and we wish to estimate λ = 1/E(X).

• Estimators such as λ̂ = (X )
−1

or λ̂ = (sample median)−1 might be good estimators.

• Estimators such as λ̂ = 1 + (X )
3

or λ̂ = 17 are probably bad estimators.

• Anything involving λ itself is not an estimator.

Note that λ̂(x1, . . . , xn) = 17 might be fine as an estimate for some particular data set
X1 = x1, . . . ,Xn = xn. However, the estimator λ̂(X1, . . . ,Xn) = 17, which ignores the data
and returns 17 no matter what, is probably a bad estimator. ♢

3.1 Likelihood Function

Many procedures in statistical inference involve a mathematical object called the likelihood
function.

Definition of Likelihood

Let θ be an unknown parameter, and let X be a sample with joint pmf pθ(x) (if X is
discrete) or joint pdf fθ(x) (if X is continuous). The likelihood function for a particular set
of data values x is Lx(θ) = pθ(x) (if X is discrete) or Lx(θ) = fθ(x) (if X is continuous).

• The function Lx(θ) is simply a function of θ (though it may be a different function for
different values of x). The function itself is not random.

• Sometimes we may also need to consider LX(θ), which is a random function of θ.

Example 3.1.1: Let X ∼ Bin(n, θ). If we observe X = x, then Lx(θ) = (
n
x
)θx(1 − θ)n−x. We

might also consider the random function LX(θ) = (
n
X
)θX(1 − θ)n−X . ♢
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Interpretation of Likelihood

The likelihood function is essentially the same mathematical object as the joint pmf or pdf,
but its interpretation is different.

• For pθ(x) or fθ(x), we think about fixing a parameter value θ and allowing x to vary.

• For Lx(θ), we think about fixing a collection of sample values x and allowing θ to vary.

Since the pmf or pdf is nonnegative, the likelihood must be nonnegative as well.

What Likelihood Is Not

The likelihood is not a “pdf (or pmf) of θ given the data.” There are several things wrong
with such an interpretation:

• In frequentist inference, the unknown parameter θ is not a random variable, so talking
about its “distribution” makes no sense.

• Even in Bayesian inference, the likelihood is still the same mathematical object as the
pmf or pdf of the data. Hence, it describes probabilities of observing data values given
certain parameter values, not the other way around.

• The likelihood may not even sum or integrate to 1 when summing or integrating over θ.
In fact, it may sum or integrate to ∞, in which case we cannot even scale it to make
it a pdf (or pmf).

Likelihood of Independent Samples

If the sampleX consists of iid observations from a common individual pmf pθ(x) or pdf fθ(x),
then the likelihood of the sample X is simply the product of the likelihoods associated with
the individual observations X1, . . . ,Xn, in which case Lx(θ) =∏

n
i=1Lxi

(θ) =∏
n
i=1 fθ(xi).

Log-Likelihood

It is often more convenient to work with the logarithm of the likelihood, `x(θ) = logLx(θ).
We adopt the convention that `x(θ) = −∞ when Lx(θ) = 0.

3.2 Maximum Likelihood Estimation

An estimate θ̂(x) of θ (with allowed parameter space Θ) is called a maximum likelihood
estimate (MLE) of θ if θ̂(x) maximizes Lx(θ), the likelihood of θ, over Θ. An estimator
that takes the value of the maximum likelihood estimate for every possible sample X = x is
called a maximum likelihood estimator (also MLE) . If the MLE is unique, then we can write

θ̂MLE = arg max
θ∈Θ

LX(θ) = arg max
θ∈Θ

`X(θ),

noting that maximizing the likelihood is equivalent to maximizing the log-likelihood. Also
note that the MLE can only take values within the allowed parameter space Θ.
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Existence and Uniqueness

The maximum likelihood estimator need not be unique or even exist. It may be the case that
for certain possible samplesX = x, the likelihood function Lx(θ) has a non-unique maximum
or fails to achieve its maximum altogether. Further discussion of these possibilities can be
found in Examples 7.5.8, 7.5.9, and 7.5.10 of DeGroot & Schervish.

Finding the MLE

Maximizing Lx(θ), or equivalently `x(θ), is just a calculus problem. Typically we find all
points in Θ where the derivative ∂Lx/∂θ is zero or undefined. Then we identify the global
maximum, considering all critical points and boundary points of Θ.

Example 3.2.1: Suppose X1, . . . ,Xn ∼ iid Poisson(λ), where λ ≥ 0, and we want to find the
MLE of λ. The log-likelihood based on the sample x = (x1, . . . , xn) is

`x(λ) =
n

∑
i=1

log[
λxi exp(−λ)

(xi)!
] = −nλ + nx logλ −

n

∑
i=1

log[(xi)!].

Then
∂

∂λ
`x(λ) = −n +

nx

λ
= 0 ⇐⇒ λ = x.

It can be seen from the form of `x(λ) that this critical point is indeed the maximizer, i.e.,

`x(x) = max
λ≥0

`x(λ) for all x ∈ (N0)
n,

where N0 = {0,1,2, . . .}. Thus, the maximum likelihood estimator of λ is λ̂MLE =X. ♢

MLE with Multiple Parameters

The definition of the maximum likelihood estimator still holds if the unknown parameter θ
is really θ = (θ1, . . . , θp), i.e., if there are multiple unknown parameters. We still find the

MLE θ̂ = (θ̂1, . . . , θ̂p) the same way, though the calculus problem may be more complicated.

Example 3.2.2: Let X1, . . . ,Xn ∼ iid N(µ,σ2), where µ ∈ R and σ2 > 0 are both unknown,
and we want to find the MLE of both parameters. The likelihood and log-likelihood based
on the sample x = (x1, . . . , xn) are

Lx(σ
2) =

n

∏
i=1

1
√

2πσ2
exp[−

(xi − µ)2

2σ2
] = (2πσ2)−n/2 exp[−

1

2σ2

n

∑
i=1

(xi − µ)
2],

`x(σ
2) = logLx(σ

2) = −
n

2
log(2π) −

n

2
logσ2 −

1

2σ2

n

∑
i=1

(xi − µ)
2.

Differentiating with respect to each parameter yields

∂

∂µ
`x(µ,σ

2) =
1

σ2

n

∑
i=1

xi −
nµ

σ2
=
n

σ2
(x − µ),

∂

∂(σ2)
`x(µ,σ

2) = −
n

2σ2
+

1

2(σ2)2

n

∑
i=1

(xi − µ)
2

=
1

2(σ2)2

n

∑
i=1

[(xi − µ)
2 − σ2].
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We now set both partial derivatives equal to zero and solve. First, note that

∂

∂µ
`x(µ,σ

2) =
n

σ2
(x − µ) = 0 ⇐⇒ µ = x.

We can now substitute µ = x into the other partial derivative, set it equal to zero, yielding

∂

∂(σ2)
`x(µ,σ

2) =
1

2(σ2)2

n

∑
i=1

[(xi − x)
2 − σ2] = 0 ⇐⇒ σ2 =

1

n

n

∑
i=1

(xi − x)
2
= (

n − 1

n
)S2.

It can be seen from the form of `x(µ,σ2) that this point is indeed the maximizer, i.e.,

`x[x, (
n − 1

n
)S2] = max

µ∈R, σ2>0
`x(µ,σ

2). (3.2.1)

Note: The result in (3.2.1) holds for all x ∈ Rp such that x1, . . . , xn are not all equal.
If instead x1, . . . , xn are all equal, then (n − 1)S2

/n = 0, which is outside the allowed
parameter space for σ2. However, since X1, . . . ,Xn are continuous random variables,
P (Xi = Xj) = 0 for i ≠ j, meaning that this issue arises with probability zero. Thus,
we usually go ahead and define the MLE as if this situation cannot occur, despite the
fact that it is technically possible.

Thus, the maximum likelihood estimators of µ and σ2 are, respectively, µ̂MLE = X and
(σ̂2)MLE = (n − 1)S2/n. Notice that the MLE of the variance is smaller than the usual
sample variance by a factor of (n − 1)/n. ♢

Example 3.2.3: Let X be an n × p matrix of known constants (not random variables,
despite the capital letter), and let Y1, . . . , Yn be independent random variables with

Yi ∼ N(

p

∑
j=1

βjxij, σ
2) for each i ∈ {1, . . . , n},

where β = (β1, . . . , βp) ∈ Rp and σ2 > 0 are both unknown. Let Y = (Y1, . . . , Yn). It can
be shown (see, e.g., Theorem 11.5.1 of DeGroot & Schervish) that if the matrix X has
rank p, then the maximum likelihood estimators of β and σ2 are β̂MLE = (XTX)−1XTY
and (σ̂2)MLE = n−1∥Y −Xβ̂MLE∥2

2, respectively, where ∥u∥2
2 = ∑

k
i=1 u

2
i for any u ∈ Rk.

Note: If the rank of X is strictly less than p (which is automatically the case if n < p),
then the MLE of β still exists but is not unique. However, the MLE of σ2 does not
exist (although we could take it to be zero if we expand the parameter space to σ2

≥ 0
and adopt the convention that a normal distribution with variance zero is simply a
degenerate distribution).

Note that β̂MLE is just the ordinary least squares estimator of β. ♢

Sufficiency and Maximum Likelihood Estimation

Maximum likelihood estimation obeys the sufficiency principle, as shown below.

Theorem 3.2.4. Let r(X) be a sufficient statistic for θ, and let θ̂MLE be the unique maxi-
mum likelihood estimator of θ. Then θ̂MLE depends on X only through r(X).

Proof. By the factorization theorem, we may write Lx(θ) = g[r(x), θ]h(x) for some func-
tions g and h. Now note that maximizing Lx(θ) as a function of θ for each x is equivalent
to maximizing g[r(x), θ] as a function of θ for each x. The result follows.
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Invariance to Reparametrization

The next theorem provides a very convenient property of the maximum likelihood estimator.

Theorem 3.2.5. Let θ̂MLE be a maximum likelihood estimator of θ, and let g be a function
with domain Θ. Then ξ̂MLE = g(θ̂MLE) is a maximum likelihood estimator of ξ = g(θ).

Proof. See the proof of Theorem 7.6.2 in DeGroot & Schervish.

Example 3.2.6: Suppose that in Example 3.2.2, we had taken the second unknown param-
eter to be the standard deviation σ instead of the variance σ2. Then the maximum likelihood
estimator of σ would have simply been

σ̂MLE =
√

(σ̂2)MLE =

√
(n − 1)S2

n

by Theorem 3.2.5. ♢

Numerical Calculation of Maximum Likelihood Estimates

It is often the case that the maximum likelihood estimator θ̂MLE(X) cannot be expressed in
closed form as a function of X. However, the maximum likelihood estimate θ̂MLE(x) for a
particular sample X = x can usually still be found numerically.

Example 3.2.7: Let x1, . . . , xn be known constants, and let Y1, . . . , Yn be independent ran-
dom variables with

Yi ∼ Bin[1,
exp(α + βxi)

1 + exp(α + βxi)
] for each i ∈ {1, . . . , n},

where α ∈ R and β ∈ R are both unknown. (This is often called logistic regression.) The
log-likelihood based on the sample y = (y1, . . . , yn) is

`y(α,β) = logLy(α,β) = log
n

∏
i=1

[
exp(α + βxi)

1 + exp(α + βxi)
]

yi

[
1

1 + exp(α + βxi)
]

1−yi

=
n

∑
i=1

yi(α + βxi) −
n

∑
i=1

log[1 + exp(α + βxi)].

Differentiating with respect to α and β yields

∂

∂α
`y(α,β) =

n

∑
i=1

yi −
n

∑
i=1

exp(α + βxi)

1 + exp(α + βxi)
,

∂

∂β
`y(α,β) =

n

∑
i=1

xiyi −
n

∑
i=1

xi exp(α + βxi)

1 + exp(α + βxi)
.

Setting both partial derivatives above equal to zero yields a system of equations that cannot
be solved in closed form. However, we can find a solution numerically to obtain maximum
likelihood estimates α̂MLE and β̂MLE for most samples y ∈ {0,1}p. (However, no matter what
the true values of α and β are, there is a nonzero probability of obtaining a sample such that
the maximum likelihood estimates do not exist.) ♢
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3.3 Estimators that Optimize Other Functions

Sometimes we may want to find an estimator by maximizing or minimizing some real-valued
function other than the likelihood . There are many reasons why we might want to do this:

• The likelihood itself may be difficult to work with.

• We may be unsure of some aspect of our model (e.g., we may not know if the observa-
tions are normally distributed).

• We may want to favor certain kinds of estimates over others.

An estimator that is found by maximizing or minimizing some real-valued function other
than the likelihood is called an M-estimator. Note that maximum likelihood estimation is a
special case of M-estimation.

Example 3.3.1: In the regression setup of Example 3.2.3, the least squares estimator

β̂ LS = arg min
β∈Rp

∥Y −Xβ∥2
2

is an M-estimator of β. However, β̂ LS = β̂MLE, so this estimator coincides with the maximum
likelihood estimator. ♢

Example 3.3.2: In the regression setup of Example 3.2.3, we could instead consider the
least absolute deviation estimator

β̂ LAD = arg min
β∈Rp

∥Y −Xβ∥1,

where ∥u∥1 = ∑
k
i=1 ∣ui∣ for any u ∈ Rk. Then β̂ LAD is another M-estimator. ♢

Example 3.3.3: In the regression setup of Example 3.2.3, we could instead consider the
lasso estimator

β̂ LASSO = arg min
β∈Rp

(∥Y −Xβ∥2
2 + λ∥β∥1),

where λ > 0 is some fixed constant.

Reference: Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58 267–288.

The addition of the term λ∥β∥1 does several things:

• It typically results in an estimate for which some components are exactly zero.

• The nonzero components are typically smaller in absolute value than the corresponding
components of β̂MLE (provided the MLE exists and is unique).

• β̂ LASSO is unique in many cases when β̂MLE is not. For example, β̂ LASSO is usually
still unique even when p > n.

Many variations and extensions of the lasso have been developed. Such methods are some-
times called regularized or penalized regression. ♢
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Lecture 4: Bayesian Estimation

Before we can discuss the Bayesian approach to estimation, we must first motivate and
introduce the Bayesian philosophy of statistical inference.

4.1 Bayesian Philosophy

Suppose we have a jar that contains 99 fair coins and a single unfair coin that is rigged to
come up as heads with probability 3/4. We draw one coin at random from the jar, and we
let U be the heads probability of the coin we draw. Then

f (U)(u) =
⎧⎪⎪⎨⎪⎪⎩

1/2 with probability 99/100

3/4 with probability 1/100,

and hence the pmf of U is

f (U)(u) =
⎧⎪⎪⎨⎪⎪⎩

99/100 if u = 1/2,
1/100 if u = 3/4.

After selecting a coin, we flip it five times, and we let X count the number of heads in these
flips. Then for x ∈ {0,1, . . . ,5}, the conditional pmf of X given U is

f (X ∣U)(x ∣ u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5!

x! (5 − x)!(
1

2
)
x

(1

2
)

5−x
if u = 1

2
,

5!

x! (5 − x)!(
3

4
)
x

(1

4
)

5−x
if u = 3

4
.

Now suppose we wish to determine the probability that we have drawn the unfair coin
conditional on the fact that we observe that all five flips are heads. This is simply

f (U ∣X)(3/4 ∣ 5) = f
(U,X)(3/4, 5)
f (X)(5) = f

(X ∣U)(5 ∣ 3/4) f (U)(3/4)
f (X)(5) ≈ 0.071. (4.1.1)

This calculation, called Bayes’ rule, follows immediately from the definition of conditional
probability. Both frequentists and Bayesians would agree that this calculation is valid.

Unknown Parameter

Suppose instead that we do not know how many coins of each type are in the jar. Then we
do not know f (U)(u), the pmf of U , so we can no longer perform the calculation of Bayes’
rule as in (4.1.1). Now suppose also that we let θ (instead of U) denote the heads probability
of our selected coin. Then when we start flipping the coin, θ is either 1/2 or 3/4, and we
simply do not know which. This is exactly the scenario of frequentist statistical inference.
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Probability as Degree of Belief

On the other hand, the Bayesian philosophy allows probability to also describe a subjective
degree of belief. Even though we are not told how many coins of each type are in the jar,
we may believe (for example) that only a small fraction of the coins are unfair. Then we
can construct a “distribution” of θ based on these subjective beliefs, which allows us once
again to calculate Bayes’ rule as in (4.1.1). Thus, if we are willing to specify a subjective
“distribution” of θ in advance, we can obtain a conditional distribution of θ given the data
we observe. This is the fundamental idea of the Bayesian philosophy of statistical inference.

4.2 Prior and Posterior

We now introduce the standard terminology and notation of the Bayesian approach. Suppose
we have an unknown parameter θ and some data X = x with joint pdf fθ(x) or pmf pθ(x).
Since we now treat θ as a random variable, we should actually be writing fθ(x) = f (X ∣θ)(x ∣ θ)
or pθ(x) = p(X ∣θ)(x ∣ θ) if we want to be consistent with our earlier notation. Either way, we
will still write the likelihood as Lx(θ).

Note: We are now slightly abusing notation by using θ to represent both a random
variable and a value that can be taken by that random variable. However, this is the
standard way that things are written in the Bayesian approach.

Since θ is now treated as a random variable, we will also make a slight adjustment when
writing down a statistical model. Instead of simply writing something like X ∼ Bin(n, θ), we
will now write X ∣ θ ∼ Bin(n, θ) to explicitly show the conditioning on θ.

Prior

The prior distribution on θ represents our subjective beliefs about θ before observing the
data. If we want to be consistent with our earlier notation, we should write the prior as
f (θ)(θ) or p(θ)(θ) according to whether θ is continuous or discrete. However, the standard
notation for a prior on θ is π(θ).

Note: It should always be clear from context whether π refers to a prior distribution
or to the constant that relates a circle’s circumference to its diameter.

We will discuss how to choose a prior later.

Posterior

Once we have the prior π(θ) and the likelihood Lx(θ), we can use Bayes’ rule to find the
distribution of θ given X = x. Using our original notation for conditional pmfs or pdfs, we
would write

f (θ∣X)(θ ∣ x) = f
(X ∣θ)(x ∣ θ) f (θ)(θ)

f (X)(x) or p(θ∣X)(θ ∣ x) = p
(X ∣θ)(x ∣ θ) p(θ)(θ)

p(X)(x) .
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Using the standard terminology of the Bayesian approach, we write this as

π(θ ∣ x) = Lx(θ) π(θ)
m(x) , (4.2.1)

where m(x) is the marginal distribution of X evaluated at x and π(θ ∣ x) is called the
posterior distribution of θ conditional on X = x. The posterior is the object on which all
Bayesian inference about θ is based.

Note: If X and θ are both discrete, then (4.2.1) arises directly from the definition of
conditional probability. If X and θ are both continuous, then (4.2.1) arises directly
from the way we defined conditional distributions of continuous random variables.
However, if X is discrete and θ is continuous (or vice versa), then we technically have a
problem, since we have not defined conditional distributions in this situation. In reality,
this is not really an issue, as definitions can be cleaned up using more sophisticated
techniques to make (4.2.1) valid in all such scenarios.

Recall that the marginal distribution of X is found by integrating or summing out θ from
the joint distribution of X and θ. The joint distribution of X and θ is simply Lx(θ) π(θ),
the numerator of (4.2.1). Thus, the marginal distribution of X is simply

m(x) = ∫ Lx(θ) π(θ) dθ or m(x) = ∑
θ∈Θ

Lx(θ) π(θ).

Thus, it can be seen that m(x) is simply the normalizing constant that is needed to make
the function Lx(θ) π(θ) a valid probability distribution for θ.

Example 4.2.1: Suppose X1, . . . ,Xn ∼ iid p ∼ Bin(1, θ), where 0 ≤ θ ≤ 1, and we observe
X = x. Now take our prior distribution for θ to be Beta(a, b), which has pdf

π(θ) = Γ(a + b)
Γ(a) Γ(b)θ

a−1(1 − θ)b−1 I[0,1](θ).

The likelihood is

Lx(θ) =
n

∏
i=1

θxi(1 − θ)1−xi = θ∑n
i=1 xi(1 − θ)n−∑n

i=1 xi .

The marginal distribution of x is

m(x) = ∫
1

0
Lx(θ) π(θ) dθ =

Γ(a + b)
Γ(a) Γ(b) ∫

1

0
θ∑

n
i=1 xi+a−1(1 − θ)n−∑n

i=1 xi+b−1 dθ

= Γ(a + b)
Γ(a) Γ(b)

Γ(a +∑ni=1 xi)Γ(b + n −∑ni=1 xi)
Γ(a + b + n) ,

where the integral is computed by noting that the integrand is an unnormalized beta pdf.
Then the posterior distribution of θ is

π(θ ∣ x) = Lx(θ) π(θ)
m(x) = Γ(a +∑ni=1 xi)Γ(b + n −∑ni=1 xi)

Γ(a + b + n) θ∑
n
i=1 xi+a−1(1 − θ)n−∑n

i=1 xi+b−1 I[0,1](θ),

which we recognize as the pdf of a Beta(a +∑ni=1 xi, b + n −∑ni=1 xi) distribution. Thus, the
posterior distribution of θ is θ ∣ x ∼ Beta(a +∑ni=1 xi, b + n −∑ni=1 xi). ♢
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Shortcut for Finding Posteriors

There is sometimes no need to actually compute the marginal distribution m(x). Suppose we
write down Lx(θ) π(θ), and we recognize that this function of θ looks like some distribution
of θ with an incorrect normalizing constant. Then we know that m(x) must simply be
whatever is needed to fix this normalizing constant. In fact, we really only need to write
down parts of Lx(θ) π(θ) that depend on θ, since we know the normalizing constants must
work out properly if we recognize the distribution based on the form of the function of θ.

Example 4.2.2: In Example 4.2.1, we could have simply noted that

Lx(θ) π(θ)∝ θ∑
n
i=1 xi+a−1(1 − θ)n−∑n

i=1 xi+b−1 I[0,1](θ),

which we recognize as the unnormalized pdf of a Beta(a+∑ni=1 xi, b+n−∑ni=1 xi) distribution.
Thus, we could have concluded immediately that θ ∣ x ∼ Beta(a +∑ni=1 xi, b + n −∑ni=1 xi),
without needing to do any further computation. ♢

Conjugate Priors

In Example 4.2.1, the prior was a beta distribution, and the posterior was another beta
distribution. A family of distributions is called conjugate for a particular likelihood function if
choosing a prior from that family leads to a posterior that is also from that family. Conjugate
priors are often used because they are very convenient. In particular, the shortcut described
above is guaranteed to work if a conjugate prior is chosen.

Example 4.2.3: Let X1, . . . ,Xn ∣ µ∼ iid N(µ,σ2), where µ ∈ R is unknown but σ2 > 0 is
known. Let the prior on µ be µ ∼ N(ξ, τ 2), where ξ ∈ R and τ 2 > 0 are known. To find the
posterior of µ, we first try the shortcut described above. Ignoring anything that is not a
function of µ, we have

Lx(µ) π(µ)∝ exp[− 1

2σ2

n

∑
i=1

(xi − µ)2] exp[−(µ − ξ)2

2τ 2
]

∝ exp( µ
σ2

n

∑
i=1

xi −
nµ2

2σ2
− µ2

2τ 2
+ ξµ
τ 2

)

∝ exp[−(nτ 2 + σ2)µ2

2σ2τ 2
+ (nxτ 2 + ξσ2)µ

σ2τ 2
]

∝ exp[−1

2
(nτ

2 + σ2

σ2τ 2
)(µ2 − 2µ

nτ 2x + σ2ξ

nτ 2 + σ2
)]

∝ exp[−1

2
(nτ

2 + σ2

σ2τ 2
)(µ − nτ

2x + σ2ξ

nτ 2 + σ2
)

2

],

which we recognize as another normal distribution. Thus, the posterior distribution of µ
given X = x is

µ ∣ x ∼ N(nτ
2x + σ2ξ

nτ 2 + σ2
,
nτ 2 + σ2

σ2τ 2
).
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It is perhaps more insightful to rewrite this as

µ ∣ x ∼ N[ (σ2/n)−1

(τ 2)−1 + (σ2/n)−1
x + (τ 2)−1

(τ 2)−1 + (σ2/n)−1
ξ,

1

(τ 2)−1 + (σ2/n)−1
].

Note that the mean of the posterior is simply a weighted average of the sample mean x and
the prior mean ξ, with weights proportional to the inverses of the σ2/n (the variance of x)
and the prior variance τ 2. ♢

Choosing Priors

For this course, you will always be told what prior to use. However, in real applications,
we would need to determine a prior distribution for ourselves. In principle, we should try
to make a subjective prior to actually represent our subjective beliefs about θ. This sounds
straightforward, but it is often quite difficult to do in practice. It also opens up our analysis
to criticism if someone disagrees with our subjective choice.

Note: This is not unique to the Bayesian approach. All statistical inference inherently
includes subjective choices by the statistician. (For example, the choice to model
observations as normally distributed is often at least somewhat subjective.) Bayesian
inference with a subjective prior simply makes the subjectivity much more obvious.

What statisticians often do instead is to try to choose a prior that tries to say as little as
possible about θ, i.e., it represents a total lack of prior knowledge about the value of θ. Such
priors are often called flat or uninformative priors.

Example 4.2.4: In Example 4.2.3, we could specify a somewhat flat prior by taking the
prior variance τ 2 to be very large. Note that if we do this, then the mean of the posterior
distribution will be approximately x, since the weight associated with x will be close to 1
while the weight associated with ξ will be close to 0. ♢

4.3 Bayes Estimators

Once we have the posterior distribution of a parameter θ, we can find a Bayes estimate θ̂B.
A Bayes estimate is simply a summary to report some sort of “center” of the posterior.

Posterior Mean

By far the most common choice of Bayes estimate is the posterior mean E(θ ∣ x). (In fact,
many people simply call the posterior mean the Bayes estimate.)

Example 4.3.1: In Example 4.2.1, we found θ ∣ x ∼ Beta(a +∑ni=1 xi, b + n −∑ni=1 xi). Then
the posterior mean is simply

E(θ ∣ x) = a +∑
n
i=1 xi

a + b + n
by standard properties of the beta distribution. ♢
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Posterior Median

We could also report the posterior median as our Bayes estimate. However, this is sometimes
harder to compute in closed form.

Example 4.3.2: In Example 4.2.1, we found θ ∣ x ∼ Beta(a +∑ni=1 xi, b + n −∑ni=1 xi). This
distribution has a median that cannot be found in closed form (in general). ♢

Posterior Mode

We could also report the posterior mode as our Bayes estimate. This is is sometimes called
a maximum a posteriori (MAP) estimate.

Example 4.3.3: In Example 4.2.1, we found θ ∣ x ∼ Beta(a +∑ni=1 xi, b + n −∑ni=1 xi). Then
the posterior mode is simply

arg max
0≤θ≤1

π(θ ∣ x) = a +∑
n
i=1 xi − 1

a + b + n − 2

by standard properties of the beta distribution. ♢

Observe that maximizing the posterior is equivalent to maximizing Lx(θ)π(θ). Thus, the
maximum a posteriori estimate is actually just maximizing the likelihood times the prior.

Bayes Estimates and Bayes Estimator

The Bayes estimate is whatever the measure we report based on the observed values X = x.
Thus, the Bayes estimate is a function of x. The Bayes estimator is the random variable
obtained by inserting the random variable X into this function.

Example 4.3.4: In Example 4.2.1, we found that the posterior mean was

E(θ ∣ x) = a +∑
n
i=1 xi

a + b + n .

Then the Bayes estimator is simply

θ̂B = a +∑
n
i=1Xi

a + b + n ,

which is a random variable. ♢

Frequentist Use of Bayes Estimators

Although we use the Bayesian philosophy to derive Bayes estimators, we can still use Bayes
estimators even if we do not actually agree with the Bayesian philosophy. In the end, a
Bayes estimator is simply a function of the data, just like any other estimator, so we can
calculate it or consider its properties without worrying about the philosophy under which
its form was derived.
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Lecture 5: Finite-Sample Properties of Estimators

Conceptually, a good estimator should “usually” be “close” to the parameter it estimates.
We now consider how to formalize this idea.

5.1 Bias and Variance

An estimator is simply a random variable. We begin by considering properties related to the
expectation and variance of this random variable.

Bias

The bias of an estimator θ̂ of a parameter θ is Biasθ(θ̂) = Eθ(θ̂) − θ. The estimator θ̂ is
unbiased if Biasθ(θ̂) = 0 for all θ in the parameter space Θ.

Example 5.1.1: Let X1, . . . ,Xn be iid random variables such that µ = Eµ(X1) is finite, and
let X be the usual sample mean. Consider X/2 as an estimator of µ. Then

Biasµ(X/2) = Eµ(X/2) − µ = −µ/2.

Note that the bias is zero if µ happens to be zero, but not if µ ≠ 0, so this estimator is biased
(i.e., not unbiased). ♢
Example 5.1.2: Let X1, . . . ,Xn be iid random variables such that both µ = Eµ,σ2(X1) and

σ2 = Varµ,σ2(X1) are finite, and suppose n ≥ 2. Let X and S2 be the usual sample mean and
sample variance, respectively. Then

Eµ,σ2(S2) = 1

n − 1
Eµ,σ2(

n

∑
i=1

X2
i − nX

2) = 1

n − 1
[n(µ2 + σ2) − n(µ2 + σ

2

n
)] = n − 1

n − 1
σ2 = σ2.

Thus, Biasµ,σ2(S2) = σ2 − σ2 = 0 for all values of σ2, so S2 is an unbiased estimator of σ2.
Note that if the (n−1)−1 is replaced with n−1 in the definition of S2 above, then the resulting
estimator has expectation (n − 1)σ2/n and thus is no longer unbiased. ♢
Unbiasedness is not, by itself, enough to ensure that an estimator is good. Similarly, an
unbiased estimator is not necessarily better than a biased one.

Example 5.1.3: Return to the situation of Example 5.1.2. The estimator (X1−X2)2/2 has
expectation

Eµ,σ2[(X1 −X2)2/2] = Eµ,σ2(X2
1/2) +Eµ,σ2(X2

2/2) −Eµ,σ2(X1)Eµ,σ2(X2)
= (µ2 + σ2)/2 + (µ2 + σ2)/2 − µ2 = σ2

and is hence an unbiased estimator of σ2. However, this estimator involves only the first two
observations and ignores the remaining n − 2 observations, so we probably would not want
to use this estimator. In contrast, as shown in Example 5.1.2, the estimator (n− 1)S2/n has
expectation (n − 1)σ2/n and is hence a biased estimator of σ2. However, if n is large, then
the bias is small, in which case this estimator may not be bad. ♢
It is often the case that we can “trade” a small amount of bias in order to improve an
estimator in other ways. This idea will be discussed more later.



Lecture 5: Finite-Sample Properties of Estimators 2

Variance

It can also be useful to consider the variance Varθ(θ̂) of an estimator θ̂ of a parameter θ.

Example 5.1.4: Return to the situation of Examples 5.1.2 and 5.1.3, and suppose further
that the distribution of X1, . . . ,Xn is normal. Then

Varµ,σ2(S2) = ( σ2

n − 1
)

2

Varµ,σ2[(n − 1)S2

σ2
] = ( σ2

n − 1
)

2

[2(n − 1)] = 2(σ2)2

n − 1
,

noting that (n − 1)S2/σ2 ∼ χ2
n−1 since X1, . . . ,Xn ∼ iid N(µ,σ2). It follows that

Varµ,σ2[(n − 1

n
)S2] = (n − 1

n
)

2

Varµ,σ2(S2),

which is smaller than the variance of S2. The variance of the estimator (X1 −X2)2/2 can be
found by noting that it is simply the sample variance of the first two observations, and thus

Varµ,σ2[(X1 −X2)2

2
] = 2(σ2)2 = (n − 1)Varµ,σ2(S2).

Unless n is very small, this estimator has much larger variance than either of the other two
estimators discussed above. ♢

A smaller variance is usually better, but this is not always true. For example, a constant
estimator (e.g., θ̂ = 17) has zero variance but is clearly not a good estimator.

Bias-Variance Trade-Off

When comparing sensible estimators, an estimator with larger bias often has smaller variance,
and vice versa. Thus, it may not be immediately clear which of several sensible estimators
is to be preferred.

Example 5.1.5: . Return to the situation of Examples 5.1.2–5.1.4. The estimators S2 and
(X1 −X2)2/2 are both unbiased, but S2 has smaller variance. Thus, S2 is a better estimator
than (X1 −X2)2/2. However, the comparison between S2 and (n − 1)S2/n is not so clear.
One estimator has smaller bias, while the other estimator has smaller variance. ♢

5.2 Mean Squared Error

The mean squared error of an estimator θ̂ of a parameter θ is MSEθ(θ̂) = Eθ[(θ̂ − θ)2]. It
provides one way to evaluate the overall performance of an estimator. The following theorem
provides a useful way both to calculate and to interpret the mean squared error.

Theorem 5.2.1. Let θ̂ be an estimator of θ. Then MSEθ(θ̂) = [Biasθ(θ̂)]2 +Varθ(θ̂).

Proof. MSEθ(θ̂) = Eθ[(θ̂ − θ)2] = [Eθ(θ̂ − θ)]2 +Varθ(θ̂ − θ) = [Biasθ(θ̂)]2 +Varθ(θ̂).
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Example 5.2.2: Return to the situation of Examples 5.1.2–5.1.5. The mean squared errors
of the estimators S2 and (n − 1)S2/n are

MSEµ,σ2(S2) = [Biasµ,σ2(S2)]2 +Varµ,σ2(S2) = 2(σ2)2

n − 1
,

MSEµ,σ2[(n − 1

n
)S2] = {Biasµ,σ2[(n − 1

n
)S2]}

2

+Varµ,σ2[(n − 1

n
)S2]

= [(n − 1

n
)σ2 − σ2]

2

+ 2(n − 1)(σ2)2

n2
= (2n − 1)(σ2)2

n2
< MSEµ,σ2(S2)

for all n ≥ 2. Thus, for all µ ∈ R and all σ2 > 0, the mean squared error of the estimator
(n − 1)S2/n (the MLE of σ2 for a normal sample) is smaller than the mean squared error of
the unbiased estimator S2. ♢

Let θ̂ and θ̃ be estimators of θ. If MSEθ(θ̂) ≤ MSEθ(θ̃) for all θ ∈ Θ and MSEθ(θ̂) < MSEθ(θ̃)
for some θ ∈ Θ, then the estimator θ̂ dominates the estimator θ̃. In principle, it seems that
we should avoid using any estimator that is dominated by another estimator. However, in
practice, this policy is not always followed.

Example 5.2.3: We showed in Example 5.2.2 that the unbiased sample variance S2 is
dominated by the maximum likelihood estimator (n−1)S2/n. However, the sample variance
is still often used in practice. ♢

Example 5.2.4: Let X ∼ Np(µ, σ2Ip), where µ ∈ Rp is unknown and σ2 > 0 is known.
Then X itself is the maximum likelihood estimator of µ, and it is unbiased. Indeed, it may
seem that X is the only sensible estimator of µ. However, it can be shown that if p ≥ 3,
then there exist estimators that dominate X, such as the James-Stein estimator

µ̂JS = [1 − (p − 2)σ2

∑pi=1X
2
i

]X.

Reference: James, W. and Stein, C. (1961). Estimation with quadratic loss. Proc.
Fourth Berkeley Symp. Math. Statist. Prob., 1 361–379.

Again, if p ≥ 3, then there even exist other estimators that in turn dominate the James-Stein
estimator. The proofs of these results are beyond the scope of this course. ♢

More commonly, when comparing sensible estimators, it is often the case that one estimator
has smaller mean squared error for some parameter values, while the other estimator has
smaller mean squared error for other parameter values. In this case, it is not at all clear
which estimator is better.

Example 5.2.5: Suppose X ∼ Bin(n, θ), where θ is unknown and 0 ≤ θ ≤ 1. Recall that the
maximum likelihood estimator of θ is θ̂MLE =X/n. Its bias and variance are

Biasθ(θ̂MLE) = Eθ(
X

n
) − θ = 0, Varθ(θ̂MLE) = Varθ(

X

n
) = θ(1 − θ)

n
,
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so its mean squared error is

MSEθ(θ̂MLE) = [Biasθ(θ̂MLE)]2 +Varθ(θ̂MLE) = θ(1 − θ)
n

.

If we instead put a Beta(a, b) prior on θ and conduct a Bayesian analysis, we find that the
posterior mean is θ̂B = (X + a)/(n + a + b). Its bias and variance are

Biasθ(θ̂B) = Eθ(
X + a
n + a + b) − θ =

nθ + a
n + a + b − θ =

(1 − θ)a − θb
n + a + b ,

Varθ(θ̂B) = Varθ(
X + a
n + a + b) =

nθ(1 − θ)
(n + a + b)2

,

so its mean squared error is

MSEθ(θ̂B) = [Biasθ(θ̂B)]
2 +Varθ(θ̂B) =

[(1 − θ)a − θb]2 + nθ(1 − θ)
(n + a + b)2

.

A rather stupid choice would be the constant estimator that ignores the data and just
estimates c no matter what. This estimator has

Biasθ(c) = Eθ(c) − p = c − θ, Varθ(c) = 0, MSEθ(c) = [Biasθ(c)]2 +Varθ(c) = (c − θ)2.

The MSE of each estimator as a function of θ is plotted below in the case where n = 5. The
Bayes estimator (posterior mean) uses a = b = 1/2. The constant estimator ignores the data
and estimates c = 1/3 no matter what.
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The plot shows the following:

• The Bayes estimator has smaller MSE than the maximum likelihood estimator unless
the true parameter value θ is very close to 0 or 1. This illustrates the notion of a
bias-variance trade-off. Although the Bayes estimator is biased (and the MLE is not),
this bias allows a substantial reduction in variance.

• It is not difficult to see why the Bayes estimator is outperformed by the MLE when
the true value of θ is close to 0 or 1. For n = 5 and a = b = 1/2 as shown in the plot, we
are guaranteed to have 1/12 ≤ θ̂B ≤ 11/12 since 0 ≤X ≤ 5 no matter what.

• Note that the exact values of θ at which the curves for the MLE and Bayes estimator
intersect are (4 ±

√
11 )/8. It is not particularly surprising that these values are fairly

close to 1/12 and 11/12.

• The constant estimator does very well if θ is actually near 1/3, but otherwise its
performance can be very poor. ♢

We would observe similar results if we repeated this plot for other values of a, b, c, and n. ♢

Best Estimators

It is natural to ask whether we can find an estimator θ̂ of θ that has smaller mean squared
error than every other estimator for θ ∈ Θ. However, no such estimator can exist. This
conclusion is actually trivial, since the constant estimator θ̂ = c will always have smaller
mean squared error than any other estimator if θ is actually equal to c. Thus, we must
consider the idea of a “best” estimator in a narrower sense. There are two ways to do this:

• Take a weighted average of the MSE over all possible θ values, so that we can measure
the performance of an estimator through a single number that takes into account all
values of θ (rather than a function of θ). Then try to find the estimator that minimizes
this “average MSE.” It turns out that this is surprisingly easy, as we’ll see.

• Restrict our attention to only estimators that meet a certain criterion, then try to find
an estimator that is “best” (has lowest MSE for all θ) within this subset. The most
common approach is to restrict our attention to unbiased estimators and try to find
the best unbiased estimator.

The notion of average MSE optimality is addressed below, while the notion of best unbiased
estimators is will be discussed later in the course.

Average MSE Optimality

Let w(θ) be a nonnegative weighting function that describes how much we want the various
values of θ to “count” toward our weighted average MSE. Assume without loss of generality
that ∫Θw(θ) dθ = 1 or ∑θ∈Θw(θ) = 1 (whichever is appropriate). Then let

rw(θ̂) = ∫
Θ

MSEθ(θ̂)w(θ) dθ or rw(θ̂) = ∑
θ∈Θ

MSEθ(θ̂)w(θ)

denote our weighted average MSE. The following theorem tells us how to minimize rw(θ̂).
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Theorem 5.2.6. Let θ̂B denote the posterior mean of θ under the prior π(θ) = w(θ). Then
rw(θ̂B) ≤ rw(θ̂) for any other estimator θ̂ of θ.

Proof. We provide the proof for the case where the data and parameter are both continuous.
(The proofs of the other cases are similar.) Let fθ(x) be the joint pdf of the data, where
x ∈ Rn, and let θ̂ = θ̂(x) be an estimator of θ other than θ̂B = θ̂B(x). Then

rw(θ̂) = ∫
Θ

MSEθ(θ̂)w(θ) dθ = ∫
Θ
Eθ[(θ̂ − θ)

2]π(θ) dθ

= ∫
Θ
{∫

Rn
[θ̂(x) − θ]2

fθ(x) dx}π(θ) dθ

= ∫
Rn

{∫
Θ
[θ̂(x) − θ]2

π(θ ∣ x) dθ}m(x) dx,

noting that fθ(x)π(θ) = π(θ ∣ x)m(x). Now write the inner integral as

∫
Θ
[θ̂(x) − θ]2

π(θ ∣ x) dθ = ∫
Θ
[θ̂(x) − θ̂B(x) + θ̂B(x) − θ]2

π(θ ∣ x) dθ

= [θ̂(x) − θ̂B(x)]2 + 2[θ̂(x) − θ̂B(x)]∫
Θ
[θ̂B(x) − θ]π(θ ∣ x) dθ

+ ∫
Θ
[θ̂B(x) − θ]2

π(θ ∣ x) dθ

≥ ∫
Θ
[θ̂B(x) − θ]2

π(θ ∣ x) dθ,

noting that ∫Θ[θ̂B(x) − θ]π(θ ∣ x) dθ = 0. Then it follows that

rw(θ̂) ≥ ∫
Rn

{∫
Θ
[θ̂B(x) − θ]2

π(θ ∣ x) dθ}m(x) dx = ∫
Θ
Eθ[(θ̂ − θ)

2]π(θ) dθ = rw(θ̂B),

again noting that fθ(x)π(θ) = π(θ ∣ x)m(x).

Note that although Theorem 5.2.6 involves the Bayes estimator and uses Bayesian notation
in its proof, the result holds regardless of whether or not we actually believe in the Bayesian
philosophy. Thus, we can still find Bayes estimators useful even if we are not willing to
interpret them as a mean of some posterior distribution.

Example 5.2.7: In Example 5.2.5, suppose we want to find the estimator that minimizes
a weighted average MSE with a weighting function of the form w(θ) = θc1(1 − θ)c2 , where
c1 > −1 and c2 > −1 (to ensure that the integral of the weighting function is finite). Then w(θ),
when multiplied by an appropriate constant, is the pdf of a Beta(c1 + 1, c2 + 2) distribution.
Then by Theorem 5.2.6, the estimator that minimizes the weighted average MSE under the
weighting function w(θ) is simply the posterior mean of θ under a Beta(c1 + 1, c2 + 1) prior,
which is θ̂B = (X + c1 + 1)/(n + c1 + c2 + 2). ♢
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Lecture 6: Asymptotic Properties of Estimators

We now turn our attention to the limiting behavior of estimators as the sample size tends
to infinity. This is referred to as the asymptotic behavior of an estimator.

6.1 Consistency

An estimator θ̂n of a parameter θ is consistent if θ̂n →P θ for all θ in the parameter space Θ.

Example 6.1.1: Suppose µ = Eµ(X1) is finite, and let X (more precisely, Xn) be the usual
sample mean of an iid sample X1, . . . ,Xn.

• The estimator Xn is a consistent estimator of µ since Xn →P µ (by the weak law of
large numbers).

• The estimator Xn/2 is not a consistent estimator of µ. since Xn/2→P µ/2.

• The estimator (n − 1)Xn/n is a consistent estimator of µ, despite the fact that its
expectation is Eµ[(n−1)Xn/n] = (n−1)µ/n for each n ≥ 1 (i.e., it is a biased estimator
of µ for each n ≥ 1).

In fact, if an is any sequence such that an → 1, then anXn is a consistent estimator of µ. ♢

The following theorem can be helpful for showing consistency of an estimator.

Theorem 6.1.2. If Eθ(θ̂n) → θ and Varθ(θ̂n) → 0 for all θ ∈ Θ, then θ̂n is a consistent
estimator of θ.

Proof. The proof uses Chebyshev’s inequality (Theorem 6.2.2 of DeGroot & Schervish) and
some simple manipulations involving the definition of convergence in probability.

Note that the conditions of Theorem 6.1.2 are sufficient conditions, not necessary conditions.
Examples can be constructed in which an estimator is consistent despite the fact that the
conditions of Theorem 6.1.2 fail.

Good Estimators Should Be Consistent

Consistency is perhaps the most basic property of a good estimator. Estimators derived using
sensible statistical principles, such as maximum likelihood estimators and Bayes estimators,
are usually consistent.

Summary of Regularity Conditions

A formal statement of the consistency of the maximum likelihood estimator requires the im-
position of a variety of regularity conditions. A detailed list of one sufficient set of regularity
conditions can be found in Section 6.4.

Note: The conditions listed in Section 6.4 are intended as a single set of conditions to
cover all results in this lecture. In fact, consistency of the MLE can be proved using
slightly weaker conditions than those listed in Section 6.4.
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For now, it will suffice to briefly summarize these regularity conditions as follows:

• The data X = (X1, . . . ,Xn) is an iid sample with likelihood Lx(θ) =∏n
i=1Lxi

(θ).

• The parameter space Θ of the unknown parameter θ is an open subset (though not
necessarily a proper subset) of the real line.

• The set X = {x1 ∈ R ∶ Lx1(θ) > 0} does not depend on θ.

• If Lx1(θ1) = Lx1(θ2) for almost all x1 ∈ X , then θ1 = θ2.

• The likelihood Lx1(θ) must satisfy certain smoothness conditions as a function of θ.

Practically speaking, the most commonly encountered violation of these conditions is a
situation where the set X = {x1 ∈ R ∶ Lx1(θ) > 0} depends on θ (for example, if the distribution
of the data is uniform over some interval that depends on θ). However, if all conditions are
satisfied, then we have the following result.

Theorem 6.1.3. Let θ̂n be the maximum likelihood estimator of θ based on the sample
Xn = (X1, . . . ,Xn). Then under the regularity conditions of Section 6.4, θ̂n is a consistent
estimator of θ.

Proof. The proof is beyond the scope of this course.

Note: The result of Theorem 6.1.3 actually follows as a corollary of Theorem 6.2.4,
which will be presented in the next section. However, this logical implication is useless
for actually proving Theorem 6.1.3 because the result of Theorem 6.1.3 will be used in
the proof of Theorem 6.2.4.

6.2 Asymptotic Distribution of the MLE

Earlier in the course, we derived the asymptotic distribution of certain estimators by various
ad hoc approaches. In particular, we have often exploited the central limit theorem and
delta method in for estimators that can be expressed as some type of average from an iid
sample. However, we now develop a much more general theory to address the asymptotic
distribution of the maximum likelihood estimator.

Restrictions and Extensions

Some regularity conditions will still be required (see Section 6.4), so the results developed
in this section will not apply to all maximum likelihood estimators. On the other hand, this
basic approach is general enough to be extended to other M-estimators as well, though such
extensions are beyond the scope of this course.

Derivatives of the Log-Likelihood

Throughout the lecture, we will write derivatives of the likelihood and log-likelihood as

L′X(θ) = ∂

∂θ
LX(θ), L′′X(θ) = ∂2

∂θ2
LX(θ), `′X(θ) = ∂

∂θ
`X(θ), `′′X(θ) = ∂2

∂θ2
`X(θ).
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MLE Maximizes a Random Function

It is important to realize where the randomness in the distribution of the MLE comes from.

• The log-likelihood `X(θ) is a random function of θ. Different sample values X = x
lead to different log-likelihoods `x(θ), some of which are more probable than others.

• The MLE θ̂ is defined as the point at which this random function is maximized.

• Since the function is random, the point at which it is maximized is also random.

Log-Likelihoods for iid Samples are iid Sums

If X = (X1, . . . ,Xn) is an iid sample, then the log-likelihood is `X(θ) = ∑ni=1 `Xi
(θ). Thus,

for any particular θ, the log-likelihood itself is a sum of iid random variables. It follows that
derivatives of the log-likelihood are also sums of iid random variables.

Score and Information

We now define two important functions based on the log-likelihood:

• The score or score function is simply `′X(θ), or equivalently, ∑ni=1 `′Xi
(θ).

• The information or Fisher information is I(θ) = Eθ{[`′X(θ)]2}.

The following theorem provides some helpful results related to these quantities. It again
requires some regularity conditions.

Lemma 6.2.1. Under the regularity conditions of Section 6.4, Eθ[`′X(θ)] = 0, and

I(θ) = Varθ[`′X(θ)] = −Eθ[`′′X(θ)] = −nEθ[`′′X1
(θ)].

Proof. See the proof of Theorem 8.8.1 of DeGroot & Schervish for all but the last equality.
For the last equality, simply note that `′′X(θ) = ∑ni=1 `′′Xi

(θ), and the terms in the sum are
identically distributed.

Lemma 6.2.1 provides the formula by which we usually calculate the Fisher information in
practice, for two reasons:

• The second derivative may have fewer terms to consider than the first derivative.

• We only need to find a single expectation, as opposed to finding a variance or the
expectation of a squared quantity.

The quantity Eθ[`′′X1
(θ)] is often called I1(θ), the information per observation.

Example 6.2.2: Let X1, . . . ,Xn ∼ iid Poisson(λ), where λ > 0 is unknown. Suppose we want
to find the Fisher information I(λ). We find

`′′X1
(λ) = ∂2

∂λ2
[−λ +X1 logλ − log(X1!)] =

∂

∂λ
(−1 + X1

λ
) = −X1

λ2
,

so the information for the sample is I(λ) = nI1(λ) = −nEλ(−X1/λ2) = n/λ. ♢
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Example 6.2.3: Let X1, . . . ,Xn ∼ iid N(µ,σ2), where µ ∈ R is unknown and σ2 > 0 is known.
Suppose we want to find the Fisher information I(µ). We find

`′′X1
(µ) = ∂2

∂µ2
[−1

2
log(2πσ2) − (X1 − µ)2

2σ2
] = ∂

∂µ
(X1 − µ

σ2
) = − 1

σ2
,

so the information for the sample is simply I(µ) = nI1(µ) = −nEµ(−1/σ2) = n/σ2. Note that
in this example, the information I(µ) does not actually depend on µ. ♢

Main Result: Asymptotic Distribution of the MLE

The following result is among the most important in all of mathematical statistics. As with
previous results in this lecture, it requires some regularity conditions.

Theorem 6.2.4. Let θ̂n be the maximum likelihood estimator of θ based on the sample
Xn = (X1, . . . ,Xn). Then under the regularity conditions of Section 6.4,

√
n(θ̂n − θ)→D N[0,

1

I1(θ)
].

Proof. A fully rigorous proof is beyond the scope of this course, but we can still provide the
basic idea. Begin with a Taylor expansion of `′Xn

(θ̂n) around θ:

`′Xn
(θ̂n) = `Xn(θ) + (θ̂n − θ)`′′Xn

(θ) +⋯ ,

where we can ignore the higher-order terms. (The justification of this claim is where most of
the regularity conditions are used.) Now observe that the left-hand side is zero, so (neglecting
the “⋯” term entirely), we may rearrange and multiply by

√
n to obtain

√
n(θ̂n − θ) = −

√
n [

`′Xn
(θ)

`′′Xn
(θ)

] =

√
n [ 1

n
`′Xn

(θ) − 0]

− 1

n
`′′Xn

(θ)
.

Then by the central limit theorem,

√
n [ 1

n
`′Xn

(θ) − 0] =
√
n [ 1

n

n

∑
i=1
`′Xi

(θ) − 0]→D N[0, I1(θ)],

noting that Eθ[`′X1
(θ)] = 0 and Varθ[`′X1

(θ)] = I1(θ) by Lemma 6.2.1. Next, observe that

− 1

n
`′′Xn

(θ) = − 1

n

n

∑
i=1
`′′Xi

(θ)→P −Eθ[`′′Xi
(θ)] = I1(θ)

by the weak law of large numbers. Then by Slutsky’s theorem,

√
n(θ̂n − θ)→D N[0,

1

I1(θ)
]

since the asymptotic variance is I1(θ)/[I1(θ)]−2 = 1/I1(θ).
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The practical interpretation of Theorem 6.2.4 is that if n is large, then the distribution of the
MLE θ̂n is approximately normal with mean θ (i.e., the true value) and variance 1/[nI1(θ)],
or equivalently, 1/[I(θ)].

Note: It is intuitive to interpret asymptotic results as approximate results for large n,
but such interpretations can occasionally produce incorrect statements when pushed
too far. For instance, it is possible to construct a sequence of random variables Zn such
that Zn →D N(0,1) while Var(Zn) does not converge to 1. In that case, it would be
correct to say that the distribution of Zn is approximately N(0,1) when n is large, but
it would be incorrect to say that Var(Zn) ≈ 1 when n is large. Although theoretically
possible, such seemingly self-contradictory situations are seldom encountered in prac-
tice, and the interpretation of asymptotic results as approximate results for large n is
usually fairly safe.

As you might expect, we will exploit these asymptotic results heavily for inference procedures
as the course continues.

Example 6.2.5: Let X1, . . . ,Xn ∼ iid Poisson(λ), where λ > 0 is unknown. We calculated
in Example 6.2.2 that the Fisher information for the sample is I(λ) = n/λ. We also found
in an earlier lecture that the MLE of λ is simply λ̂n = Xn (assuming that Xn > 0, which is
guaranteed to hold for large enough n).

Note: This is where our assumption that the parameter space is an open interval
becomes relevant. Since we have λ > 0 (strictly), we have

Pλ(Xn > 0 for some n ≥ 1) = 1 − Pλ(Xn = 0 for all n ≥ 1)

= 1 −
∞
∏
n=1

Pλ(Xi = 0) = 1 −
∞
∏
n=1

exp(−λ) = 1 − 0 = 1,

so the MLE exists for sufficiently large n with probability 1.

Then by Theorem 6.2.4,
√
n(λ̂n − λ)→D N(0,

λ

n
).

(Of course, we could have obtained the same result by the central limit theorem.) ♢

Asymptotic Distribution of Numerically Calculated MLEs

To see why Theorem 6.2.4 is useful, notice that it depends only on the regularity conditions
and the fact that the MLE maximizes the likelihood. This fact means that Theorem 6.2.4
holds even in problems where we cannot find a closed-form solution for the MLE. Of course, if
we cannot find a closed-form solution for the MLE, then it may also be difficult to calculate
the Fisher information. There exist ways to get around this problem by using simpler
quantities in place of the Fisher information, as we will see later in the course.
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Asymptotic Distribution of Functions of MLEs

Recall that if θ̂ is an MLE of θ, then g(θ̂) is an MLE of g(θ). If g is continuously differentiable
at the true value θ, then we can combine the delta method with Theorem 6.2.4 to obtain
the asymptotic distribution of g(θ̂).
Example 6.2.6: Let X1, . . . ,Xn ∼ iid Poisson(λ), where λ > 0 is unknown. Note that each
observation Xi has variance λ and hence standard deviation λ1/2. The MLE of λ1/2 is

λ̂
1/2
n = (Xn)

1/2
,

so we may apply the delta method to the result of Example 6.2.5 to obtain

√
n(λ̂1/2

n − λ1/2)→D N(0,
1

4n
),

noting that the derivative of the function g(λ) = λ1/2 is g′(λ) = 1
2λ

−1/2. ♢

Extension to Multiple Parameters

The result of Theorem 6.2.4 generalizes to the case of multiple unknown parameters. A
full treatment of this topic is beyond the scope of the course, but we can still state the
basic result. Suppose we write the unknown parameters as θ = (θ1, . . . , θp). First, the score
function generalizes to a vector,

∂

∂θ
`X(θ) = (

∂

∂θ1

`X(θ) ⋯ ∂

∂θp
`X(θ))

T

.

Next, under certain generalized versions of the regularity conditions of Section 6.4, the Fisher
information (now a p × p matrix) can be calculated as

I(θ) = Varθ[
∂

∂θ
`X(θ)] = −Eθ[

∂2

∂θ ∂θT
`X(θ)] = −nEθ[

∂2

∂θ ∂θT
`X1(θ)] = −nI1(θ),

where

∂2

∂θ ∂θT
`X(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∂2

∂θ2
1

`X1(θ) ⋯ ∂2

∂θ1 ∂θp
`X1(θ)

⋮ ⋮
∂2

∂θ1 ∂θp
`X1(θ) ⋯ ∂2

∂θ2
p

`X1(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

is the matrix of second partial derivatives, sometimes called the Hessian. Then, again under
suitable generalizations of the regularity conditions of Section 6.4, the MLE θ̂n satisfies

√
n(θ̂n − θ)→D Np{0p, [I1(θ)]−1}.

Note: You might notice that even if we are willing to overlook the regularity conditions,
there is still a problem with the statement above: we have not defined convergence in
distribution for random vectors. Thus, we will have to settle for understanding the
result above at a more conceptual and imprecise level.

Again, the material here is presented only to provide some basic exposure to these more
advanced multivariate concepts. We will not discuss them rigorously or in any further detail.
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6.3 Asymptotic Efficiency

In some situations it may be possible to find the asymptotic distribution of estimators other
than the MLE. Many sensible estimators θ̃n of θ exhibit similar distributional convergence
results to that of the MLE θ̂n. Specifically, we often obtain a result of the form

√
n(θ̃n − θ)→D N[0, v(θ)] (6.3.1)

for some function v(θ), which can be called the asymptotic variance of θ̃n.

Note: The factor of
√
n in the convergence result above can introduce confusion over

the term “asymptotic variance.” Although we call v(θ) the asymptotic variance, the
approximate distribution of θ̃n for large n is normal with mean θ and variance n−1 v(θ).

The asymptotic variance provides another way to compare and evaluate estimators. Among
estimators with convergence results of the form (6.3.1), we would usually prefer the estimator
with the smallest asymptotic variance v(θ).

Asymptotic Relative Efficiency

We quantify this type of asymptotic variance comparison through a quantity called the
asymptotic relative efficiency (ARE) of one estimator compared to another. If θ̃

(1)
n and θ̃

(2)
n

are estimators of θ such that
√
n[θ̃(1)n − θ]→D N[0, v(1)(θ)],

√
n[θ̃(2)n − θ]→D N[0, v(2)(θ)],

then the asymptotic relative efficiency of θ̃
(1)
n compared to θ̃

(2)
n is

AREθ[θ̃(1)n , θ̃
(2)
n ] = 1/v(1)(θ)

1/v(2)(θ)
= v

(2)(θ)
v(1)(θ)

.

Example 6.3.1: Let X1, . . . ,Xn ∼ iid Poisson(λ), where λ > 0 is unknown. Suppose we
plan to draw a new observation Xnew sometime in the future, and we want to estimate
ζ = Pλ(Xnew = 0) = exp(−λ). We know that the MLE of ζ is ζ̂n = exp(−λ̂n) = exp(−Xn). By
Theorem 6.2.4 and the delta method, we obtain

√
n(ζ̂n − ζ)→D N[0, λ exp(−2λ)].

However, another sensible estimator of ζ is the proportion of observations that are zero in the
sample, i.e., ζ̃n = n−1∑ni=1 I{0}(Xi). Note that I{0}(X1), . . . , I{0}(Xn)∼ iid Bin[1, exp(−λ)], so

√
n(ζ̃n − ζ)→D N{0, exp(−λ)[1 − exp(−λ)]}.

Then the asymptotic relative efficiency of ζ̃n compared to ζ̂n is

AREλ(ζ̃n, ζ̂n) =
1/{exp(−λ)[1 − exp(−λ)]}

1/[λ exp(−2λ)]
= λ exp(−2λ)

exp(−λ)[1 − exp(−λ)]
= λ

exp(λ) − 1
.

Note that AREλ(ζ̃n, ζ̂n) < 1 for all λ > 0, meaning that ζ̃n has larger asymptotic variance
than the MLE ζ̂n for all parameter values. In fact, if λ is even moderately large, then the
advantage of the MLE can be quite substantial, e.g., AREλ(ζ̃n, ζ̂n) ≈ 1/67 if λ = 5. ♢
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Asymptotic relative efficiency can also be interpreted in terms of sample sizes. Suppose
that AREθ[θ̃(1)n , θ̃

(2)
n ] = 3. Then the distribution of θ̃(1) based on a sample of size n has

approximately the same distribution as the distribution of θ̃(2) based on a sample of size 3n.
In other words, an estimator that is three times as efficient as another (based on ARE) needs
a sample size only a third as large as the other estimator in order to achieve approximately
the same precision.

Asymptotic Efficiency

We might wish to go a step further than simply comparing two estimators using asymptotic
relative efficiency. Specifically, we would like to know whether there exists an estimator that
minimizes the asymptotic variance. The following theorem suggests an answer.

Theorem 6.3.2. Let θ̃n be an estimator such that (6.3.1) holds for some v(θ). Then under
the regularity conditions of Section 6.4, v(θ) ≥ [I1(θ)]−1.

Proof. The proof is beyond the scope of this course.

An estimator θ̃n for which (6.3.1) holds with v(θ) = [I1(θ)]−1 (i.e., an estimator that attains
the bound specified by Theorem 6.3.2) is called asymptotically efficient. Then the following
result is immediately obvious by Theorem 6.2.4.

Corollary 6.3.3. Let θ̂n be the maximum likelihood estimator of θ based on the sample
Xn = (X1, . . . ,Xn). Then under the regularity conditions of Section 6.4, θ̂n is asymptotically
efficient.

Estimators that are “close enough” to the MLE as n→∞ can also be asymptotically efficient.
In particular, Bayes estimators are often asymptotically efficient as well.

Example 6.3.4: Let X1, . . . ,Xn ∼ iid Poisson(λ), where λ > 0 is unknown. It can be shown
that the posterior mean of λ under a Gamma(a, b) prior is

λ̂B = a +∑
n
i=1Xi

b + n
= ( n

b + n
)Xn + ( b

b + n
)a
b
.

Now observe that

√
n(λ̂B − λ) =

√
n[( n

b + n
)Xn + ( b

b + n
)a
b
] −

√
n[( n

b + n
)λ + ( b

b + n
)λ]

= ( n

b + n
)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
→1

√
n(Xn − λ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→DN{0,[I1(λ)]−1}

+
√
n( b

b + n
)(a
b
− λ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0

→D N[0,
1

I1(λ)
]

by Slutsky’s theorem. Thus, λ̂B is also asymptotically efficient. ♢
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Uses of Asymptotically Inefficient Estimators

It might seem as though we should always use the MLE or another asymptotically efficient
estimator, in which case the notion of asymptotic relative efficiency would be a bit pointless
(since any two estimators of interest would have an ARE of 1). However, in practice, there
may be compelling reasons to use (or at least to consider using) estimators that may not be
asymptotically efficient.

• The MLE and other asymptotically efficient estimators might be too difficult to calcu-
late, even numerically, while some other simpler estimator might exist.

• The MLE and other asymptotically efficient estimators might rely heavily on the as-
sumptions underlying the model (e.g., that the observations are independent, or that
their distribution is normal), and we may not trust these assumptions. We might in-
stead prefer an estimator that performs reasonably well even if these assumptions are
actually false. (We call such estimators robust.)

In these situations, the asymptotic relative efficiency quantifies how much we are “losing”
or “gaining” in terms of efficiency by using one estimator instead of another if it turns out
that all of the assumptions of the model actually are correct.

Example 6.3.5: Reconsider the estimators proposed in Example 6.3.1. Based on asymp-
totic relative efficiency alone, it might seem as though ζ̂n = exp(−Xn) is the superior choice.
However, consider how this estimator performs if the distribution of X1, . . . ,Xn actually dif-
fers slightly from a Poisson(λ) distribution. Specifically, suppose that the actual distribution
produces enormous values (e.g., λ ⋅ 106) too often. These enormous values tend to cause Xn

to also take enormous values, and thus ζ̂n = exp(−Xn) tends underestimate ζ quite badly.
On the other hand, ζ̃n still performs reasonable well as an estimator of ζ. The asymptotic
relative efficiency as calculated in Example 6.3.1 tells us that the efficiency of ζ̃n relative
to ζ̂n drops off rapidly as λ increases. Thus, the larger the true value of λ is, the more a
switch from ζ̂n to ζ̃n hurts us if it turns out that all of the assumptions of the model are
correct after all. ♢

6.4 Regularity Conditions for Earlier Results

The following regularity conditions are sufficient for

• Theorem 6.1.3 (consistency of the MLE),

• Lemma 6.2.1 (results on the score and information),

• Theorem 6.2.4 (asymptotic distribution of the MLE),

• Theorem 6.3.2 (lower bound for asymptotic variance), and

• Corollary 6.3.3 (asymptotic efficiency of the MLE).

Note: Some of the results above (especially consistency of the MLE) can actually be
proven under slightly weaker conditions. The conditions below are intended as a single
“universal” set of conditions that are sufficient for all of the results above to hold.
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The conditions are as follows:

• The data X = (X1, . . . ,Xn) is an iid sample with likelihood Lx(θ) =∏n
i=1Lxi

(θ).

• The parameter space Θ of the unknown parameter θ is an open subset (though not
necessarily a proper subset) of the real line.

• The set X = {x1 ∈ R ∶ Lx1(θ) > 0} does not depend on θ.

• If Lx1(θ1) = Lx1(θ2) for almost all x1 ∈ X , then θ1 = θ2.

Note: When we say a statement holds for “almost all x1 ∈ X ,” we mean that
there exists a set X ⋆ ⊆ X such that the statement holds for all x1 ∈ X ⋆ and
Pθ(X1 ∈ X ⋆) = 1 for all θ ∈ Θ.

• The likelihood Lx(θ) = ∏n
i=1LXi

(θ) is differentiable three times in θ with continuous
third derivative, i.e., L′′′x (θ) exists and is continuous for all θ ∈ Θ and almost all x ∈ X n.

Note: This condition and the previous condition imply that the log-likelihood
`x(θ) = logLx(θ) is also differentiable three times in θ with continuous third
derivative.

• Depending on whether X is continuous or discrete, either

∫
Xn
L′′′x (θ) dx = d3

dθ3 ∫Xn
Lx(θ) dx or ∑

x∈Xn

L′′′x (θ) = d3

dθ3 ∑
x∈Xn

Lx(θ).

Note that the right-hand side of either equation is equal to (d3/dθ3)(1) = 0.

• For any θ0 ∈ Θ, there exists δθ0 > 0 and a function Mθ0(x) such that

∣`′′′x1
(θ)∣ ≤Mθ0(x1) for almost all x1 ∈ X and all θ ∈ (θ0 − δθ0 , θ0 + δθ0),

and Eθ0[Mθ0(X1)] <∞.

The conditions above are sufficient but not necessary. Many other sets of sufficient conditions
can also be obtained.

Note: A quick survey of five different textbooks yields five slightly different sets of
sufficient conditions for the results in this lecture. The conditions here are taken from
Section 10.6.2 of Statistical Inference by George Casella and Roger L. Berger.
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Lecture 7: More on Unbiased Estimators

Although the use of unbiased estimators is less emphasized in modern statistics than it was
in the past, the property of unbiasedness leads to several interesting theoretical results for
this class of estimators.

7.1 UMVUEs and the Cramér-Rao Inequality

Recall that in general there does not exist an estimator with smaller MSE than all other
estimators for all values of the unknown parameter. However, it may be possible to find
an estimator that is “best” (in the sense of smallest MSE) among some class of estimators.
Note that if θ̃ is an unbiased estimator of θ, then MSEθ(θ̃) = [Biasθ(θ̃)]2+Varθ(θ̃) = Varθ(θ̃).
Thus, finding an unbiased estimator with smallest MSE for all θ in the parameter space Θ
is equivalent to finding an unbiased estimator with smallest variance for all θ ∈ Θ. If θ̃⋆ is
an unbiased estimator of θ such that Varθ(θ̃⋆) ≤ Varθ(θ̃) for all θ ∈ Θ for all other unbi-
ased estimators θ̃ of θ, then θ̃⋆ is called a uniformly minimum–variance unbiased estimator
(UMVUE) of θ.

Note: A UMVUE is an unbiased estimator for which the variance is uniformly minimum
(among all unbiased estimators). Some people assume the uniform part to be implicitly
understood and therefore use the term minimum-variance unbiased estimator (MVUE).
Other people simply use the term best unbiased estimator (BUE), but such terminology
is less descriptive since the notion of “best” could perhaps be interpreted in other ways.

It may not be immediately clear how to find a UMVUE or how to determine whether a
particular unbiased estimator is a UMVUE. Some strategies will be discussed in this lecture,
but there also exist other methods that are beyond the scope of this course.

Cramér-Rao Inequality

The following result provides a lower bound for the variance of any unbiased estimator of a
function of a parameter. It requires some regularity conditions, and the conditions listed in
Section 6.4 of Lecture 6 are again sufficient.

Theorem 7.1.1 (Cramér-Rao Inequality). Let ξ̃ = ξ̃(X) be an unbiased estimator of ξ = g(θ)
based on the sample X = (X1, . . . ,Xn), where g ∶ Θ → R is continuously differentiable at θ
with derivative g′(θ). Then under the regularity conditions of Section 6.4,

Varθ(ξ̃) ≥
[g′(θ)]2
I(θ) = [g′(θ)]2

nI1(θ)
for all θ ∈ Θ.

Proof. The covariance between the random variables ξ̃ = ξ̃(X) and `′X(θ) is

Covθ[ξ̃, `′X(θ)] = Eθ[ξ̃ `′X(θ)] −Eθ(ξ̃)E[`′X(θ)] = Eθ[ξ̃ `′X(θ)],

noting that Eθ[`′X(θ)] = 0 by Lemma 6.2.1. Now observe that `′X(θ) = L′X(θ)/LX(θ), so

Covθ[ξ̃, `′X(θ)] = Eθ[ξ̃
L′X(θ)
LX(θ)] =

⎧⎪⎪⎨⎪⎪⎩
∫Rn ξ̃(x)L′x(θ) dx if X is continuous,

∑x∈Xn ξ̃(x)L′x(θ) if X is discrete,
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noting that [L′x(θ)/Lx(θ)]Lx(θ) = L′x(θ). Then due to the regularity conditions, we have

∫
Rn
ξ̃(x)L′x(θ) dx = ∫

Rn

∂

∂θ
[ξ̃(x)Lx(θ)] dx = d

dθ ∫Rn
ξ̃(x)Lx(θ) dx = d

dθ
Eθ(ξ̃) = g′(θ),

∑
x∈Xn

ξ̃(x)L′x(θ) = ∑
x∈Xn

∂

∂θ
[ξ̃(x)Lx(θ)] =

d

dθ
∑

x∈Xn

ξ̃(x)Lx(θ) =
d

dθ
Eθ(ξ̃) = g′(θ).

Thus, we have Covθ[ξ̃, `′X(θ)] = g′(θ) in both the continuous and discrete cases. Then

∣g′(θ)∣ = ∣Covθ[ξ̃, `′X(θ)]∣ ≤
√

Varθ(ξ̃) Var[`′X(θ)] =
√

Varθ(ξ̃) I(θ),

where the inequality is the Cauchy-Schwarz inequality. The result follows immediately.

Note: The result of Theorem 7.1.1 is sometimes called the information inequality. Also,
some people refer to the special case below as the Cramér-Rao inequality instead.

The following corollary addresses the special case of unbiased estimators of θ itself.

Corollary 7.1.2 (Cramér-Rao Inequality, Special Case). Let θ̃ be an unbiased estimator of θ
based on the sample X = (X1, . . . ,Xn). Then under the regularity conditions of Section 6.4,

Varθ(θ̃) ≥
1

I(θ) = 1

nI1(θ)
for all θ ∈ Θ.

The Cramér-Rao inequality provides an obvious way of identifying a UMVUE: if the variance
of an unbiased estimator attains the lower bound stated in the inequality (for all θ ∈ Θ),
then the estimator is a UMVUE.

Example 7.1.3: Let X1, . . . ,Xn ∼ iid Poisson(λ), where λ > 0 is unknown. We calculated
in Example 6.2.2 of Lecture 6 that the Fisher information for the sample is I(λ) = n/λ. Now
observe that λ̂ =X is clearly an unbiased estimator of λ, with variance

Varλ(X ) = λ
n
= 1

I(λ) ,

which attains the Cramér-Rao lower bound. Thus, λ̂ =X is a UMVUE of λ. ♢

The Cramér-Rao inequality may appear quite similar to Theorem 6.3.2 from Lecture 6,
which states that if θ̃n is a sequence of estimators such that

√
n(θ̃n − θ)→D N[0, v(θ)], then

v(θ) ≥ [I(θ)]−1. The difference is that the Cramér-Rao inequality holds for all n, i.e., it is
not just an asymptotic result.

• Theorem 6.3.2 is “stronger” than the Cramér-Rao inequality in that Theorem 6.3.2
covers all estimators for which

√
n(θ̃n − θ) converges to a normal distribution centered

at zero, including biased estimators.

• However, the Cramér-Rao inequality is “stronger” than Theorem 6.3.2 in that the
bound provided by the Cramér-Rao inequality is an actual bound for the variance for
any finite n, not just a bound on the asymptotic variance.

Thus, neither of the two results is stronger than the other.
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Attainment of the Cramér-Rao Lower Bound

Depending on the situation, there may or may not exist an unbiased estimator that at-
tains the Cramér-Rao lower bound. The following result provides a necessary and sufficient
condition for an unbiased estimator to attain this bound.

Theorem 7.1.4. Let ξ̃ = ξ̃(X) be an unbiased estimator of ξ = g(θ) based on the sample
X = (X1, . . . ,Xn), where g ∶ Θ → R is continuously differentiable at θ with derivative g′(θ).
Then under the regularity conditions of Section 6.4,

Varθ(ξ̃) =
[g′(θ)]2
I(θ) = [g′(θ)]2

nI1(θ)
for all θ ∈ Θ

if and only if there exists a function b ∶ Θ → R such that ξ̃(X) = g(θ) + b(θ) `′X(θ) with
probability 1 for all θ ∈ Θ.

Proof. Note from the proof of Theorem 7.1.1 that Varθ(ξ̃) = [g′(θ)]2/I(θ) if and only if

∣Covθ[ξ̃, `′X(θ)]∣ =
√

Varθ(ξ̃) Var[`′X(θ)].

For any particular θ, this equality holds if and only if ξ̃(X) = a + b `′X(θ) with probability 1
for some constants a and b. Hence, the equality holds for all θ ∈ Θ if and only if there exist
functions a ∶ Θ→ R and b ∶ Θ→ R such that ξ̃(X) = a(θ) + b(θ) `′X(θ) with probability 1 for

all θ ∈ Θ. Then since ξ̃ is unbiased,

g(θ) = ξ = Eθ(ξ̃) = a(θ) + b(θ)Eθ[`′X(θ)] = a(θ)

by Lemma 6.2.1. Thus, a(θ) = g(θ).

Theorem 7.1.4 sometimes implies that no unbiased estimator of a particular parameter (or
of a particular function of a parameter) attains the Cramér-Rao lower bound.

Example 7.1.5: Let X1, . . . ,Xn ∼ iid Exp(λ), where λ > 0 is unknown. Then

`′X(λ) =
n

∑
i=1
`′Xi

(λ) =
n

∑
i=1

(1

λ
−Xi) =

n

λ
−

n

∑
i=1
Xi.

Now consider any unbiased estimator λ̃ of λ. The variance of λ̃ attains the Cramér-Rao
lower bound if and only if there exists a function b(λ) such that

λ̃(X) = λ + b(λ)(n
λ
−

n

∑
i=1
Xi).

However, it is clear that no such function b(λ) exists since λ̃(X) cannot depend on λ. Thus,
no unbiased estimator of λ attains the Cramér-Rao lower bound. ♢
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UMVUEs and Non-Attainment of the Cramér-Rao Lower Bound

Note that attainment of the Cramér-Rao lower bound is a sufficient condition for an unbiased
estimator to be a UMVUE. However, it is not a necessary condition.

• If an unbiased estimator attains the Cramér-Rao lower bound, then it is a UMVUE.

• However, in cases where no unbiased estimator attains the Cramér-Rao lower bound,
a UMVUE can still exist, though we would need to use more sophisticated techniques
to prove that its variance is indeed uniformly minimum.

Example 7.1.6: In Example 7.1.5, even though no unbiased estimator of λ attains the
Cramér-Rao lower bound, it can be shown using more sophisticated techniques that

λ̃ = n − 1

∑ni=1Xi

= n − 1

nX

is a UMVUE of λ. (In fact, it can also be shown that it is the unique UMVUE of λ.) ♢

7.2 Sufficiency and the Rao-Blackwell Theorem

Recall that the sufficiency principle states that statistical inference about a parameter θ
should be based on a sufficient statistic for θ. Maximum likelihood estimators and Bayes
estimators are always functions of a sufficient statistic, but such estimators may not be
unbiased. It may not be immediately obvious how to construct a good unbiased estimator
in certain situations.

Example 7.2.1: Let X1, . . . ,Xn ∼ iid Poisson(λ), where λ > 0 is unknown. Suppose we
plan to draw a new observation Xnew sometime in the future, and we want to estimate
ζ = Pλ(Xnew = 0) = exp(−λ). We know that the MLE of ζ is ζ̂ = exp(−λ̂MLE) = exp(−X),
but this is not an unbiased estimator of ζ. Alternatively, the estimator ζ̃ = n−1∑ni=1 I{0}(Xi)
(i.e., the sample proportion of observations that are zero) is clearly unbiased for ζ, but it
is not clear if this is a UMVUE of ζ or if there exists some better unbiased estimator of ζ.
(Intuition suggests that ζ̃ is perhaps not a great estimator of ζ since it simply treats each
observation as either “zero” or “not zero.”) ♢

The following theorem can help with the construction of good unbiased estimators.

Theorem 7.2.2 (Rao-Blackwell). Let ξ̃ = ξ̃(X) be an unbiased estimator of ξ = g(θ), where
the parameter space is Θ and g ∶ Θ→ R is a function. Let Y = r(X) be a sufficient statistic
for θ, and let ξ̃⋆ = E(ξ̃ ∣ Y ). Then ξ̃⋆ is an unbiased estimator of ξ, and Varθ(ξ̃⋆) ≤ Varθ(ξ̃)
for all θ ∈ Θ.

Proof. First note that ξ̃⋆ is unbiased since Eθ(ξ̃⋆) = Eθ[E(ξ̃ ∣ Y )] = Eθ(ξ̃) = ξ, where the
second equality is by the law of total expectation. Next, by the law of total variance,

Varθ(ξ̃) = Eθ[Var(ξ̃ ∣ Y )] +Varθ[E(ξ̃ ∣ Y )] ≥ Varθ[E(ξ̃ ∣ Y )] = Varθ(ξ̃⋆)

for all θ ∈ Θ.



Lecture 7: More on Unbiased Estimators 5

There are several things to note about the Rao-Blackwell theorem:

• No regularity conditions are required.

• It may appear as though sufficiency (for θ) of the statistic Y is not needed for the
result to hold. However, if the statistic Y is not sufficient, then E(ξ̃ ∣ Y ) may depend
on θ, in which case it is not an estimator at all. (This is also why we can skip writing
the subscript θ on the conditional expectation.)

• In addition to having a (possibly) improved variance, the estimator ξ̃⋆ is also a function
of the sufficient statistic Y .

• If the original estimator ξ̃ is already a function of the sufficient statistic Y , then the
Rao-Blackwell theorem is not helpful since ξ̃⋆ will simply be the same estimator as ξ̃.

The Rao-Blackwell theorem can provide a way to find a good unbiased estimator in situations
where it otherwise may not be clear how to construct one. If we can find any unbiased
estimator of the unknown quantity of interest, then we can apply the Rao-Blackwell theorem
to obtain a better unbiased estimator.

Note: The process of applying the Rao-Blackwell theorem to a näıve unbiased estimator
to obtain a better unbiased estimator is sometimes called Rao-Blackwellization.

Example 7.2.3: In Example 7.2.1, we stated that an unbiased estimator of ζ = exp(−λ) is
ζ̃ = n−1∑ni=1 I{0}(Xi). However, consider the even simpler unbiased estimator defined by

ζ̃1 = I{0}(X1) =
⎧⎪⎪⎨⎪⎪⎩

0 if X1 = 0,

1 if X1 > 0.

Suppose we now apply the Rao-Blackwell theorem to the unbiased estimator ζ̃1 with the
sufficient statistic Y = ∑ni=1Xi. Then

E(ζ̃1 ∣ Y = y) = 0 ⋅ P (ζ̃1 = 0 ∣ Y = y) + 1 ⋅ P (ζ̃1 = 1 ∣ Y = y)
= P (ζ̃1 = 1 ∣ Y = y)
= P (X1 > 0 ∣ ∑ni=1Xi = y)
= 1 − P (X1 = 0 ∣ ∑ni=1Xi = y)

= 1 − Pλ(X1 = 0, ∑ni=1Xi = y)
Pλ(∑ni=1Xi = y)

= 1 − Pλ(X1 = 0, ∑ni=2Xi = y)
Pλ(∑ni=1Xi = y)

= 1 − Pλ(X1 = 0) Pλ(∑ni=2Xi = y)
Pλ(∑ni=1Xi = y)

.

Now note that by basic properties of the Poisson distribution, ∑ni=1Xi ∼ Poisson(nλ) and

∑ni=2Xi ∼ Poisson[(n − 1)λ]. Then we have

E(ζ̃1 ∣ Y = y) = 1 − {exp(−λ)}{[(n − 1)λ]y(y!)−1 exp[−(n − 1)λ]}
(nλ)y(y!)−1 exp(−nλ) = (n − 1

n
)
y

= (1 − 1

n
)
y

.
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Thus, a better unbiased estimator of ζ = exp(−λ) is

ζ̃⋆ = (1 − 1

n
)
∑n

i=1Xi

.

As an interesting observation, note that

log ζ̃⋆ = (
n

∑
i=1
Xi) log(1 − 1

n
) =Xn log[(1 − 1

n
)
n

]→P −λ

since Xn →P λ by the weak law of large numbers and log[(1 − 1
n)n] → log(1

e) = −1. Then

ζ̃⋆ →P exp(−λ) = ζ, so ζ̃⋆ is a consistent estimator of ζ as well. ♢
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Lecture 8: Introduction to Hypothesis Testing

It is often the case that we wish to use data to make a binary decision about some unknown
aspect of nature. For example, we may wish to decide whether or not it is plausible that a
parameter takes some particular value. A frequentist approach to using data to make such
decisions is hypothesis testing, also called significance testing.

Note: There exist Bayesian counterparts of frequentist hypothesis tests, but the two
philosophies differ more substantially for these types of binary decisions than for esti-
mation problems.

8.1 Basic Structure of Hypothesis Tests

A hypothesis test consists of two hypothesis and a rejection region. The rejection region may
be specified via a test statistic and a critical value. We define each of these terms below.

Hypotheses

A hypothesis is any statement about an unknown aspect of a distribution. In a hypothesis
test, we have two hypotheses:

• H0, the null hypothesis, and

• H1, the alternative hypothesis.

Often a hypothesis is stated in terms of the value of one or more unknown parameters, in
which case it is called a parametric hypothesis. Specifically, suppose we have an unknown
parameter θ. Then parametric hypotheses about θ can be written in general as H0 ∶ θ ∈ Θ0

and H1 ∶ θ ∈ Θ1, where Θ0 and Θ1 are disjoint, i.e., Θ0 ∩ Θ1 = ∅. We will typically assume
hypotheses to be parametric unless clearly stated otherwise.

Example 8.1.1: Let µ ∈ R be an unknown population mean. Parametric hypotheses about θ
could be H0 ∶ µ ≤ 2 and H1 ∶ µ > 2. A different set of parametric hypotheses could be H0 ∶ µ = 2
and H1 ∶ µ ≠ 2. ♢

Hypotheses can be further classified as simple or composite.

• A hypothesis is simple if it fully specifies the distribution of the data (including all
unknown parameter values). A parametric hypothesis is simple if it states specific
values for all unknown parameters.

• A hypothesis is composite if it is not simple.

Note that taking both hypotheses to be simple is equivalent to allowing only two possible
values for the unknown parameter θ, which is often unrealistic in practice. Thus, at least one
hypothesis is typically composite, and sometimes both hypotheses are composite. (If only
one hypothesis is composite, it is usually the alternative hypothesis H1, for reasons that will
become clear later.)
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Example 8.1.2: Let X1, . . . ,Xn ∼ iid N(µ,σ2), and consider various sets of hypotheses:

• H0 ∶ µ = 40 versus H1 ∶ µ = 45, with σ2 known. H0 and H1 are both simple.

• H0 ∶ µ = 40 versus H1 ∶ µ ≠ 40, with σ2 known. H0 is simple, and H1 is composite.

• H0 ∶ µ = 40 versus H1 ∶ µ ≠ 40, with σ2 unknown. H0 and H1 are both composite.

• H0 ∶ µ ≤ 40 versus H1 ∶ µ > 40. H0 and H1 are both composite.

• H0 ∶ (µ,σ2) = (40,9) versus H1 ∶ (µ,σ2) ≠ (40,9). H0 is simple, and H1 is composite.

Note that if σ2 is unknown, any hypothesis that does not specify its value is composite. ♢

Rejection Region

A test of hypotheses H0 and H1 based on data X is a rule of the form

Reject H0 (in favor of H1) if and only if X ∈ R,

where R is a subset of the sample space S. This set R is called the rejection region.

Note: When we do not reject H0, we typically simply say that we fail to reject H0.
Some people prefer to say instead that we accept H0. However, the underlying theory
is unaffected by which semantic interpretation we prefer.

Example 8.1.3: Let X ∼ Bin(n, θ), where 0 < θ < 1, and consider testing H0 ∶ θ = 1/2 versus
H1 ∶ θ ≠ 1/2. Perhaps the simplest nontrivial test of these hypotheses is to reject H0 if and
only if the trials are all successes or all failures, i.e., if and only if X = 0 or X = n. Then the
rejection region is R = {0, n}. ♢

Essentially, a hypothesis test is its rejection region, in the sense that two tests of the same
hypotheses based on the same data are identical tests if and only if they have the same
rejection region.

Test Statistic

It is common to write the rejection region R in the form

R = {x ∈ S ∶ T (x) ≥ c}, (8.1.1)

where T is a real-valued function of the data and c ∈ R.

• T (X) is called the test statistic.

• c is called the critical value.

Different values of c yield different rejection regions, which we write as Rc.

Note: Any rejection region R can be written in this form, since we can trivially take
T (x) = IR(x) and c = 1 (though we usually prefer to choose a test statistic that is less
trivial). Thus, in particular, rejection regions of the form {x ∈ S ∶ T̃ (x) > c̃} can always
be rewritten in the form of (8.1.1) for some T and c.
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Example 8.1.4: Let X ∼ Bin(n, θ), where 0 < θ < 1, and consider testing H0 ∶ θ = 1/2 versus
H1 ∶ θ ≠ 1/2. A simple test of these hypotheses is to reject H0 if and only if X/n is far enough
from 1/2. Then we could state the test statistic and rejection region as

T (X) = ∣
X

n
−

1

2
∣, Rc = {X ∈ S ∶ T (X) ≥ c},

where the sample space is S = {0,1, . . . , n} and c ∈ R. ♢

Good and Bad Hypothesis Tests (and Non-Tests)

Every subset of the sample space can be a rejection region, and every rejection region corre-
sponds to a hypothesis test. However, not all such hypothesis tests are actually sensible.

• A good hypothesis test should be more likely to reject H0 if it is actually false than if
it is actually true.

• Mathematically, the rejection region R corresponds to a sensible test of H0 ∶ θ ∈ Θ0

versus H1 ∶ θ ∈ Θ1 if Pθ(X ∈ R) tends to be higher for θ ∈ Θ1 than for θ ∈ Θ0.

• A perfect hypothesis test would have Pθ(X ∈ R) equal to 0 or 1 according to whether
θ ∈ Θ0 or θ ∈ Θ1, respectively. However, this is typically impossible to achieve.

The probability Pθ(X ∈ R), which is a function of θ, will be given a name in Section 8.2.

Example 8.1.5: Let X ∼ Bin(n, θ), where 0 < θ < 1, and consider testing H0 ∶ θ = 1/2 versus
H1 ∶ θ ≠ 1/2. Clearly the hypothesis tests proposed in Example 8.1.3 and Example 8.1.4 are
good since X is more likely to fall in the rejection region if θ ≠ 1/2 than if θ = 1/2. ♢

Example 8.1.6: Let X ∼ Bin(n, θ), where 0 < θ < 1, and consider testing H0 ∶ θ = 1/2 versus
H1 ∶ θ ≠ 1/2. A legal hypothesis test is simply to always reject H0. The rejection region of
this test is {0,1, . . . , n}, the entire sample space. Another legal hypothesis test is simply to
never reject H0. The rejection region of this test is ∅. However, these two hypothesis tests
are obviously a waste of time. ♢

Example 8.1.7: Let X ∼ Bin(n, θ), where 0 < θ < 1, and consider testing H0 ∶ θ = 1/2 versus
H1 ∶ θ ≠ 1/2. Suppose we take the test statistic to be T (X) = X and reject H0 if and only
if X ≥ c. This is a legal hypothesis test. However, it is not a good test of these hypotheses
since Pθ(X ≥ c) is smaller for θ < 1/2 than for θ = 1/2. (Note, however, that it would be a
good test of H0 ∶ θ = 1/2 versus H1 ∶ θ > 1/2.) ♢

Example 8.1.8: Let X ∼ Bin(n, θ), where 0 < θ < 1, and consider testing H0 ∶ θ = 1/2 versus
H1 ∶ θ ≠ 1/2. The seemingly perfect “test” that rejects H0 if and only if θ ≠ 1/2 is not a
hypothesis test at all, since it does not specify a rejection region as a subset of the sample
space. (It specifies a rule in terms of the parameter value itself, which of course is impossible
to apply in practice since the parameter value is unknown.) ♢



Lecture 8: Introduction to Hypothesis Testing 4

8.2 Properties of Hypothesis Tests

We now discuss basic properties of hypothesis tests in a probabilistic context. Remember that
hypothesis tests as discussed here are a fundamentally frequentist concept, so probabilities
discussed here are calculated as if the true parameter value is fixed but unknown.

Type I and Type II Errors

Since a perfect hypothesis test is typically impossible, there is some probability that our test
will make the wrong decision.

• A type I error occurs if we reject H0 when it is true, i.e., if θ ∈ Θ0 and X ∈ R.

• A type II error occurs if we fail to reject H0 when it is false, i.e., if θ ∈ Θ1 and X ∉ R.

The following table of possibilities may be helpful:

Truth Data Decision Outcome

H0 ∶ θ ∈ Θ0 X ∉ R Fail to Reject H0 Correct Decision
H0 ∶ θ ∈ Θ0 X ∈ R Reject H0 Type I Error
H1 ∶ θ ∈ Θ1 X ∉ R Fail to Reject H0 Type II Error
H1 ∶ θ ∈ Θ1 X ∈ R Reject H0 Correct Decision

Of course, in reality we would not know whether a decision is correct or is an error. However,
we can still consider the probability of each type of error.

• If θ ∈ Θ0, then the probability of a type I error is Pθ(X ∈ R).

• If θ ∈ Θ1, then the probability of a type II error is Pθ(X ∉ R) = 1 − Pθ(X ∈ R).

The true value of θ is unknown, but these probabilities can be calculated for each possible θ.

Power Function

The power function of a hypothesis test with rejection region R is Power(θ) = Pθ(X ∈ R).

Note: We will write Power(θ) to avoid any notational confusion, but be aware that
this notation is nonstandard. Our textbook uses π(θ) for the power function, while
another textbook uses β(θ). The latter choice is particularly confusing since many
people instead use β to denote the probability of a type II error.

Notice that the power function provides the probabilities of both error types:

Power(θ) = Pθ(X ∈ R) =

⎧⎪⎪
⎨
⎪⎪⎩

Pθ(type I error) if θ ∈ Θ0,

1 − Pθ(type II error) if θ ∈ Θ1.

Note: When people use the word “power” in the context of hypothesis tests, they
usually mean 1 − Pθ(type II error), i.e., they mean the values of Power(θ) for θ ∈ Θ1.
The definition of the power function above is simply the logical extension to θ ∈ Θ0 as
well. Note, however, that it is actually bad if Power(θ) is large for θ ∈ Θ0.
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The “perfect” power function would be Power(θ) = I(θ ∈ Θ1), but we know this is typically
impossible since it corresponds to a “perfect” hypothesis test. More practically, we want
Power(θ) to be small for θ ∈ Θ0 and large for θ ∈ Θ1.

Example 8.2.1: Let X ∼ Bin(6, θ), where 0 < θ < 1 and consider testing H0 ∶ θ ≤ 1/2 versus
H1 ∶ θ > 1/2 using one of the following three hypothesis tests:

• Test 1: Reject H0 if and only if X = 6. The power function of this hypothesis test is
Power1(θ) = θ6.

• Test 2: Reject H0 if and only if X ≥ 5. The power function of this hypothesis test is
Power2(θ) = θ6 + 6θ5(1 − θ) = θ5(6 − 5θ).

• Test 3: Reject H0 if and only if X ≥ 4. The power function of this hypothesis test is
Power3(θ) = θ6 + 6θ5(1 − θ) + 15 θ4(1 − θ)2 = θ4(15 − 24 θ + 10 θ2).

These functions are plotted below.
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From the plot, it is easy to see the following:

• Power1(θ) is very small for all θ ≤ 1/2, which is good. However, Power1(θ) is still fairly
small for most of the θ > 1/2 region as well, which is not good.

• Power3(θ) is fairly large for most of the θ > 1/2 region, which is good. However,
Power3(θ) can be reasonably large even when θ ≤ 1/2, which is not so good.

• Power2(θ) is in between Power1(θ) and Power3(θ).

Another way to think about this plot is as follows:

• Test 1 makes the fewest type I errors, while Test 3 makes the most (for all θ).

• Test 3 makes the fewest type II errors, while Test 1 makes the most (for all θ).

Which of these three tests is the “best” is a purely subjective question, which depends on
the relative importance of type I and type II errors in the problem at hand. ♢
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Error Trade-Off

In Example 8.2.1, all three hypothesis tests used the same test statistic and differed only
in the choice of the critical value. When comparing a collection of tests of this form (i.e.,
when considering what to take as the critical value), there is always a trade-off of type I and
type II errors.

• Increasing c tends to decrease Pθ(X ∈ Rc) = Pθ[T (X) ≥ c] for all θ. This decreases the
probability of a type I error but increases the probability of a type II error.

• Decreasing c tends to increase Pθ(X ∈ Rc) = Pθ[T (X) ≥ c] for all θ. This decreases
the probability of a type II error but increases the probability of a type I error.

However, when comparing hypothesis tests with different test statistics, it may be the case
that one test outperforms the other in terms of both type I error and type II error.

Significance Levels and Sizes

The most common strategy (by far) is to fix some maximum probability of a type I error
and to then try to find a test that has the smallest possible type II error probability subject
to this constraint. This leads to the following terminology.

• A level (or significance level) of a test is any α ∈ R such that Power(θ) ≤ α for all θ ∈ Θ0.
Thus, a level of a test is simply any upper bound for its type I error probability.

• The size of a test is supθ∈Θ0
Power(θ). Thus, the size of a test is the smallest number

that is a level of the test.

When possible, we usually try to report sizes and levels in such a way that the terms are
interchangeable. In other words, when stating a level of the test, we usually state the size if
it is known, even though larger values would also be levels. Similarly, when asked to find a
test with a specified level α, we usually try to find a test with size α, even though tests with
smaller sizes would also have level α.

Example 8.2.2: Consider again the three hypothesis tests of Example 8.2.1. Since the
power function of each test is an increasing function of θ, we have

sup
0<θ≤1/2

Powerj(θ) = Powerj(1/2)

for each j ∈ {1,2,3}. Thus, we have the following:

• The size of Test 1 is supθ∈Θ0
Power(θ) = Power1(1/2) ≈ 0.016.

• The size of Test 2 is supθ∈Θ0
Power(θ) = Power2(1/2) ≈ 0.109.

• The size of Test 3 is supθ∈Θ0
Power(θ) = Power3(1/2) ≈ 0.344.

Note that in each case, the size of the test is also a level of the test. However, any number
greater than the size is also a level of the test. ♢

Thus, fixing a maximum probability of a type I error is equivalent to specifying a level.
In the next section, we will discuss how to actually construct hypothesis tests that have a
specified level (either exactly or approximately).
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8.3 Critical Values and Significance Levels

Suppose we have a test of the hypotheses H0 ∶ θ ∈ Θ0 and H1 ∶ θ ∈ Θ1 that rejects H0 if and
only if T (X) ≥ c for some test statistic T (X) and some critical value c. We often wish to
choose c so that the test will have a specified significance level α (such as α = 0.05). The
test has level α if

Pθ[T (X) ≥ c] ≤ α for all θ ∈ Θ0,

so our goal is to find c such that this is the case.

Distribution of the Test Statistic

To work with Pθ[T (X) ≥ c], we need to know the distribution of the test statistic for every
value of θ (or at least for every θ ∈ Θ0). For this reason, we often choose a test statistic T (X)

that has some “standard” distribution (e.g., standard normal, Student’s t, or chi-squared)
when θ ∈ Θ0.

Example 8.3.1: Let X1, . . . ,Xn ∼ iid N(µ,σ2), where σ2 > 0 is known, and suppose we want
to test H0 ∶ µ = 5 versus H1 ∶ µ ≠ 5. We might take our test statistic to be

T (X) =
∣Xn − 5∣
√
σ2/n

because this test statistic has the same distribution has the absolute value of a N(0,1)
random variable if H0 is true, i.e., if µ = 5. An equivalent test could be obtained by taking
the test statistic to be any monotonically increasing function of the test statistic above, but
such a test statistic might have a more complicated distribution. ♢

Suppose we know the distribution of T (X) for each θ ∈ Θ0. Let F
(T )
θ (t) denote the cdf of

this distribution. Then our test has level α if and only if Pθ[T (X) < c] ≥ 1−α for all θ ∈ Θ0,
which holds if and only if

F
(T )
θ (c) − Pθ[T (X) = c] ≥ 1 − α for all θ ∈ Θ0.

Simple Null Hypothesis

Suppose that our null hypothesis is H0 ∶ θ = θ0 (i.e., suppose that Θ0 = {θ0}). Then our test
has level α if and only if

F
(T )
θ0

(c) − Pθ0[T (X) = c] ≥ 1 − α.

Note that as long as 0 < α ≤ 1, we can always find a value of c to satisfy this inequality since
the left-hand side is a nondecreasing function of c that tends to 0 as c→ −∞ and tends to 1
as c→∞.
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Achieving a Specified Size

Now suppose that we wish to construct a test with size α (and suppose our null hypothesis
is still H0 ∶ θ = θ0. Our test has size α if and only if

F
(T )
θ0

(c) − Pθ0[T (X) = c] = 1 − α.

It may or may not be possible to find such a test.

• If the distribution of T (X) is continuous, then the equation above reduces to

F
(T )
θ0

(c) = 1 − α.

Since T (X) is continuous, its cdf F
(T )
θ0

is continuous, and hence there always exists a
value of c that satisfies this equation (as long as 0 < α < 1).

• If instead the distribution of T (X) is discrete, then the expression

F
(T )
θ0

(c) − Pθ0[T (X) = c]

is no longer continuous as a function of c. Then there may or may not exist a value
of c for which this expression is equal to 1 − α. If no such c exists, then there does
not exist a test with size α based on the test statistic T (X). In this case, we would
typically try to find a test with size less than α (so that it still has level α) but as close
to α as possible.

Example 8.3.2: In Example 8.3.1, we can obtain a test with size α by taking the critical
value c to be the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.
(For α = 0.05, this is c ≈ 1.96. For α = 0.10, this is c ≈ 1.64.) Any larger value of c would also
yield a test with level α, but the size of such a test would be smaller than α. ♢

Composite Null Hypothesis

If the null hypothesis is composite, then it may not as easy to achieve a test with a specified
level or size based on a particular test statistic T (X). However, sometimes we find that

sup
θ∈Θ0

Pθ[T (X) ≥ c] = Pθ⋆[T (X) ≥ c] for all c ∈ R

for some θ⋆ ∈ Θ0 ∪Θ1. (Often θ⋆ is on the boundary of Θ0.) Then we can proceed as if the
set Θ0 were instead simply {θ⋆}, i.e., as if the null hypothesis were simply H0 ∶ θ = θ⋆.

Example 8.3.3: In Example 8.2.1 and Example 8.2.2,

sup
0<θ≤1/2

Pθ(X ≥ c) = Pθ=1/2(X ≥ c)

for all c ∈ R (which was why the sizes of the tests in Example 8.2.2 could be computed by
evaluating the power function at θ = 1/2). Then since the distribution of X is discrete, a
test with size exactly α only exists for certain values of α. For example, there does not exist
a test of this form with size 0.05. If we were asked to find a test with level 0.05, we could
choose Test 1, which rejects H0 if and only if X = 6. This test has size 1/64 ≈ 0.016, so 0.05
is indeed a level of this test. ♢
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8.4 P-Values

The choice of the size or level of a test is typically subjective. This subjectivity can be
somewhat unsatisfying, since two different people can reach opposite conclusions from the
same data and the same test statistic simply because they chose to use different sizes or
levels (and hence different critical values).

Example 8.4.1: In Example 8.3.1 and Example 8.3.2, we considered a test that rejects H0

if and only if the test statistic exceeds the number c such that P (∣Z ∣ ≥ c) = α for a standard
normal random variable Z. Suppose one person uses α = 0.05 and c ≈ 1.96, while another
person uses α = 0.10 and c ≈ 1.64. Now suppose the observed test statistic value is 1.76.
Then the first person will fail to reject H0, while the second person will reject H0. ♢

Thus, if we simply report whether or not we rejected H0 at a certain level α, then we
have somewhat oversimplified the conclusions that can be drawn from the data. A more
informative way to report the conclusions of a hypothesis test is by stating a quantity called
the p-value. Let T (X) be a test statistic, and suppose we observe X = xobs. Then the
p-value of the test for the data xobs is

p(xobs) = sup
θ∈Θ0

Pθ[T (X) ≥ T (xobs)].

For a simple null hypothesis H0 ∶ θ = θ0, the p-value reduces to

p(xobs) = Pθ0[T (X) ≥ T (xobs)].

Thus, the p-value is the probability (under H0) of observing a test statistic value at least as
large as the one that actually was observed. The following theorem shows why the p-value
is useful.

Theorem 8.4.2. Let Rc be a rejection region of the form Rc = {x ∶ T (x) ≥ c}, where c is
the smallest number such that the test associated with Rc has level α. Then xobs ∈ Rc if and
only if p(xobs) ≤ α.

Proof. Suppose that xobs ∈ Rc. Then T (xobs) ≥ c, so

p(xobs) = sup
θ∈Θ0

Pθ[T (X) ≥ T (xobs)] ≤ sup
θ∈Θ0

Pθ[T (X) ≥ c] ≤ α

since the test has level α. Now suppose instead that xobs ∉ Rc. Then T (xobs) < c, so

p(xobs) = sup
θ∈Θ0

Pθ[T (X) ≥ T (xobs)] > α

since otherwise c would not be the smallest number such that the test associated with Rc

has level α.

Thus, Theorem 8.4.2 tells us that an equivalent way to make the final decision in a hypothesis
test is to calculate the p-value p(xobs) for the observed data xobs and reject H0 at level α
if and only if p(xobs) ≤ α. For this reason, the p-value is sometimes called the observed
significance level.

Example 8.4.3: In Example 8.4.1, the observed test statistic value 1.76 has p-value

p(1.76) = P (∣Z ∣ ≥ 1.76) ≈ 0.078,

where Z is a standard normal random variable. ♢
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8.5 Logical Problems with Hypothesis Testing

Frequentist hypothesis testing has been an immensely popular tool of statistical inference
for decades. However, there do exist scenarios in which hypothesis tests exhibit illogical
behavior that some people (especially Bayesians) consider unacceptable.

Example 8.5.1: Suppose we wish to test whether a particular coin is fair or weighted in
favor of heads. Then our hypotheses are H0 ∶ θ = 1/2 and H1 ∶ θ > 1/2, where θ denotes the
probability that the coin yields heads on any given flip. Now suppose we are told that the
following sequence of flips was observed (in order):

heads, heads, heads, heads, heads, tails.

There is some ambiguity here about how we should represent the data as a random variable.

• Perhaps the person flipping the coin decided to flip the coin repeatedly until obtaining
tails. Let X be the number of times heads is observed for such an experiment before
the first tails. Then X ∼ Geometric(θ), and a sensible hypothesis test is to reject H0

if and only if X ≥ c for some c. The observed value of X was X = 5, so the p-value is

p(5) = Pθ=1/2(X ≥ 5) =
1

32
≈ 0.031.

• Perhaps the person flipping the coin instead decided to flip the coin six times and record
the results. Let X be the number of times heads is observed for such an experiment.
Then X ∼ Bin(6, θ), and a sensible hypothesis test is to reject H0 if and only if X ≥ c
for some c. The observed value of X was X = 5, so the p-value is

p(5) = Pθ=1/2(X ≥ 5) =
7

64
≈ 0.109.

Thus, the two different representations yield very different p-values and would therefore lead
to opposite conclusions at both α = 0.05 and α = 0.10. This is troubling since there is no clear
reason to prefer either representation over the other. Essentially, the result of our hypothesis
test depends on knowing what the experimenter would have done under circumstances that
are already known not to have occurred (e.g., whether the experimenter would have stopped
flipping had tails occurred earlier than the sixth flip). ♢

Example 8.5.2: A researcher visits a lab and is allowed to use Machine A to conduct some
measurements. These measurements are then used to perform a hypothesis test and reach
a conclusion. However, the researcher later learns that the lab actually had two similar
machines of this type (Machine A and Machine B), that another researcher also visited the
lab the same day, and that the two machines were assigned to the two researchers randomly.
Also, the machines are not identical: Machine A is a better model and hence provides
more accurate measurements than Machine B. Although these new facts do not change the
researcher’s data or test statistic, they do change the distribution of that test statistic,
which must instead be calculated as if there were probability 1/2 of using Machine A and
probability 1/2 of using Machine B. Thus, the outcome of the hypothesis test can be altered
even after the data has been collected by the mere existence of Machine B and the fact that
it could have been used instead, even though it is already known that it was not used. ♢



Lecture 8: Introduction to Hypothesis Testing 11

Example 8.5.3: Suppose a certain voltage θ is to be measured using a voltmeter for which
the readings are iid N(θ, σ2) random variables, where σ2 > 0 is known. The sample mean is
computed, and a hypothesis test is performed. However, it is later learned that the voltmeter
had a maximum reading of 10 V, and any reading that otherwise would have been greater
than 10 V would have instead been given as 10 V. This fact changes the distribution of the
test statistic and could thus alter the outcome of the hypothesis test. Note that this change
occurs even if all of the readings are less than 10 V, i.e., even if it is already known that the
maximum did not actually matter. ♢

Source of the Issues

These types of examples seem to contradict common sense. The issue arises because the
various probabilistic notions involved in hypothesis testing all involve summing or integrating
over the entire sample space, i.e., over all possible data values that could have been observed.
Thus, the results of the test can be affected by what would have happened for data values
that did not actually occur. Note that this issue applies to frequentist inference in general,
not just hypothesis testing. The same issues can also arise when calculating properties of
estimators such as bias.

Example 8.5.4: In Example 8.5.3, the existence of a maximum reading for the voltmeter
would also affect the bias of the the sample mean. Note that the sample mean is still an
unbiased estimator of the true mean of each reading on the voltmeter. However, the true
mean of each reading on the voltmeter is now slightly less than the true voltage θ. ♢

These examples also highlight the differences between frequentist and Bayesian inference.

• Frequentist inference conditions on parameter values and integrates/sums over all pos-
sible data values that could be observed.

• Bayesian inference conditions on the observed data values and integrates/sums over all
possible values of the parameter.

Thus, the issues that arise in the examples in this section do not arise in Bayesian inference.
Since Bayesian methods are conditional on the data that is actually observed, they are
unaffected by what could have happened for data values that did not actually occur.
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Lecture 9: Likelihood Ratio Tests

Until now, we have considered problems where an appropriate test statistic can be chosen
by common sense. However, we may encounter problems in which it is not clear what
test statistic to use. Our first general method for finding tests is based on the likelihood
function LX(θ) on the sets Θ0 and Θ1.

Likelihood Ratio Statistic

Let Θ = Θ0 ∪Θ1. The likelihood ratio statistic Λ(X) is defined as

Λ(X) =
supθ∈Θ0

LX(θ)

supθ∈ΘLX(θ)
,

and the likelihood ratio test rejects H0 if and only if [Λ(X)]−1 ≥ c, or equivalently, Λ(X) ≤ k,
where c ∈ (0,1) or k = c−1 ∈ (0,1) is chosen to specify the level of the test.

Note: You may wonder why we have written the likelihood ratio statistic Λ(X) in
such a way that we are forced to consider its inverse [Λ(X)]−1 as the actual test
statistic. In particular, it may seem as though we could simply reverse the numerator
and denominator to avoid the problem altogether. Such an alteration to the definition
would indeed work just fine. However, the definition of Λ(X) above is fairly universal,
so it would not be a good idea to stray too far from accepted conventions.

Note from the definition that 0 ≤ Λ(X) ≤ 1.

Simple Null Hypothesis

The likelihood ratio statistic can be written in a more convenient form if the following two
conditions both hold:

• The null hypothesis is simple (H0 ∶ θ = θ0).

• The maximum likelihood estimator θ̂ of θ on the parameter space Θ = Θ0 ∪Θ1 exists.

Then

Λ(X) =
LX(θ0)

LX(θ̂)
.

Example 9.0.1: Let X1, . . . ,Xn ∼ iid Exp(λ), where λ > 0, and consider testing H0 ∶ λ = 2
versus H1 ∶ λ ≠ 2. The likelihood is (for λ > 0)

LX(λ) = λn exp(−λ
n

∑
i=1

Xi).

Earlier in the course, we showed that the maximum likelihood estimator of λ is

λ̂ =
n

∑
n
i=1Xi

= (X )
−1
.
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Then

LX(2) = 2n exp(−2
n

∑
i=1

Xi) = exp[−n(2X − log 2)],

LX(λ̂) = (
n

∑
n
i=1Xi

)

n

exp(−n) = exp[−n(1 + logX )].

Then the likelihood ratio statistic is

Λ(X) =
LX(2)

LX(λ̂)
=

exp[−n(2X − log 2)]

exp[−n(1 + logX )]
= exp[n(1 + log 2 + logX − 2X)]

= [2X exp(1 − 2X )]
n
.

Thus, the likelihood ratio test of these hypotheses rejects H0 if and only if

[2X exp(1 − 2X )]
−n

≥ c,

or equivalently,
X exp(−2X ) ≤ c⋆,

where c⋆ = (2e)−1c−1/n. Unfortunately, it is difficult to proceed any further in closed form.
We need the distribution of the test statistic to specify a level via a critical value or to
calculate a p-value, but both [Λ(X)]−1 itself and the equivalent statistic X exp(−2X) are
difficult to work with. ♢

The situation at the end of Example 9.0.1 is not unusual when deriving the form of likelihood
ratio tests. It is often the case that the distribution of the likelihood ratio statistic (or
of some other equivalent statistic) is difficult to actually obtain. This is partially why
people sometimes prefer other approaches to constructing tests. These other approaches are
typically based on asymptotic properties (including asymptotic properties of the likelihood
ratio test), as we will see later.

Composite Null Hypothesis

More work is required to find the likelihood ratio test when the null hypothesis is composite,
particularly if there are one or more parameters with values unspecified by H0. Finding the
numerator of Λ(X) typically requires first maximizing the likelihood function subject to the
constraints of the null hypothesis, then evaluating the likelihood at this point.

Example 9.0.2: Let X1, . . . ,Xn ∼ iid N(µ,σ2), where µ ∈ R and σ2 > 0 are both unknown,
and consider testing H0 ∶ µ = µ0 versus H1 ∶ µ ≠ µ0 for some specified µ0 ∈ R. The numerator
of the likelihood ratio statistic is supσ2>0LX(µ0, σ2), and evaluating this requires first finding
the value of σ2 that maximizes LX(µ0, σ2), or equivalently, `X(µ0, σ2). Observe that

∂

∂σ2
`X(µ0, σ

2) = −
n

2σ2
+

1

2(σ2)2

n

∑
i=1

(Xi − µ0)
2
= 0 ⇐⇒ σ2 =

1

n

n

∑
i=1

(Xi − µ0)
2
,
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and it is clear that this value is indeed a maximum. Thus, the value of σ2 that maximizes
the expression in the numerator of Λ(X) is

σ̃2
0 =

1

n

n

∑
i=1

(Xi − µ0)
2
.

Now recall that the (unconstrained) maximum likelihood estimators of µ and σ2 are

µ̂ =X, σ̂2 =
1

n

n

∑
i=1

(Xi −X )
2
.

Then the likelihood ratio statistic is

Λ(X) =
(2πσ̃2

0)
−n/2 exp[−(2σ̃2

0)
−1
∑
n
i=1(Xi − µ0)

2
]

(2πσ̂2)−n/2 exp[−(2σ̂2)
−1
∑
n
i=1(Xi − µ̂)

2
]

=
(σ̃2

0)
−n/2 exp(−n/2)

(σ̂2)−n/2 exp(−n/2)
= (

σ̂2

σ̃2
0

)

n/2
=

⎡
⎢
⎢
⎢
⎢
⎣

∑
n
i=1(Xi −X )

2

∑
n
i=1(Xi − µ0)

2

⎤
⎥
⎥
⎥
⎥
⎦

n/2

.

Now observe that

n

∑
i=1

(Xi − µ0)
2
=

n

∑
i=1

(Xi −X +X − µ0)
2
=

n

∑
i=1

(Xi −X )
2
+ n(X − µ0)

2
+ 2(X − µ0)

n

∑
i=1

(Xi −X )

=
n

∑
i=1

(Xi −X )
2
+ n(X − µ0)

2
.

Then

[Λ(X)]
−1
=

⎡
⎢
⎢
⎢
⎢
⎣

∑
n
i=1(Xi −X )

2
+ n(X − µ0)

2

∑
n
i=1(Xi −X )

2

⎤
⎥
⎥
⎥
⎥
⎦

n/2

=

⎡
⎢
⎢
⎢
⎢
⎣

1 +
n(X − µ0)

2

∑
n
i=1(Xi −X )

2

⎤
⎥
⎥
⎥
⎥
⎦

n/2

=

⎡
⎢
⎢
⎢
⎢
⎣

1 +
(X − µ0)

2

σ̂2

⎤
⎥
⎥
⎥
⎥
⎦

n/2

= {1 +
[T (X)]

2

n − 1
}

n/2
,

where

T (X) =
∣X − µ0∣

√
σ̂2/(n − 1)

=
∣X − µ0∣
√
S2/n

,

where S2 = (n − 1)−1∑
n
i=1(Xi −X )2 is the unbiased sample variance. Note that if H0 is true

(i.e., if µ = µ0), then the distribution of T (X) is the distribution of the absolute value of a
Student’s t random variable with n−1 degrees of freedom. Finally, observe that rejecting H0

if and only if [Λ(X)]−1 ≥ c is equivalent to rejecting H0 if and only if T (X) ≥ c⋆, where
c⋆ = [(n−1)(c2/n−1)]1/2. Thus, the likelihood ratio test is simply the conventional t test, and
we can obtain a test with size α by rejecting H0 if and only if T (X) exceeds the appropriate
quantile of a Student’s t distribution with n − 1 degrees of freedom. ♢
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Lecture 10: Tests Based on Asymptotic Properties

A hypothesis test is only useful if we can determine a way to set its significance level, at
least approximately. This task requires knowledge of the approximate distribution of the
test statistic, which may be easier to find in the asymptotic limit. If we can choose a test
statistic for which the asymptotic distribution is known, then we can use it to construct a
hypothesis test.

10.1 Wald Tests

Recall that under certain regularity conditions, the asymptotic distribution of the maximum
likelihood estimator is normal. More specifically, if θ̂n is the MLE of θ, then

√
n(θ̂n − θ)→D N[0,

1

I1(θ)
],

where I1(θ) denotes the Fisher information per observation. Then it follows that
√
nI1(θ) (θ̂n − θ) =

√
I(θ) (θ̂n − θ)→D N(0,1),

i.e., the quantity [I(θ)]1/2 (θ̂n − θ) has an approximate N(0,1) distribution if n is large.
Also note that under suitable regularity conditions, I1(θ) is a continuous function of θ, and
θ̂n →P θ. Then I1(θ̂n)→P I1(θ), and so

√
I(θ̂n) (θ̂n − θ) =

√
I1(θ̂n)

√
I1(θ)

√
nI1(θ) (θ̂n − θ)→D N(0,1)

by Slutsky’s theorem. Thus, the quantity [I(θ̂n)]1/2 (θ̂n−θ) also has an approximate N(0,1)
distribution if n is large.

Definition of Wald Tests

The asymptotic results above suggest two similar hypothesis testing methods that should be
useful for large n. One test of H0 ∶ θ = θ0 versus H1 ∶ θ ≠ θ0 with approximate size α is to
reject H0 if and only if

√
I(θ0) ∣θ̂n − θ0∣ ≥ c, (10.1.1)

where c is the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.
Another test of the same hypotheses with approximate size α is to reject H0 if and only if

√
I(θ̂n) ∣θ̂n − θ0∣ ≥ c, (10.1.2)

where c is the same as above.

Note: Recall that if Z ∼ N(0,1), then W = Z2 ∼ χ2
1. Thus, it is equivalent to state

these tests as rejecting H0 if and only if the squares of their respective test statistics are
at least k, where k is the number such that P (W ≥ k) = α for a χ2

1 random variable W .
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The two tests with rejection regions defined by (10.1.1) and (10.1.2) are called Wald tests.
When people simply refer to “the Wald test” without further clarification, they usually mean
the test associated with (10.1.2), which evaluates the Fisher information at the MLE.

Note: The motivation for the use of (10.1.2) instead of (10.1.1) will be become clear
later when we discuss confidence intervals based on the Wald test.

Example 10.1.1: Let X1, . . . ,Xn ∼ iid Exp(λ), where λ > 0, and consider testing H0 ∶ λ = 2
versus H1 ∶ λ ≠ 2. Earlier in the course, we showed that the maximum likelihood estimator
of λ is

λ̂n =
n

∑ni=1Xi

= (Xn)
−1
.

Next, note that

`′′X(λ) = ∂2

∂λ2
(n logλ − λ

n

∑
i=1

Xi) = − n
λ2

so I(λ) = −Eλ[`′′X(λ)] = n/λ2. Then the Wald test statistic defined by (10.1.1) is

√
I(2) ∣λ̂n − 2∣ =

√
n

2
∣λ̂n − 2∣ =

√
n ∣ λ̂n

2
− 1∣ =

√
n ∣1 − 1

2Xn

∣,

while the Wald test statistic defined by (10.1.2) is

√
I(λ̂n) ∣λ̂n − 2∣ =

√
n

λ̂n
∣λ̂n − 2∣ =

√
n ∣1 − 2

λ̂n
∣ =

√
n ∣1 − 2Xn∣.

Each test rejects H0 if and only if its test statistic is at least as large as some critical value c.
(To obtain size α = 0.05, we would take c ≈ 1.96.) ♢

Observed Information

In practice, it may be the case that the maximum likelihood estimator θ̂n cannot be expressed
in closed form but can be found numerically. In such situations, a closed-form expression for
the Fisher information may be unavailable as well. For this reason, the Fisher information
in the Wald test is often replaced by the quantity

JX(θ̂n) = −`′′X(θ̂n),

which is called the observed information. If the MLE can be found numerically, then it is
typically straightforward to compute the observed information numerically as well.

Note: Actually, it can be argued that it is better to use the observed information
than the Fisher information in the Wald test, regardless of whether or not the Fisher
information can be written in closed form.

Reference
Efron, B., and Hinkley, D. (1978). Assessing the accuracy of the maximum likelihood
estimator: Observed versus expected Fisher information. Biometrika, 65 457–482.



Lecture 10: Tests Based on Asymptotic Properties 3

The following result justifies the use of the observed information.

Lemma 10.1.2. Let θ̂n be the maximum likelihood estimator of θ based on the sample Xn.
Then under the regularity conditions of Section 6.4 of Lecture 6,

1

n
JXn(θ̂n)→P I1(θ).

Proof. The proof is beyond the scope of this course. Note that correctly proving the result
requires dealing with both the random function JXn and the random point θ̂n at which the
function JXn is evaluated.

A Wald test in which the Fisher information has been replaced by the observed information
would typically still be called a Wald test.

10.2 Score Test

Recall that under certain regularity conditions, the asymptotic distribution of the score
function `′X(θ) itself is normal. More specifically,

√
n[ 1

n
`′Xn

(θ) − 0] = 1√
n
`′Xn

(θ)→D N[0, I1(θ)].

Then it follows that

1√
nI1(θ)

`′Xn
(θ) = 1√

I(θ)
`′Xn

(θ)→D N(0,1),

i.e., the quantity [I(θ)]−1/2 `′X(θ) has an approximate N(0,1) distribution if n is large.

Definition of Score Test

The asymptotic result above suggests a hypothesis testing method that should be useful for
large n. Specifically, a test of H0 ∶ θ = θ0 versus H1 ∶ θ ≠ θ0 with approximate size α is to
reject H0 if and only if

1√
I(θ0)

∣`′X(θ0)∣ ≥ c, (10.2.1)

where c is the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.

Note: Recall that if Z ∼ N(0,1), then W = Z2 ∼ χ2
1. Thus, it is equivalent to state this

test as rejecting H0 if and only if the square of the test statistic above is at least k,
where k is the number such that P (W ≥ k) = α for a χ2

1 random variable W .

A test with rejection region defined by (10.2.1) is called a score test.
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Example 10.2.1: Let X1, . . . ,Xn ∼ iid Exp(λ), where λ > 0, and consider testing H0 ∶ λ = 2
versus H1 ∶ λ ≠ 2. The score function is

`′X(λ) = ∂

∂λ
(n logλ − λ

n

∑
i=1

Xi) = n
λ
−

n

∑
i=1

Xi = n(
1

λ
−Xn),

where Xn = n−1∑ni=1Xi. Next, note from Example 10.1.1 that I(λ) = n/λ2. Then the score
test statistic is

1√
I(2)

∣`′X(2)∣ = 1√
n/4

∣n(1

2
−Xn)∣ =

√
n ∣1 − 2Xn∣,

and the score test rejects H0 if and only if this test statistic is at least as large as some
critical value c. (To obtain size α = 0.05, we would take c ≈ 1.96.) Note that in this particular
example, the score test coincides with one of the Wald tests from Example 10.1.1. ♢
Unlike a Wald test, a score test does not involve the maximum likelihood estimator of the
parameter of interest. Thus, even when no closed-form solution for the MLE exists, it may
still be possible to express a score test in closed form.

Example 10.2.2: Let X1, . . . ,Xn be iid continuous random variables with pdf

fθ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ

(θ + x)2
if x ≥ 0,

0 if x < 0,

where θ > 0 is unknown. The score function is

`′X(θ) = ∂

∂θ
[n log θ − 2

n

∑
i=1

log(θ +Xi)] =
n

θ
−

n

∑
i=1

2

θ +Xi

.

Note that no closed-form expression for the maximum likelihood estimator exists since solving
the equation

n

θ
=

n

∑
i=1

2

θ +Xi

for θ symbolically is impossible if n is large. However, consider a score test of H0 ∶ θ = θ0

versus H1 ∶ θ ≠ θ0 for some specified θ0 > 0. Observe that

`′′X(θ) = ∂

∂θ
`′X(θ) = − n

θ2
+

n

∑
i=1

2

(θ +Xi)2
,

and it can be shown by simple calculus (which we omit for brevity) that

I(θ) = −Eθ[`′′X(θ)] = n

θ2
− 2n

3θ2
= n

3θ2
.

Then the score test statistic is

1√
I(θ0)

∣`′X(θ0)∣ =
1√

n/(3θ2
0)

∣n
θ 0

−
n

∑
i=1

2

θ0 +Xi

∣ =
√

3n ∣1 − 1

n

n

∑
i=1

2θ0

θ0 +Xi

∣ =
√

3

n
∣
n

∑
i=1

Xi − θ0

Xi + θ0

∣,

and the score test rejects H0 if and only if this test statistic is at least as large as some
critical value c. (To obtain size α = 0.05, we would take c ≈ 1.96.) Thus, we can express a
score test for this example in closed form despite the fact that no closed-form solution exists
for the maximum likelihood estimator. ♢
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10.3 Asymptotics of Likelihood Ratio Tests

If we have already chosen to resort to asymptotic results to determine the distribution of
a test statistic, it is logical to ask whether there exist such results for the likelihood ratio
statistic itself. The following theorem provides precisely such a result.

Theorem 10.3.1. Let Λ(Xn) be the likelihood ratio statistic for testing H0 ∶ θ = θ0 versus
H1 ∶ θ ≠ θ0 based on the sample Xn. Then under the regularity conditions of Section 6.4 of
Lecture 6,

−2 log Λ(Xn)→D χ2
1 if θ = θ0,

where χ2
1 denotes a chi-squared random variable with one degree of freedom.

Proof. Let θ̂n denote the MLE of θ. A Taylor expansion of `Xn(θ0) around `Xn(θ̂n) yields

`Xn(θ0) = `Xn(θ̂n) + `′Xn
(θ̂n) (θ0 − θ̂n) +

1

2
`′′Xn

(θ̂n) (θ0 − θ̂n)
2 +⋯

= `Xn(θ̂n) +
1

2
`′′Xn

(θ̂n) (θ0 − θ̂n)
2 +⋯

since `′Xn
(θ̂n) = 0. (Also note that the purpose of the regularity conditions is to allow us to

ignore the higher-order terms.) Now observe that

−2 log Λ(Xn) = −2 log[LXn(θ0)
LXn(θ̂n)

] = −2[`Xn(θ0) − `Xn(θ̂n)] ≈ −`′′Xn
(θ̂n) (θ0 − θ̂n)

2

by the Taylor expansion. Then

−2 log Λ(Xn) ≈ −`′′Xn
(θ̂n) (θ0 − θ̂n)

2 = JXn(θ̂n) (θ̂n − θ0)
2

=
n−1JXn(θ̂n)
I1(θ0)

[
√
nI1(θ0) (θ̂n − θ0)]

2
.

Finally, n−1JXn(θ̂n)/I1(θ0) →P 1 by Lemma 10.1.2, and [nI1(θ0)]1/2(θ̂n − θ0) →D N(0,1) by
Theorem 6.2.4 of Lecture 6. Then the result follows from Slutsky’s theorem and the fact
that the square of a N(0,1) random variable is a χ2

1 random variable.

If n is large, Theorem 10.3.1 shows how to find a critical value that yields a likelihood ratio
test with approximate size α. Specifically, a test of H0 ∶ θ = θ0 versus H1 ∶ θ ≠ θ0 with
approximate size α is to reject H0 if and only if

−2 log Λ(X) ≥ C

where C is the number such that P (W ≥ C) = α for a χ2
1 random variable W , or equivalently

the number such that P (∣Z ∣ ≥ C1/2) = α for a N(0,1) random variable Z.

Note: This test is equivalent to taking the original critical value c for the likelihood
ratio test as defined in Lecture 9 to be c = exp(C/2).
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Example 10.3.2: Let X1, . . . ,Xn ∼ iid Exp(λ), where λ > 0, and consider testing H0 ∶ λ = 2
versus H1 ∶ λ ≠ 2. From Example 9.0.1 of Lecture 9, the likelihood ratio statistic is

Λ(X) = [2Xn exp(1 − 2Xn)]
n
.

Note that
−2 log Λ(X) = −2n[1 + log(2Xn) − 2Xn].

To obtain a likelihood ratio test with approximate size α, we should reject H0 if and only if
this test statistic is at least as large as some critical value C. (To obtain size α = 0.05, we
would take C1/2 ≈ 1.96, and hence C ≈ 3.84.) ♢

Extension to Multiple Parameters

Theorem 10.3.1 applies when there is a single unknown parameter θ. However, the result
can be extended to the case of multiple unknown parameters. Note that the definition of
the likelihood ratio statistic Λ(Xn) is unchanged even in the presence of multiple unknown
parameters. Under certain regularity conditions, −2 log Λ(Xn) converges in distribution to
a chi-squared random variable with ν degrees of freedom if H0 is true, where ν denotes the
number of parameters constrained by H0 that are not constrained by the full parameter
space. The details of such results are beyond the scope of this course.
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Lecture 11: Confidence Intervals

Earlier in the course, we discussed methods to produce a single estimate of an unknown
parameter θ. An alternative approach is to report a set of values of θ, usually an interval,
that we believe contains θ, which we call a confidence set or confidence interval. Confidence
sets/intervals are an inherently frequentist concept. (There exist Bayesian methods that
serve a similar purpose, but they are typically referred to by a different name.)

11.1 Definition and Relationship to Hypothesis Testing

A confidence set is defined by a function C that maps a point x in the sample space to
some subset of the parameter space. The confidence set C(X) is the result of applying this
function to the data X.

Confidence Level

A confidence level of a confidence set C(X) for a parameter θ is a number γ ∈ [0,1] such
that Pθ[θ ∈ C(X)] ≥ γ for all θ in the parameter space Θ.

• Confidence levels are typically expressed as the percentage 100γ%, and we typically
refer to a confidence set for θ with confidence level γ as a 100γ% confidence set (e.g.,
a 95% confidence set for θ when γ = 0.95).

• Note that the random part of the event θ ∈ C(X) is C(X), not θ. For this reason, it is
good to think and speak in terms of whether or not the confidence set C(X) contains
the parameter θ (rather than whether or not the parameter falls in the confidence set).

Relationship to Hypothesis Testing

The following theorem provides a method by which confidence intervals can be constructed.

Theorem 11.1.1. For every θ0 ∈ Θ, let Rθ0 be the rejection region of a hypothesis test
of H0 ∶ θ = θ0 versus H1 ∶ θ ≠ θ0 with level α. Then C(X) = {θ0 ∈ Θ ∶ X ∉ Rθ0} is a
100(1 − α)% confidence set.

Proof. For every θ ∈ Θ, Pθ[θ ∈ C(X)] = Pθ(X ∉ Rθ) = 1 − Pθ(X ∈ Rθ) ≥ 1 − α.

Thus, Theorem 11.1.1 essentially states that confidence intervals are, in some sense, inverted
hypothesis tests. A confidence interval with confidence level 1 −α is simply all the values of
the parameter that would not be rejected as the null hypothesis value in a test with level α.

Example 11.1.2: Let X1, . . . ,Xn ∼ iid N(µ,σ2), where µ ∈ R is unknown and σ2 > 0 is
known. A test of the hypotheses H0 ∶ µ = µ0 versus H1 ∶ µ ≠ µ0 with size α is to reject H0 if
and only if

∣X − µ0∣
√
σ2/n

≥ c,
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where c is the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.
Then we would not reject H0 if and only if

∣X − µ0∣
√
σ2/n

< c ⇐⇒ X − c

√
σ2

n
< µ0 <X + c

√
σ2

n
.

Thus,

⎛

⎝
X − c

√
σ2

n
, X + c

√
σ2

n

⎞

⎠

is a 100(1 − α)% confidence interval for µ. ♢

Multiple Unknown Parameters

Although Theorem 11.1.1 is written in terms of a single unknown parameter θ, the same
result essentially still holds in the case of multiple parameters, provided we make a slight
notational adjustment. Let θ be the parameter for which we wish to construct a confidence
interval, and let ψ denote the other unknown parameters. Let the parameter space be Θ×Ψ,
where θ ∈ Θ and ψ ∈ Ψ. Then Theorem 11.1.1 still holds, i.e., C(X) = {θ0 ∈ Θ ∶ X ∉ Rθ0}

is still a 100(1 − α)% confidence set for θ. The only difference is that each null hypothesis
H0 ∶ θ = θ0 is now a composite null hypothesis.

Example 11.1.3: Let X1, . . . ,Xn ∼ iid N(µ,σ2), where µ ∈ R is unknown and σ2 > 0 is
unknown. A test of the hypotheses H0 ∶ µ = µ0 versus H1 ∶ µ ≠ µ0 with size α is to reject H0

if and only if
∣X − µ0∣
√
S2/n

≥ c,

where c⋆ is the number such that P (∣T ∣ ≥ c⋆) = α for a random variable T that has Student’s
t distribution with n − 1 degrees of freedom. Then

⎛

⎝
X − c⋆

√
S2

n
, X + c⋆

√
S2

n

⎞

⎠

is a 100(1 − α)% confidence interval for µ. ♢

Note that the presence of additional unknown parameters merely complicates the process of
finding a level-α test of H0 ∶ θ = θ0, which is now composite. The process of inverting the test
to find the confidence set is the same regardless of whether other parameters are unknown.

11.2 Asymptotic Confidence Intervals

If the sample size is large, asymptotic results can be used to approximate sizes of hypothesis
tests. Confidence sets based on such asymptotically motivated tests may be called asymptotic
confidence intervals. The stated confidence level of such sets is only approximate, with the
quality of the approximation improving as the sample size increases.
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Wald Intervals

The simplest asymptotic confidence intervals are those based on Wald tests. Recall that a
Wald test of H0 ∶ θ = θ0 versus H1 ∶ θ ≠ θ0 rejects H0 if and only if

√

I(θ̂n) ∣θ̂n − θ0∣ ≥ c,

where c is the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.
Then we would not reject H0 if and only if

√

I(θ̂n) ∣θ̂n − θ0∣ < c ⇐⇒ θ̂n −
c

√

I(θ̂n)
< θ0 < θ̂n +

c
√

I(θ̂n)
.

Thus,

⎛
⎜
⎝
θ̂n −

c
√

I(θ̂n)
, θ̂n +

c
√

I(θ̂n)

⎞
⎟
⎠

is a 100(1 − α)% confidence interval for θ.

Note: The use of the Wald test for the creation of confidence intervals is one reason
why the form of the test involving I(θ̂n) is more commonly used than the form of the
test involving I(θ0). If I(θ0) is used instead, then θ0 now appears in two places in the
test statistic, and inverting the test is not as straightforward.

The usual näıve confidence intervals of the form

(estimator) ± (normal quantile)(standard error of estimator)

are essentially just Wald intervals.

Example 11.2.1: Let X ∼ Bin(n, θ), where 0 < θ < 1 is unknown. The Fisher information
is I(θ) = n/[θ(1−θ)], and the maximum likelihood estimator of θ is θ̂n =X/n (provided that
0 <X < n). Then a 100(1 − α)% confidence interval for θ is

⎛
⎜
⎜
⎝

θ̂n − c

¿
Á
ÁÀ θ̂n(1 − θ̂n)

n
, θ̂n + c

¿
Á
ÁÀ θ̂n(1 − θ̂n)

n

⎞
⎟
⎟
⎠

,

where c is the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.
Note that the formula above yields (0,0) if X = 0 and (1,1) if X = n, but the MLE θ̂n does
not exist in these cases anyway. ♢

Score Intervals

An alternative approach is to base asymptotic confidence intervals on score tests. Recall
that a score test of H0 ∶ θ = θ0 rejects H0 if and only if

1
√
I(θ0)

∣`′X(θ0)∣ ≥ c,
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where c is the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.
Then we would not reject H0 if and only if

1
√
I(θ0)

∣`′X(θ0)∣ < c.

Rewriting this inequality in terms of θ0 is not always straightforward since θ0 appears in two
places. Typically either approximations are used or solutions are computed numerically.

Example 11.2.2: Let X ∼ Bin(n, θ), where 0 < θ < 1 is unknown. The score function is

`′X(θ) =
X

θ
−
n −X

1 − θ
=
X − nθ

θ(1 − θ)
,

and the Fisher information is I(θ) = n/[θ(1 − θ)]. Then the score interval for θ consists of
those values of θ such that

√
θ(1 − θ)

n
∣
X − nθ

θ(1 − θ)
∣ =

∣X − nθ∣
√
nθ(1 − θ)

< c,

where c is the number such that P (∣Z ∣ ≥ c) = α for a standard normal random variable Z.
This inequality holds if and only if

(X − nθ)
2
< cnθ(1 − θ) ⇐⇒ (n2 + cn)θ2 − 2n(X + c)θ +X2 < 0.

By the quadratic formula, this inequality holds if and only if

2n(X + c) −
√

4n2(X + c)2 − 4(n2 + cn)X2

2(n2 + cn)
< θ <

2n(X + c) +
√

4n2(X + c)2 − 4(n2 + cn)X2

2(n2 + cn)
.

The confidence interval implied by the above inequality is a bit of a mess. However, for the
special case of a 95% confidence level, the interval above is closely approximated by

⎛
⎜
⎜
⎝

θ̃n − 1.96

¿
Á
ÁÀ θ̃n(1 − θ̃n)

n
, θ̃n + 1.96

¿
Á
ÁÀ θ̃n(1 − θ̃n)

n

⎞
⎟
⎟
⎠

,

where θ̃n = (X + 2)/(n + 4). Thus, the score interval can be approximated by computing
the simpler Wald interval with θ̂n replaced by θ̃n. Note that θ̃n may be interpreted as the
“sample proportion” with an additional two “imaginary” successes and an additional two
“imaginary” failures added to the “real” sample. ♢

Likelihood Ratio Intervals

Asymptotic confidence intervals based on the likelihood ratio test can also be constructed.
However, the form of the likelihood ratio statistic is often more complicated than that of
the Wald or score test statistics, so such likelihood ratio intervals often must be computed
numerically.



STATS 200 (Stanford University, Winter 2014) 1

Homework 1: Due at 11 a.m. on January 17

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. DeGroot & Schervish 3.2.6.

2. DeGroot & Schervish 3.2.9.

3. DeGroot & Schervish 3.5.4.

4. DeGroot & Schervish 3.8.8.

5. DeGroot & Schervish 4.1.6. Also, find Var(1/X).

6. DeGroot & Schervish 4.2.4. Also, find the variance of the rectangle. (The continuous
uniform distribution on [a, b] has mean (a + b)/2 and variance (b − a)2/12. You may use
these facts without proof.)

7. DeGroot & Schervish 4.6.18.

8. Suppose we construct a random variable X as follows. Let Y ∼ Bin(1, θ), where 0 < θ < 1.
If Y = 1, then X = 0. If instead Y = 0, then X has a Poisson(λ) distribution. Then
the marginal distribution of X (not conditional on Y ) is called a zero-inflated Poisson
distribution. (The mean and variance of the Poisson distribution are listed in Section 5.4
of DeGroot & Schervish. You may use these facts without proof.)

(a) Calculate E(X) and Var(X), the marginal mean and variance of X.

(b) Find the conditional pmf of Y given X.

9. The exponential distribution and the gamma distribution are related by the following
property: LetX1, . . . ,Xn be iid Exp(β) random variables with pdf given in Definition 5.7.3
of DeGroot & Schervish. Then Yn = ∑

n
i=1Xi has a Gamma(α,β) distribution with pdf

given in Definition 5.7.2 of DeGroot & Schervish. (You may use this fact without proof.)

(a) Find sequences of constants kn and mn such that kn(Yn−mn)→D N(0,1) as n→∞.

(b) Find sequences of constants k⋆n and m⋆

n such that k⋆n(Y
−1
n −m⋆

n)→D N(0,1) as n→∞.
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Solutions to Homework 1

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. DeGroot & Schervish 3.2.6.

⊳ Solution: First, note that

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤X < 1/2,

1 if 1/2 <X < 3/2,

2 if 3/2 <X < 5/2,

3 if 5/2 <X < 7/2,

4 if 7/2 <X ≤ 4.

The value of Y is not clear if X ∈ {1/2,3/2,5/2,7/2}, but P (X ∈ {1/2,3/2,5/2,7/2}) = 0,
so this ambiguity is irrelevant. Now note that the cdf of X is

F (x) = P (X ≤ x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if x < 0,

x2/16 if 0 ≤ x ≤ 4,

1 if x > 4,

and thus the pmf of Y is

p(0) = P (Y = 0) = P (0 ≤X < 1/2) = F (1/2) − F (0) = 1/64 − 0 = 1/64,

p(1) = P (Y = 1) = P (1/2 <X < 3/2) = F (3/2) − F (1/2) = 9/64 − 1/64 = 1/8,

p(2) = P (Y = 2) = P (3/2 <X < 5/2) = F (5/2) − F (3/2) = 25/64 − 9/64 = 1/4,

p(3) = P (Y = 3) = P (5/2 <X < 7/2) = F (7/2) − F (5/2) = 49/64 − 25/64 = 3/8,

p(4) = P (Y = 4) = P (7/2 <X < 4) = F (4) − F (7/2) = 1 − 49/64 = 15/64,

with p(y) = 0 for all y ∉ {0,1,2,3,4}. ⊲

2. DeGroot & Schervish 3.2.9.

⊳ Solution: Clearly we must have c ≥ 0 since a pdf must be nonnegative. Note that
c = 0 yields f(x) = 0 for all x ∈ R, and ∫R 0 dx = 0 ≠ 1. Thus, we must have c > 0. However,
for any c > 0,

∫

∞

−∞

f(x) dx = ∫
∞

0

c

1 + x
dx = c log(1 +∞) − c log(1 + 0) =∞ ≠ 1.

Thus, there does not exist any c ∈ R such that f(x) is a pdf. ⊲
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3. DeGroot & Schervish 3.5.4.

⊳ Solution to (a): The marginal pdf of X is

f (X)(x) = ∫
R
f(x, y) dy = ∫

1−x2

0

15

4
x2 dy =

15

4
x2(1 − x2)

if −1 ≤ x ≤ 1, with f (X)(x) = 0 otherwise. To find the marginal pdf of Y , note that
{(x, y) ∈ R2 ∶ 0 ≤ y ≤ 1 − x2} can be written as {(x, y) ∈ R2 ∶ ∣x∣ ≤

√
1 − y, 0 ≤ y ≤ 1}. Then

f (Y )(y) = ∫
R
f(x, y) dx = ∫

√

1−y

−

√

1−y

15

4
x2 dx =

5

2
(1 − y)3/2,

if 0 ≤ y ≤ 1, with f (Y )(y) = 0 otherwise. ⊲

⊳ Solution to (b): No, X and Y are not independent since f (X)(x) f (Y )(y) ≠ f(x, y).
⊲

4. DeGroot & Schervish 3.8.8.

⊳ Solution: The cdf of X is

F (X)(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if x ≤ 0,

1 − exp(−x) if x > 0.

Then the cdf of Y is F (Y )(y) = P (Y ≤ y) = P (X ≤ y2) = F (X)(y2) = 1 − exp(−y2) if
y > 0, with F (Y )(y) = 0 if y ≤ 0. We then differentiate to find that the pdf of Y is
f (Y )(y) = 2y exp(−y2) if y > 0, with f (Y )(y) = 0 if y ≤ 0. ⊲

5. DeGroot & Schervish 4.1.6. Also, find Var(1/X).

⊳ Solution: First, E(1/X) = ∫R(1/x) f(x) dx = ∫
1

0 (1/x)2x dx = 2. To find Var(1/X),

we first find E[(1/X)2] = ∫R(1/x)
2 f(x) dx = ∫

1

0 (1/x)2 2x dx = 2 ∫
1

0 logx dx = 2 ⋅ ∞ = ∞.
Thus, Var(X) = E[(1/X)2] − [E(1/X)]2 =∞− 22 =∞. ⊲

6. DeGroot & Schervish 4.2.4. Also, find the variance of the rectangle. (The continuous
uniform distribution on [a, b] has mean (a + b)/2 and variance (b − a)2/12. You may use
these facts without proof.)

⊳ Solution: The area of the rectangle is XY , and E(XY ) = E(X)E(Y ) = (1/2)(7) =
7/2 since X and Y are independent. To find Var(XY ), we first find

E[(XY )2] = E(X2Y 2) = E(X2)E(Y 2) = {[E(X)]2 +Var(X)}{[E(Y )]2 +Var(Y )}

= [(1/2)2 + 1/12][72 + 4/3]

= (1/3)(151/3) = 151/9.

Then Var(XY ) = E[(XY )2] − [E(XY )]2 = 151/9 − (7/2)2 = 163/36. ⊲
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7. DeGroot & Schervish 4.6.18.

⊳ Solution: First, we compute the required expectations:

E(X) =∬
R2
xf(x, y)dxdy = ∫

1

0
∫

1

0
(x2 + xy)dxdy = ∫

1

0
(

1

3
+
y

2
)dy =

1

3
+

1

4
=

7

12
,

E(Y ) =∬
R2
y f(x, y)dxdy = ∫

1

0
∫

1

0
(y2 + xy)dy dx = ∫

1

0
(

1

3
+
x

2
)dx =

1

3
+

1

4
=

7

12
,

E(XY ) =∬
R2
xy f(x, y)dxdy = ∫

1

0
∫

1

0
(x2y + xy2)dxdy = ∫

1

0
(
y

3
+
y2

2
)dy =

1

6
+

1

6
=

1

3
.

Then Cov(X,Y ) = E(XY ) −E(X)E(Y ) = (1/3) − (7/12)2 = −1/144. ⊲

8. Suppose we construct a random variable X as follows. Let Y ∼ Bin(1, θ), where 0 < θ < 1.
If Y = 1, then X = 0. If instead Y = 0, then X has a Poisson(λ) distribution. Then
the marginal distribution of X (not conditional on Y ) is called a zero-inflated Poisson
distribution. (The mean and variance of the Poisson distribution are listed in Section 5.4
of DeGroot & Schervish. You may use these facts without proof.)

(a) Calculate E(X) and Var(X), the marginal mean and variance of X.

(b) Find the conditional pmf of Y given X.

⊳ Solution to (a): By the law of total expectation,

E(X) = E[E(X ∣ Y )] =
1

∑
y=0

E(X ∣ Y = y) P (Y = y)

= E(X ∣ Y = 0) P (Y = 0) +E(X ∣ Y = 1) P (Y = 1)

= λ(1 − θ) + 0 ⋅ θ = λ(1 − θ).

By the law of total variance,

Var(X) = E[Var(X ∣ Y )] +Var[E(X ∣ Y )]

= E[Var(X ∣ Y )] +E{[E(X ∣ Y )]
2
} − {E[E(X ∣ Y )]}

2

=
1

∑
y=0

Var(X ∣ Y = y) P (Y = y) +
1

∑
y=0

[E(X ∣ Y = y)]2 P (Y = y) − [E(X)]2

= Var(X ∣ Y = 0) P (Y = 0) +Var(X ∣ Y = 1) P (Y = 1)

+ [E(X ∣ Y = 0)]2 P (Y = 0) + [E(X ∣ Y = 1)]2 P (Y = 1) − [E(X)]2

= λ(1 − θ) + 0 ⋅ θ + λ2(1 − θ) + 0 ⋅ θ − [λ(1 − θ)]2 = λ(1 − θ)(1 + λθ).

An alternative approach is to calculate the marginal pmf of X and use it to find the
expectation and variance directly. ⊲
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⊳ Solution to (b): First,

p(Y ∣X)(0 ∣ 0) = P (Y = 0 ∣X = 0) =
P (X = 0, Y = 0)

P (X = 0)

=
P (X = 0, Y = 0)

P (X = 0, Y = 0) + P (X = 0, Y = 1)

=
P (X = 0 ∣ Y = 0) P (Y = 0)

P (X = 0 ∣ Y = 0) P (Y = 0) + P (X = 0 ∣ Y = 1) P (Y = 1)

=
exp(−λ)(1 − θ)

exp(−λ)(1 − θ) + 1 ⋅ θ
=

(1 − θ) exp(−λ)

(1 − θ) exp(−λ) + θ
.

It follows that

p(Y ∣X)(1 ∣ 0) = 1 −
(1 − θ) exp(−λ)

(1 − θ) exp(−λ) + θ
=

θ

(1 − θ) exp(−λ) + θ
.

Next, note that p(X,Y )(x,1) = P (X = x, Y = 1) = 0 for any x > 0. It follows immediately
that p(Y ∣X)(1 ∣ x) = P (Y = 1 ∣ X = x) = 0 for every x > 0, and hence p(Y ∣X)(0 ∣ x) = 1 for
every x > 0. ⊲

9. The exponential distribution and the gamma distribution are related by the following
property: LetX1, . . . ,Xn be iid Exp(β) random variables with pdf given in Definition 5.7.3
of DeGroot & Schervish. Then Yn = ∑

n
i=1Xi has a Gamma(n,β) distribution with pdf

given in Definition 5.7.2 of DeGroot & Schervish. (You may use this fact without proof.)

(a) Find sequences of constants kn and mn such that kn(Yn−mn)→D N(0,1) as n→∞.

(b) Find sequences of constants k⋆n and m⋆

n such that k⋆n(Y
−1
n −m⋆

n)→D N(0,1) as n→∞.

⊳ Solution to (a): Note that E(X1) = 1/β and Var(X1) = 1/β2. Then by the central
limit theorem,

√
n(

1

n
Yn −

1

β
) =

√
n(

1

n

n

∑
i=1

Xi −
1

β
)→D N(0,

1

β2
)

as n→∞, which we may rewrite as

β
√
n
(Yn −

n

β
)→D N(0,1)

as n→∞. Thus, kn = β/
√
n and mn = n/β. ⊲

⊳ Solution to (b): Let g(y) = y−1, so that g′(y) = −y−2 and [g′(y)]2 = y−4. Next, note
that (1/β2)[g′(1/β)]2 = (1/β2)(1/β)−4 = β2. Then by the delta method,

√
n[g(

1

n
Yn) − g(

1

β
)] =

√
n(nY −1

n − β) = n3/2(Y −1
n −

β

n
)→D N(0, β2),

as n→∞, which may be rewritten as

n3/2

β
(Y −1

n −
β

n
)→D N(0,1)

as n→∞. Thus, k⋆n = n
3/2/β and m⋆

n = β/n. ⊲
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Homework 2: Due at 11 a.m. on January 29

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. DeGroot & Schervish 8.2.10.

2. Let T have a Student’s t distribution with ν degrees of freedom, where ν > 2. It can be
shown that E(T ) and Var(T ) both exist. (You do not need to show this fact.)

(a) Show that E(T ) = 0. Hint: Look at the pdf of a Student’s t distribution. You should
not need to do any calculus.

(b) Use the fact below (which you do not need to prove) to show that Var(T ) = ν/(ν−2).

Fact: If W ∼ Gamma(α,β), then E(1/W ) = β/(α − 1).

Hint: Recall how a Student’s t random variable is constructed from a normal random
variable and a chi-squared random variable. You should not need to do any calculus.

3. DeGroot & Schervish 7.7.5.

4. DeGroot & Schervish 7.7.9.

5. DeGroot & Schervish 7.8.2.

6. Let α and β be unknown parameters. Show that the Beta(α,β) distribution and the
Gamma(α,β) both belong to the exponential family.

7. DeGroot & Schervish 7.5.8.

8. Let X1, . . . ,Xn ∼ iid N(0, σ2), where σ2 > 0 is unknown. Find the maximum likelihood
estimator of σ2.

9. Let Xn ∼ Bin(n, θ), where θ is unknown.

(a) Show that the maximum likelihood estimator of θ is θ̂n =Xn/n.

(b) Show that
√
n(θ̂n − θ) converges in distribution as n → ∞, and find the limiting

distribution. Hint: Consider Xn as a sum of independent random variables.

(c) Let ξ = arcsin(
√
θ ). Find (or state) the maximum likelihood estimator ξ̂n of ξ.

(d) Show that
√
n(ξ̂n − ξ) converges in distribution as n → ∞, and find the limiting

distribution. What do you notice about the variance of the limiting distribution?
Note: The derivative of the arcsin function is d

dt arcsin t = (1 − t2)−1/2.

10. Let Y be a single observation of a Geometric(θ) random variable with pmf pθ(y) = (1−θ)yθ
for all integers y ≥ 0 (and zero otherwise). Note: Under this setup, Y counts the number
of failures before the first success occurs in a sequence of iid trials.

(a) Find the maximum likelihood estimator of θ.

(b) Explain the connection between the estimator in part (a) of this problem and the
maximum likelihood estimator in part (a) of problem 9. Hint: Recall the note about
successes and failures.
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Solutions to Homework 2

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. DeGroot & Schervish 8.2.10.

⊳ Solution: Let U1 =X1+X2+X3 and U2 =X4+X5+X6. Since X1, . . . ,X6 ∼ iidN(0,1),
we have U1, U2 ∼ iidN(0,3). Then U1/

√
3, U2/

√
3 ∼ iidN(0,1), so

Y

3
= (

U1
√

3
)

2

+ (
U2
√

3
)

2

∼ χ2
2.

Thus, c = 1/3. ⊲

2. Let T have a Student’s t distribution with ν degrees of freedom, where ν > 2. It can be
shown that E(T ) and Var(T ) both exist. (You do not need to show this fact.)

(a) Show that E(T ) = 0. Hint: Look at the pdf of a Student’s t distribution. You should
not need to do any calculus.

(b) Use the fact below (which you do not need to prove) to show that Var(T ) = ν/(ν−2).

Fact: If W ∼ Gamma(α,β), then E(1/W ) = β/(α − 1).

Hint: Recall how a Student’s t random variable is constructed from a normal random
variable and a chi-squared random variable. You should not need to do any calculus.

⊳ Solution to (a): The pdf of the Student’s t distribution is symmetric, so since E(T )

exists we must have E(T ) = 0. ⊲

⊳ Solution to (b): Note that Var(T ) = E(T 2)−[E(T )]2 = E(T 2). Now let Z and U be
independent random variables with distributions Z ∼ N(0,1) and U ∼ χ2

ν , or equivalently,
U ∼ Gamma(ν/2, 1/2). Then

Var(T ) = E(T 2) = E

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

Z
√
U/ν

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

= ν E(
Z2

U
) = ν E(Z2)E(

1

U
) = ν[

1/2

(ν/2) − 1
] =

ν

ν − 2
,

noting that E(Z2) = 1. ⊲

3. DeGroot & Schervish 7.7.5.

⊳ Solution: Let X1, . . . ,Xn ∼ iid Gamma(α,β), where α is known and β > 0 is unknown.
Then the joint pdf of X = (X1, . . . ,Xn) is

fβ(x) =
n

∏
i=1

βα

Γ(α)
xα−1
i exp(−βxi) I(0,∞)(xi)

= βnα exp(−nβXn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(Xn, β)

[Γ(α)]
−n

(
n

∏
i=1

xi)

α−1

I(0,∞)(
n

min
i=1

xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(x)

.

Thus, Xn is sufficient for β by the factorization theorem. ⊲
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4. DeGroot & Schervish 7.7.9.

⊳ Solution: Let X1, . . . ,Xn ∼ iid Unif(a, b), where a is known and b > a is unknown.
Then the joint pdf of X = (X1, . . . ,Xn) is

fb(x) =
n

∏
i=1

1

b − a
I(a,b)(xi) = (b − a)−n I(−∞,b)(max

1≤i≤n
xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(max1≤i≤n xi, b)

I(a,∞)(min
1≤i≤n

xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(x)

.

Thus, max1≤i≤nXi is sufficient for b by the factorization theorem. ⊲

5. DeGroot & Schervish 7.8.2.

⊳ Solution: Let X1, . . . ,Xn ∼ iid Beta(α,β), where α > 0 and β > 0 are both unknown.
Then the joint pdf of X = (X1, . . . ,Xn) is

fα,β(x) =
n

∏
i=1

Γ(α + β)

Γ(α)Γ(β)
xα−1
i (1 − xi)

β−1 I(0,1)(xi)

= [
Γ(α + β)

Γ(α)Γ(β)
]

n

(
n

∏
i=1

xi)

α−1

[
n

∏
i=1

(1 − xi)]

β−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g[(t1,t2),(α,β)]

I(0,1)(min
1≤i≤n

xi) I(0,1)(max
1≤i≤n

xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(x)

,

where t1 = ∏
n
i=1 xi and t2 = ∏

n
i=1(1 − xi). Thus, (T1, T2) = [∏

n
i=1Xi, ∏

n
i=1(1 − Xi)] is

sufficient for (α,β). ⊲

6. Let α and β be unknown parameters. Show that the Beta(α,β) distribution and the
Gamma(α,β) both belong to the exponential family.

⊳ Solution: First, the beta distribution has pdf

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 I(0,1)(x)

= exp[α logx + β log(1 − x) + log Γ(α + β) − log Γ(α) − log Γ(β)]
1

x(1 − x)
I(0,1)(x).

Then

k = 2, η1(α,β) = α, r1(x) = x, η2(α,β) = β, r2(x) = 1 − x,

ψ(α,β) = log Γ(α) + log Γ(β) − log Γ(α + β), h(x) =
1

x(1 − x)
I(0,1)(x),

so this distribution belongs to the exponential family. The gamma distribution has pdf

f(x) =
βα

Γ(α)
xα−1 exp(−βx) I(0,∞)(x) = exp[α logx − βx − log Γ(α) + α logβ]

1

x
I(0,∞)(x).

Then

k = 2, η1(α,β) = α, r1(x) = logx, η2(α,β) = β, r2(x) = −x,

ψ(α,β) = log Γ(α) − α logβ, h(x) =
1

x
I(0,1)(x),

so this distribution also belongs to the exponential family. ⊲
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7. DeGroot & Schervish 7.5.8.

⊳ Solution to (a): Let m = min1≤i≤n xi. The likelihood is

Lx(θ) =
n

∏
i=1

exp(θ − xi) I(−∞,xi)(θ) = exp(−
n

∑
i=1

xi) exp(nθ) I(−∞,m)(θ).

Observe that the likelihood Lx(θ) is strictly positive and strictly increasing for θ < m,
while Lx(θ) = 0 for all θ ≥ m. Now note that limθ↑mLx(θ) = 1. However, evaluating the
likelihood at m itself yields Lx(m) = 0. Thus, there is no value of θ that maximizes Lx(θ),
and so the maximum likelihood estimator does not exist. ⊲

⊳ Solution to (b): We could instead simply take the pdf to be

fθ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

exp(θ − x) if x ≥ θ,

0 if x < θ.

Then Lx(m) = 1, so the likelihood attains its maximum at θ = m. Thus, the maximum
likelihood estimator of θ is θ̂ =m = min1≤i≤nXi. ⊲

8. Let X1, . . . ,Xn ∼ iidN(0, σ2), where σ2 > 0 is unknown. Find the maximum likelihood
estimator of σ2.

⊳ Solution: The likelihood and log-likelihood are

Lx(σ
2) =

n

∏
i=1

1
√

2πσ2
exp(−

x2
i

2σ2
) = (2πσ2)−n/2 exp(−

1

2σ2

n

∑
i=1

x2
i),

`x(σ
2) = logLx(σ

2) = −
n

2
log(2π) −

n

2
logσ2 −

1

2σ2

n

∑
i=1

x2
i .

Then

∂

∂(σ2)
`x(σ

2) = −
n

2σ2
+

1

2(σ2)2

n

∑
i=1

x2
i = 0 ⇐⇒ σ2 =

1

n

n

∑
i=1

x2
i ,

and it can be seen that this critical point is indeed the maximizer, i.e.,

`x(
1

n

n

∑
i=1

x2
i) = max

σ2>0
`x(σ

2) for all x ∈ Rp.

Thus, the maximum likelihood estimator of σ2 is σ̂2 = n−1∑
n
i=1X

2
i . ⊲
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9. Let Xn ∼ Bin(n, θ), where θ is unknown.

(a) Show that the maximum likelihood estimator of θ is θ̂n =Xn/n.

(b) Show that
√
n(θ̂n − θ) converges in distribution as n → ∞, and find the limiting

distribution. Hint: Consider Xn as a sum of independent random variables.

(c) Let ξ = arcsin(
√
θ ). Find (or state) the maximum likelihood estimator ξ̂n of ξ.

(d) Show that
√
n(ξ̂n − ξ) converges in distribution as n → ∞, and find the limiting

distribution. What do you notice about the variance of the limiting distribution?
Note: The derivative of the arcsin function is d

dt arcsin t = (1 − t2)−1/2.

⊳ Solution to (a): The likelihood is Lx(θ) = (
n
x
)θx(1−θ)n−x, and hence the log-likelihood

is `x(θ) = log (
n
x
) + x log θ + (n − x) log(1 − θ). Then

∂

∂θ
`x(θ) =

x

θ
−
n − x

1 − θ
= 0 ⇐⇒ θ =

x

n
,

and it can be seen that this critical point is indeed the maximizer, i.e.,

`x(
x

n
) = max

0≤θ≤1
`x(θ) for all x ∈ {0, . . . , n}.

Thus, the maximum likelihood estimator of θ is θ̂n =Xn/n. ⊲

⊳ Solution to (b): Write Xn as Xn = ∑
n
i=1Zi, where Z1, . . . , Zn ∼ iid Bin(1, θ), and note

that E(Z1) = θ and Var(Z1) = θ(1 − θ). Then by the central limit theorem, as n → ∞,
√
n(θ̂n − θ) =

√
n(n−1∑

n
i=1Zi − θ)→D N[0, θ(1 − θ)]. ⊲

⊳ Solution to (c): The maximum likelihood estimator of ξ = arcsin(
√
θ ) is simply

ξ̂n = arcsin(
√
θ̂n ) = arcsin(

√
Xn/n ). ⊲

⊳ Solution to (d): Let g(t) = arcsin(
√
t ), which has derivative

g′(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√

1 − (
√
t )2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(
1

2
√
t
) =

1

2
√
t(1 − t)

.

Now note that [g′(θ)]2 = 1/[4θ(1−θ)]. Then
√
n(ξ̂n−ξ) =

√
n[g(θ̂n)−g(θ)]→D N(0, 1/4)

by the delta method. Notice that the variance of the limiting distribution is the same for
all values of θ (or ξ), unlike our result in part (b). ⊲
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10. Let Y be a single observation of a Geometric(θ) random variable with pmf pθ(y) = (1−θ)yθ
for all integers y ≥ 0 (and zero otherwise), where 0 < θ ≤ 1. Note: Under this setup, Y
counts the number of failures before the first success occurs in a sequence of iid trials.

(a) Find the maximum likelihood estimator of θ.

(b) Explain the connection between the estimator in part (a) of this problem and the
maximum likelihood estimator in part (a) of problem 9. Hint: Recall the note about
successes and failures.

⊳ Solution to (a): The likelihood is Ly(θ) = (1 − θ)yθ, and hence the log-likelihood is
`y(θ) = logLy(θ) = y log(1 − θ) + log θ. Then

∂

∂θ
`y(θ) =

1

θ
−

y

1 − θ
= 0 ⇐⇒ θ =

1

y + 1
,

and it can be seen that this critical point is indeed the maximizer, i.e.,

`y(
1

y + 1
) = max

0<θ≤1
`y(θ) for all integers y ≥ 0.

Thus, the maximum likelihood estimator of θ is θ̂ = 1/(Y + 1). ⊲

⊳ Solution to (b): In part (a) of problem 9, the maximum likelihood estimator was the
number of successes divided by the total number of trials. Now consider the geometric
random variable Y in this problem. Recall that Y counts the number of failures before
the first success occurs. Then once this first success occurs, the number of successes that
have occurred is 1, while the total number of trials that have occurred is Y + 1. Thus,
the maximum likelihood estimator can again be interpreted as the number of successes
divided by the total number of trials. ⊲
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Homework 3: Due at 11 a.m. on February 14

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. DeGroot & Schervish 7.3.12. Also find the posterior mean and the posterior mode.

2. DeGroot & Schervish 7.4.6.

3. Let X1, . . . ,Xn be iid random variables with a continuous uniform distribution on [0, θ],
where θ > 0 is unknown. Suppose we assign to θ the prior pdf

π(θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q kq

θq+1
if θ ≥ k,

0 if θ < k,

where k > 0 and q > 0 are constants. Note: This is called the Pareto(k, q) distribution,
and its mean is kq/(q−1) if q > 1 (and ∞ if q ≤ 1). You may use these facts without proof.

(a) Find the posterior distribution of θ.

(b) Find (or simply state) the posterior mean of θ.

(c) Find (or simply state) the posterior mode. Then explain why choosing to report the
posterior mode as our Bayes estimator here would partially defeat the purpose of
using a Bayes estimator.

4. Let X1, . . . ,Xn be iid random variables with pdf or pmf of the form

exp[η(θ) r(x) − ψ(θ)]h(x),
where θ ∈ Θ is unknown. Suppose we assign to θ the prior pdf

π(θ) = c exp[−aψ(θ) + b η(θ)],
where the constants a, b, and c satisfy c−1 = ∫Θ exp[−aψ(θ) + b η(θ)] dθ < ∞. Show that
the computation of the posterior distribution of θ essentially reduces to “updating” the
values of the constants a, b, and/or c from the prior distribution.

5. Let X ∼ Bin(n, θ), where 0 < θ < 1 and θ is unknown. Let ξ = 1/θ. Prove that no unbiased
estimator of ξ exists. Hint: Here, an estimator is fully specified by the value it takes for
each x ∈ {0, . . . , n}. Let ξ̃ be any arbitrary estimator of ξ, and let tx be the value that ξ̃
takes when X = x. Then look at the form of Eθ(ξ̃) when ξ̃ is specified in this way.

6. Let X be drawn from a discrete uniform distribution on {1, . . . ,N}, where N ≥ 1 is an
unknown positive integer.

(a) Show (as mentioned in class) that the maximum likelihood estimator of N is N̂ =X.

(b) Find the bias, variance, and mean squared error of N̂ . (The discrete uniform distri-
bution on {1, . . . ,N} has mean (N + 1)/2 and variance (N2 − 1)/12. You may use
these facts without proof.)

(c) Find an estimator Ñ that is an unbiased estimator of N .

(d) Find MSEN(Ñ), and show that MSEN(Ñ) > MSEN(N̂) for all N ≥ 1.
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Solutions to Homework 3

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. DeGroot & Schervish 7.3.12. Also find the posterior mean and the posterior mode.

⊳ Solution: Before substituting in the specific values given in the problem, we first find
the general form of the posterior for an exponential likelihood and gamma prior. Based
on what the problem tells us, we have X1, . . . ,Xn ∼ iid Exp(θ) and a Gamma(a, b) prior
for θ. Ignoring constants, the posterior of θ is (for θ > 0)

π(θ ∣ x)∝ [
n

∏
i=1

θ exp(−θxi)] θ
a−1 exp(−bθ) = θa+n−1 exp[−(b +

n

∑
i=1

xi)θ],

which we recognize as an unnormalized Gamma(a+n, b+∑
n
i=1 xi) pdf. Thus, the general

form of the posterior is θ ∣ x ∼ Gamma(a + n, b + ∑
n
i=1 xi). We now substitute in the

specific values given in the problem. Clearly we have n = 20, and since the problem tells
us that x = 3.8, it follows that ∑

n
i=1 xi = nx = 76. To determine the values of a and b,

note that the mean of a Gamma(a, b) distribution is a/b, while the standard deviation is√
a/b2 =

√
a /b. The problem tells us that a/b = 0.2 and

√
a /b = 1, from which it follows

that a = 0.04 and b = 0.2. Then the posterior distribution for this observed data set is
θ ∣ x ∼ Gamma(20.04, 76.2). The posterior mean is then E(θ ∣ x) = 20.04/76.2 ≈ 0.263,
while the posterior mode is arg maxθ>0 π(θ ∣ x) = (20.04 − 1)/76.2 ≈ 0.250. ⊲

2. DeGroot & Schervish 7.4.6.

⊳ Solution: Let X1, . . . ,Xn ∼ iid Poisson(θ) conditional on θ, and let the prior on θ be
Gamma(a, b), where we also define µo = a/b. Ignoring constants, the posterior distribution
of θ is (for θ > 0)

π(θ ∣ x)∝ [
n

∏
i=1

θxi exp(−θ)] θa−1 exp(−bθ)∝ θ∑
n
i=1 xi+a−1 exp[−θ(n + b)],

which we recognize as an unnormalized Gamma(a+∑
n
i=1 xi, b+n) pdf. Thus, the posterior

is θ ∣ x ∼ Gamma(a +∑
n
i=1 xi, b + n), and the posterior mean of θ is (when written as a

random variable)

E(θ ∣ X) =
a +∑

n
i=1Xi

b + n
= (

n

n + b
)Xn + (

b

n + b
)
a

b
= γnXn + (1 − γn)µ0,

where γn = n/(b + n). Clearly γn = 1/(1 + n−1b)→ 1 as n→∞. ⊲
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3. Let X1, . . . ,Xn be iid random variables with a continuous uniform distribution on [0, θ],
where θ > 0 is unknown. Suppose we assign to θ the prior pdf

π(θ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

q kq

θq+1
if θ ≥ k,

0 if θ < k,

where k > 0 and q > 0 are constants. Note: This is called the Pareto(k, q) distribution,
and its mean is kq/(q−1) if q > 1 (and ∞ if q ≤ 1). You may use these facts without proof.

(a) Find the posterior distribution of θ.

⊳ Solution to (a): Ignoring constants, the posterior distribution of θ is

π(θ ∣ x)∝ [
n

∏
i=1

1

θ
I[0,θ](xi)]

1

θq+1
I[k,∞)(θ) =

1

θq+n+1
I[max{k,x1,...,xn},∞)(θ),

which we recognize as an unnormalized Pareto(max{k, x1, . . . , xn}, q+n) pdf. Thus,
θ ∣ x ∼ Pareto(max{k, x1, . . . , xn}, q + n). ⊲

(b) Find (or simply state) the posterior mean of θ.

⊳ Solution to (b): Based on the facts provided in the note, the posterior mean is
E(θ ∣ x) = max{k, x1, . . . , xn}(q + n)/(q + n − 1). ⊲

(c) Find (or simply state) the posterior mode. Then explain why choosing to report the
posterior mode as our Bayes estimator here would partially defeat the purpose of
using a Bayes estimator.

⊳ Solution to (c): It can be seen from the form of the Pareto(k, q) pdf that the
mode of a Pareto(k, q) distribution is simply k. Then the posterior mode is simply
max{k, x1, . . . , xn}. As long as at least one observation is larger than k, the posterior
mode is exactly the same as the MLE. ⊲



Solutions to Homework 3 3

4. Let X1, . . . ,Xn be iid random variables with pdf or pmf of the form

exp[η(θ) r(x) − ψ(θ)]h(x),

where θ ∈ Θ is unknown. Suppose we assign to θ the prior pdf

π(θ) = c exp[−aψ(θ) + b η(θ)],

where the constants a, b, and c satisfy c−1 = ∫Θ exp[−aψ(θ) + b η(θ)] dθ < ∞. Show that
the computation of the posterior distribution of θ essentially reduces to “updating” the
values of the constants a, b, and/or c from the prior distribution.

⊳ Solution: Ignoring constants, the posterior is

π(θ ∣ x)∝ {
n

∏
i=1

exp[η(θ) r(xi) − ψ(θ)]} exp[−aψ(θ) + b η(θ)]

∝ exp{−(a + n)ψ(θ) + [b +
n

∑
i=1

r(xi)] η(θ)},

so the properly normalized posterior is

π(θ ∣ x) =

exp{−(a + n)ψ(θ) + [b +
n

∑
i=1

r(xi)] η(θ)}

∫
Θ

exp{−(a + n)ψ(θ) + [b +
n

∑
i=1

r(xi)] η(θ)} dθ

.

Thus, the posterior as the same form as the prior, with a replaced by a+n, with b replaced
by b +∑

n
i=1 r(xi), and with c replaced by the inverse of the denominator above. ⊲

5. Let X ∼ Bin(n, θ), where 0 < θ < 1 and θ is unknown. Let ξ = 1/θ. Prove that no unbiased
estimator of ξ exists. Hint: Here, an estimator is fully specified by the value it takes for
each x ∈ {0, . . . , n}. Let ξ̃ be any arbitrary estimator of ξ, and let tx be the value that ξ̃
takes when X = x. Then look at the form of Eθ(ξ̃) when ξ̃ is specified in this way.

⊳ Solution: Let ξ̃ be any estimator of ξ. Using the hint, we can write Eθ(ξ̃ ) as

Eθ(ξ̃ ) =
n

∑
x=0

txPθ(X = x) =
n

∑
x=0

tx (
n

x
)θx(1 − θ)n−x,

which is some polynomial function of θ. For ξ̃ to be unbiased, this polynomial function
of θ must equal 1/θ for all θ ∈ (0,1). However, this is impossible. (If it is not immediately
clear why this is impossible, note that as θ ↓ 0, the polynomial function tends to whatever
finite value it takes at zero, whereas 1/θ tends to ∞.) ⊲
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6. Let X be drawn from a discrete uniform distribution on {1, . . . ,N}, where N ≥ 1 is an
unknown positive integer.

(a) Show (as mentioned in class) that the maximum likelihood estimator of N is N̂ =X.

⊳ Solution to (a): The likelihood is

Lx(N) =
1

N
I{1,...,N}(x) =

1

N
I{x,x+1,...}(N) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if N < x,

1

N
if N ≥ x.

Then clearly Lx(N) is maximized at N = x, so the MLE of N is N̂ =X. ⊲

(b) Find the bias, variance, and mean squared error of N̂ . (The discrete uniform distri-
bution on {1, . . . ,N} has mean (N + 1)/2 and variance (N2 − 1)/12. You may use
these facts without proof.)

⊳ Solution to (b): We have

BiasN(N̂) = EN(N̂) −N = EN(X) −N =
N + 1

2
−N = −(

N − 1

2
),

VarN(N̂) = Var(X) =
N2 − 1

12
,

MSEN(N̂) = [BiasN(N̂)]
2
+VarN(N̂)

= [−(
N − 1

2
)]

2

+
N2 − 1

12
=
N − 1

12
[3(N − 1) + (N + 1)] =

(N − 1)(2N − 1)

6
,

using the facts provided. ⊲

(c) Find an estimator Ñ that is an unbiased estimator of N .

⊳ Solution to (c): Let Ñ = 2X − 1. Then EN(Ñ) = 2EN(X) − 1 = N by the facts
provided, so Ñ is an unbiased estimator of N . ⊲

(d) Find MSEN(Ñ), and show that MSEN(Ñ) > MSEN(N̂) for all N ≥ 1.

The question contained a mistake, as the two MSEs are actually equal if N = 1.

⊳ Solution to (d): Since BiasN(Ñ) = 0, we have

MSEN(Ñ) = VarN(Ñ) = VarN(2X − 1) = 4 Var(X) =
N2 − 1

3
,

again using the facts provided. Then simply observe that

MSEN(Ñ) =
(N − 1)(N + 1)

3
=

(N − 1)(2N + 2)

6
>

(N − 1)(2N − 1)

6
= MSEN(N̂)

for all N > 1. (Note that if N = 1, then both estimators have an MSE of zero.) ⊲
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Homework 4: Due at 11 a.m. on February 21

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. Let X ∼ Bin(1, θ) (a single observation). Observe that any estimator θ̃ = θ̃(X) of θ can
be expressed as

θ̃(X) =
⎧⎪⎪⎨⎪⎪⎩

t0 if X = 0,

t1 if X = 1,

where t0, t1 ∈ R.

(a) Find a formula for the mean squared error of θ̃, and show that it can be written as
a quadratic function of θ with coefficients that depend on t0 and/or t1.

(b) Compute the weighted average MSE of θ̃ using the weighting function w(θ) = 1.
(Write your answer in terms of t0 and t1 only.)

(c) Find the estimator that minimizes this weighted average MSE by finding the values
of t0 and t1 that minimize your answer to part (b).

(d) Now show how this particular “optimal” estimator can instead be found without
doing any of the calculations from parts (a), (b), or (c).

2. DeGroot & Schervish 8.8.2.

3. DeGroot & Schervish 8.8.4.

4. DeGroot & Schervish 8.8.6.

5. DeGroot & Schervish 8.8.14.

6. Let X1, . . . ,Xn ∼ iid Bin(1, θ), where 0 < θ < 1 and θ is unknown.

(a) Find the Fisher information I(θ) for the sample.

(b) We have shown before that the maximum likelihood estimator of θ is θ̂ = n−1∑ni=1Xi.
Use your answer to part (a) to state the asymptotic distribution of θ̂. Does it agree
with the result obtained by using the central limit theorem?

7. Let X1, . . . ,Xn ∼ iid Pareto(k,α), where the Pareto(k,α) distribution has pdf

f(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αkα

xα+1
if x ≥ k,

0 if x < k.

Suppose that k > 0 is known and α > 0 is unknown.

(a) Find the maximum likelihood estimator α̂ of α.

(b) Find the asymptotic distribution of α̂.

8. Again let X1, . . . ,Xn ∼ iid Pareto(k,α), but now suppose that k > 0 is unknown and
α > 0 is known. Compute Ek[`′X(k)], and explain why your answer does not contradict
Lemma 6.2.1 from the notes.
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Homework 4: Due at 11 a.m. on February 21

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. Let X ∼ Bin(1, θ) (a single observation). Observe that any estimator θ̃ = θ̃(X) of θ can
be expressed as

θ̃(X) =
⎧⎪⎪⎨⎪⎪⎩

t0 if X = 0,

t1 if X = 1,

where t0, t1 ∈ R.

(a) Find a formula for the mean squared error of θ̃, and show that it can be written as
a quadratic function of θ with coefficients that depend on t0 and/or t1.

⊳ Solution to (a): The mean squared error of θ̃ is

MSEθ(θ̃) = Eθ[(θ̃ − θ)2] = (t0 − θ)2(1 − θ) + (t1 − θ)2θ

= (t20 − 2t0θ + θ2) − (t20θ − 2t0θ
2 + θ3) + (t21θ − 2t1θ

2 + θ3)
= t20 + (−2t0 − t20 + t21)θ + (1 + 2t0 − 2t1)θ2,

which is a quadratic function of θ with coefficients that depend on t0 and/or t1. ⊲

(b) Compute the weighted average MSE of θ̃ using the weighting function w(θ) = 1.
(Write your answer in terms of t0 and t1 only.)

⊳ Solution to (b): The weighted average MSE of θ̃ with w(θ) = 1 is

∫
1

0
MSEθ(θ̃) w(θ) dθ = ∫

1

0
[t20 + (−2t0 − t20 + t21)θ + (1 + 2t0 − 2t1)θ2]dθ

= t20 − t0 −
1

2
t20 +

1

2
t21 +

1

3
+ 2

3
t0 −

2

3
t1

= 1

2
t20 −

1

3
t0 +

1

2
t21 −

2

3
t1 +

1

3
,

which is a function of t0 and t1 only. ⊲

(c) Find the estimator that minimizes this weighted average MSE by finding the values
of t0 and t1 that minimize your answer to part (b).

⊳ Solution to (c): Setting the partial derivatives of our answer from part (b)
equal to zero yields the equations

t0 −
1

3
= 0, t1 −

2

3
= 0,

so the the weighted average MSE is minimized by taking t0 = 1/3 and t1 = 2/3. ⊲
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(d) Now show how this particular “optimal” estimator can instead be found without
doing any of the calculations from parts (a), (b), or (c).

⊳ Solution to (d): By Theorem 5.2.6 from the notes, the weighted average MSE
with weighting function w(θ) is minimized by the posterior mean that results from
a Bayesian analysis with prior π(θ) = w(θ). Now note that w(θ) = 1 for 0 ≤ θ ≤ 1
is the pdf of a Beta(1,1) distribution. Then we can simply reuse the result from
Examples 4.2.1 and 4.3.1 of the notes, in which we found that the posterior mean of
θ for a Bin(n, θ) likelihood and a Beta(a, b) prior on θ is

θ̂B(X) = E(θ ∣X) = x + a
n + a + b

= x + 1

3
=
⎧⎪⎪⎨⎪⎪⎩

1/3 if X = 0,

2/3 if X = 1,

noting that n = a = b = 1. ⊲

2. DeGroot & Schervish 8.8.2.

⊳ Solution: The second derivative of the log-likelihood is

`′′X(p) = ∂2

∂p2
[log p +X log(1 − p)] = ∂

∂p
(1

p
− X

1 − p
) = − 1

p2
− X

(1 − p)2
.

Then the Fisher information is

I(p) = −Ep[`′′X(p)] = −Ep[−
1

p2
− X

(1 − p)2
] = 1

p2
+ 1

(1 − p)2
(1 − p

p
) = 1

p2(1 − p)
,

noting that I(p) = I1(p) since there is only one observation. ⊲

3. DeGroot & Schervish 8.8.4.

⊳ Solution: The second derivative of the log-likelihood is

`′′X(σ) = ∂2

∂σ2
[−1

2
log(2π) − logσ − X2

2σ2
] = ∂

∂σ
(− 1

σ
+ X

2

σ3
) = 1

σ2
− 3X2

σ4
.

Then the Fisher information is

I(σ) = −Eσ[`′′X(σ)] = −Eσ(
1

σ2
− 3X2

σ4
) = − 1

σ2
+ 3

σ2
= 2

σ2
,

noting that I(σ) = I1(σ) since there is only one observation. ⊲
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4. DeGroot & Schervish 8.8.6.

⊳ Solution: Let `
(0)
X (θ) denote the likelihood in terms of θ, and let `

(1)
X (µ) denote the

likelihood in terms of µ. Both likelihoods are simply equal to the pdf or pmf of X, which
has the same form regardless of what the parameter is considered to be. Then

`
(1)
X (µ) = `(0)X (θ) = `(0)X [ψ(µ)].

It follows that

∂

∂µ
`
(1)
X (µ) = ∂

∂µ
`
(0)
X [ψ(µ)].

Let [`(1)X ]′(µ) denote the left-hand side of the equation above. To compute the right-hand
side, recall that the chain rule for taking derivatives states that

d

dt
g[h(t)] = g′[h(t)] h′(t).

Applying this result with g = `(0)X and h = ψ yields

∂

∂µ
`
(0)
X [ψ(µ)] = [`(0)X ]

′

[ψ(µ)] ψ′(µ),

and therefore

[`(1)X ]
′

(µ) = ψ′(µ) [`(0)X ]
′

[ψ(µ)].

Now let E
(0)
θ denote expectation taken with a particular value of θ, and let E

(1)
µ denote

expectation taken with a particular value of µ, so that

E
(0)

ψ(µ)
[g(X)] = E(1)µ [g(X)]

for any random quantity g(X). Then the Fisher information in terms of θ is

I0(θ) = E(0)θ ({[`(0)X ]
′

(θ)}
2

).

Finally, the Fisher information in terms of µ is

I1(µ) = E(1)µ ({[`(1)X ]
′

(µ)}
2

) = E(1)µ ({ψ′(µ) [`(0)X ]
′

[ψ(µ)]}
2

)

= [ψ′(µ)]2 E(1)µ ({[`(0)X ]
′

[ψ(µ)]}
2

)

= [ψ′(µ)]2 E(0)
ψ(µ)

({[`(0)X ]
′

[ψ(µ)]}
2

) = [ψ′(µ)]2 I0[ψ(µ)],

where the final equality is obtained by observing that the expectation in the next-to-last
expression is precisely the result of evaluating the function I0 at the point ψ(µ). ⊲



Homework 4: Due at 11 a.m. on February 21 4

5. DeGroot & Schervish 8.8.14.

⊳ Solution: We begin by finding I1(α), the Fisher information per observation. The
second derivative of the log-likelihood of a single observation is

`′′X1
(α) = ∂2

∂α2
[α logβ − log Γ(α) + (α − 1) logX1 − βX1] =

∂

∂α
[logβ − Γ′(α)

Γ(α)
+ logX1]

= −Γ(α)Γ′′(α) − [Γ′(α)]2

[Γ(α)]2
,

and thus

I1(α) = −Eα[`′′X1
(α)] = −Eα{−

Γ(α)Γ′′(α) − [Γ′(α)]2

[Γ(α)]2
} = Γ(α)Γ′′(α) − [Γ′(α)]2

[Γ(α)]2
.

The desired result then follows immediately by Theorem 6.2.4 of the notes. ⊲

6. Let X1, . . . ,Xn ∼ iid Bin(1, θ), where 0 < θ < 1 and θ is unknown.

(a) Find the Fisher information I(θ) for the sample.

⊳ Solution to (a): We begin by finding I1(θ), the Fisher information per obser-
vation. The second derivative of the log-likelihood of a single observation is

`′′X1
(θ) = ∂2

∂θ2
[X log θ + (1 −X) log(1 − θ)] = ∂

∂θ
(X
θ
− 1 −X

1 − θ
) = −X

θ2
− 1 −X

(1 − θ)2
,

and thus

I1(θ) = −Eθ[`′′X1
(θ)] = −Eθ[−

X

θ2
− 1 −X

(1 − θ)2
] = 1

θ
+ 1

1 − θ
= 1

θ(1 − θ)
.

Then the Fisher information for the entire sample is I(θ) = nI1(θ) = n/[θ(1−θ)]. ⊲

(b) We have shown before that the maximum likelihood estimator of θ is θ̂ = n−1∑ni=1Xi.
Use your answer to part (a) to state the asymptotic distribution of θ̂. Does it agree
with the result obtained by using the central limit theorem?

⊳ Solution to (b): By Theorem 6.2.4 of the notes,

√
n(θ̂n − θ)→D N[0, θ(1 − θ)],

which agrees with the result obtained by using the central limit theorem. ⊲
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7. Let X1, . . . ,Xn ∼ iid Pareto(k,α), where the Pareto(k,α) distribution has pdf

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αkα

xα+1
if x ≥ k,

0 if x < k.

Suppose that k > 0 is known and α > 0 is unknown.

(a) Find the maximum likelihood estimator α̂ of α.

⊳ Solution to (a): The derivative of the log-likelihood (i.e., the score function) is

`′X(α) = ∂

∂α
[n logα + nα log k − (α + 1)

n

∑
i=1

logXi] =
n

α
+ n log k −

n

∑
i=1

logXi

= n
α
−

n

∑
i=1

log(Xi

k
),

which equal zero if and only if

α = [ 1

n

n

∑
i=1

log(Xi

k
)]

−1

.

(Note that the right-hand side of the equation above is undefined if X1 = ⋯ =Xn = k,
but we can ignore this possibility since it occurs with probability 0 for all α > 0.)
Then since this is the only critical point and the log-likelihood clearly tends to −∞
as α → 0 and as α →∞, it follows that this point is indeed the maximum. Thus,

α̂n = [ 1

n

n

∑
i=1

log(Xi

k
)]

−1

is the maximum likelihood estimator of α. ⊲

(b) Find the asymptotic distribution of α̂.

⊳ Solution to (b): We begin by finding I1(α), the Fisher information per obser-
vation. The second derivative of the log-likelihood of a single observation is

`′′X1
(α) = ∂

∂α
( 1

α
+ log k − logX1) = −

1

α2
,

and thus

I1(α) = −Eθ[`′′X1
(α)] = −Eθ(−

1

α2
) = 1

α2
.

Then

√
n(α̂n − α)→D N(0, α2)

by Theorem 6.2.4 of the notes. ⊲
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8. Again let X1, . . . ,Xn ∼ iid Pareto(k,α), but now suppose that k > 0 is unknown and
α > 0 is known. Compute Ek[`′X(k)], and explain why your answer does not contradict
Lemma 6.2.1 from the notes.

⊳ Solution: The score function is now

`′X(k) = ∂

∂k
[n logα + nα log k − (α + 1)

n

∑
i=1

logXi] =
nα

k
,

and thus

Ek[`′X(k)] = Ek(
nα

k
) = nα

k
≠ 0.

At first glance, it may appear that this result contradicts Lemma 6.2.1 of the notes,
which states that the expectation of the score is zero. However, there is no contradiction
since one of the regularity conditions of Section 6.4 is now violated, which means that
Lemma 6.2.1 does not apply. Specifically, the set

X = {x ∈ R ∶ `X1(k) > 0} = {x ∈ R ∶ x ≥ k} = [k,∞)

depends on the unknown parameter k, which is not permitted by the regularity conditions
of Section 6.4. (Note that there would be no violation here if instead k were known, as
was the case in the previous question.) ⊲
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Homework 5: Due at 11 a.m. on March 10

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. Let X1, . . . ,Xn be iid continuous random variables with a pdf fθ(x) that is symmetric
about θ, where θ ∈ R is unknown. Suppose that Varθ(X1) = σ2 < ∞ is known, which
implies that Eθ(X1) = θ. Then θ is both the true mean and true median of the pdf fθ(x),
so it seems plausible that both the sample mean Xn and the sample median, which we
will call Mn, could be good estimators of θ.

(a) Use the central limit theorem to state the asymptotic distribution of the sample
mean Xn.

Suppose fθ(θ), the value of the pdf at the true mean (and median), satisfies fθ(θ) > 0.
Then it can be shown that the asymptotic distribution of the sample median Mn is

√
n(Mn − θ)→D N(0,

1

4[fθ(θ)]2
).

(You do not need to show this.)

(b) Suppose fθ(x) is the pdf of a N(θ, σ2) distribution, where σ2 > 0 is known. Compute
ARE(Mn,Xn), and use it to state which estimator performs better asymptotically.

(c) Suppose fθ(x) = 1
2λ exp(−λ∣x − θ∣), where λ > 0 is known. Compute ARE(Mn,Xn),

and use it to state which estimator performs better asymptotically. Note: Under
this pdf, Varθ(X1) = 2λ−2, and you may use this fact without proof.

(d) Suppose that

fθ(x) =
Γ[(p + 1)/2]
√
πp Γ(p/2)[1 +

(x − θ)2

p
]
−(p+1)/2

,

where p ≥ 3 is an integer. (This is the pdf of Student’s t distribution with p degrees
of freedom that has been “shifted” so that its mean is θ instead of zero.) Compute
ARE(Mn,Xn), and use it to find an integer k such that the sample median performs
better asymptotically if and only if p ≤ k. Note: Under this pdf, Varθ(X1) = p/(p−2).
Also, the gamma function takes the particular values

Γ(3/2) =
√
π

2
, Γ(2) = 1, Γ(5/2) = 3

√
π

4
, Γ(3) = 2,

and it satisfies the inequality

Γ[(p + 1)/2]
Γ(p/2) ≤

√
p/2

for all p > 0. You may use any of these facts without proof.
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2. DeGroot & Schervish 8.8.10.

3. DeGroot & Schervish 8.9.14.

4. Let X1, . . . ,Xn ∼ Bin(1, θ), where 0 < θ < 1 and n ≥ 3. Suppose we wish to estimate the
quantity ξ = θ3.

(a) Find an unbiased estimator of ξ that is a function of X1, X2, and X3 only.

(b) Find an unbiased estimator of ξ that is a function of the sufficient statistic ∑ni=1Xi

and has smaller mean squared error than the estimator in part (a).

5. DeGroot & Schervish 9.1.2.

6. Let X be a single observation of an Exp(λ) random variable, which has pdf

fλ(x) =
⎧⎪⎪⎨⎪⎪⎩

λ exp(−λx) if x ≥ 0,

0 if x < 0.

Consider testing H0 ∶ λ ≥ λ0 versus H1 ∶ λ < λ0.

(a) Find the power function of the hypothesis test that rejects H0 if and only if X ≥ c.
(b) Let 0 < α < 1. Find a value of c such that the test in part (a) has size α.

(c) For what true values of λ is Pλ(type II error) ≥ 1/2 for the test in part (a) with
size α as in (b)?

7. Let X1,X2 ∼ iid Bin(1, θ), and consider testing H0 ∶ θ = 1/3 versus H1 ∶ θ < 1/3.

(a) Find a test that has size 2/9 exactly. Note: It does not have to be a sensible test.

(b) Find the power function of the test from part (a), and use it to explain why this test
is not a good test of these hypotheses.
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Solutions to Homework 5

“DeGroot & Schervish X.Y .Z” means Exercise Z at the end of Section X.Y in our text,
Probability and Statistics (Fourth Edition) by Morris H. DeGroot and Mark J. Schervish.

1. Let X1, . . . ,Xn be iid continuous random variables with a pdf fθ(x) that is symmetric
about θ, where θ ∈ R is unknown. Suppose that Varθ(X1) = σ2 < ∞ is known, which
implies that Eθ(X1) = θ. Then θ is both the true mean and true median of the pdf fθ(x),
so it seems plausible that both the sample mean Xn and the sample median, which we
will call Mn, could be good estimators of θ.

(a) Use the central limit theorem to state the asymptotic distribution of the sample
mean Xn.

⊳ Solution:
√
n(Xn − θ)→D N(0, σ2). ⊲

Suppose fθ(θ), the value of the pdf at the true mean (and median), satisfies fθ(θ) > 0.
Then it can be shown that the asymptotic distribution of the sample median Mn is

√
n(Mn − θ)→D N(0,

1

4[fθ(θ)]2
).

(You do not need to show this.)

(b) Suppose fθ(x) is the pdf of a N(θ, σ2) distribution, where σ2 > 0 is known. Compute
ARE(Mn,Xn), and use it to state which estimator performs better asymptotically.

⊳ Solution: ARE(Mn,Xn) = 4[fθ(θ)]2/(1/σ2) = 4(2πσ2)−1σ2 = 2/π ≈ 0.64, so the
sample mean performs better asymptotically. ⊲

(c) Suppose fθ(x) = 1
2λ exp(−λ∣x − θ∣), where λ > 0 is known. Compute ARE(Mn,Xn),

and use it to state which estimator performs better asymptotically. Note: Under
this pdf, Varθ(X1) = 2λ−2, and you may use this fact without proof.

⊳ Solution: ARE(Mn,Xn) = 4[fθ(θ)]2/(1/σ2) = 4(1
2λ)2/(1

2λ
2) = 2, so the sample

median performs better asymptotically. ⊲
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(d) Suppose that

fθ(x) =
Γ[(p + 1)/2]
√
πp Γ(p/2)[1 +

(x − θ)2

p
]
−(p+1)/2

,

where p ≥ 3 is an integer. (This is the pdf of Student’s t distribution with p degrees
of freedom that has been “shifted” so that its mean is θ instead of zero.) Compute
ARE(Mn,Xn), and use it to find an integer k such that the sample median performs
better asymptotically if and only if p ≤ k. Note: Under this pdf, Varθ(X1) = p/(p−2).
Also, the gamma function takes the particular values

Γ(3/2) =
√
π

2
, Γ(2) = 1, Γ(5/2) = 3

√
π

4
, Γ(3) = 2,

and it satisfies the inequality

Γ[(p + 1)/2]
Γ(p/2) ≤

√
p/2

for all p > 0. You may use any of these facts without proof.

⊳ Solution: First note that

ARE(Mn,Xn) =
4[fθ(θ)]2

1/σ2
= 4

πp
{Γ[(p + 1)/2]

Γ(p/2) }
2
p

p − 2
= 4

π(p − 2){
Γ[(p + 1)/2]

Γ(p/2) }
2

.

Then for all p ≥ 6,

ARE(Mn,Xn) ≤
2p

π(p − 2) = 2

π
(1 − 2

p
)
−1

≤ 2

π
(1 − 2

6
)
−1

= 3

π
< 1.

For p = 5, we have

ARE(Mn,Xn) =
4

π(5 − 2){
Γ[(5 + 1)/2]

Γ(5/2) }
2

= 4

3π
( 8

3
√
π
)

2

= 256

27π2
≈ 0.96.

For p = 4, we have

ARE(Mn,Xn) =
4

π(4 − 2){
Γ[(4 + 1)/2]

Γ(4/2) }
2

= 2

π
(3

√
π

4
)

2

= 9

8
.

For p = 3, we have

ARE(Mn,Xn) =
4

π(3 − 2){
Γ[(3 + 1)/2]

Γ(3/2) }
2

= 4

π
( 2√

π
)

2

= 16

π2
≈ 1.62.

Thus, the sample median performs better asymptotically if and only if p ≤ 4. ⊲
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2. DeGroot & Schervish 8.8.10.

⊳ Solution: We begin by finding the Fisher information per observation, taking the
parameter to be σ2. (The parameter can be taken to be σ instead, which should eventually
yield the same final answer.) Then the second derivative of the log-likelihood is

`′′X1
(σ2) = ∂2

∂(σ2)2
`X1

(σ2) = ∂2

∂(σ2)2
[−1

2
log(2π) − 1

2
log(σ2) − X2

1

2σ2
]

= ∂

∂(σ2)[−
1

2σ2
+ X2

1

2(σ2)2
] = 1

2(σ2)2
− X2

1

(σ2)3
.

Then

I1(σ2) = −Eσ2[`′′X1
(σ2)] = − 1

2(σ2)2
+ Eσ2(X2

1)
(σ2)3

= 1

2(σ2)2
.

Next, let g(θ) = log(θ1/2) = 1
2 log θ, so that g(σ2) = logσ. Then g′(θ) = 1/(2θ), so

[g′(σ2)]2

nI1(σ2) = [1/(2σ2)]2

n/[2(σ2)2] =
2(σ2)2

4n(σ2)2
= 1

2n
.

Then by the Cramér-Rao inequality, the variance of any unbiased estimator of logσ is at
least 1/(2n). ⊲

3. DeGroot & Schervish 8.9.14.

⊳ Solution to (a): Note that Y ∼ Poisson(nθ), so

Eθ[exp(−cY )] =
∞

∑
y=0

exp(−cy) (nθ)y exp(−nθ)
y!

= exp(−nθ)
∞

∑
y=0

[nθ exp(−c)]y

y!

= exp(−nθ) exp[nθ exp(−c)]
= exp{−nθ [1 − exp(−c)]}.

Hence, Eθ[exp(−cY )] = exp(−θ) if and only if n[1− exp(−c)] = 1, which holds if and only
if c = log[n/(n − 1)]. ⊲

⊳ Solution to (b): From Example 6.2.2 of the notes, the Fisher information for the
sample is I(θ) = n/θ. Now let g(θ) = exp(−θ). Then g′(θ) = − exp(−θ), so

[g′(θ)]2

I(θ) = [− exp(−θ)]2

n/θ = θ exp(−2θ)
n

.

Then by the Cramér-Rao inequality, a lower bound for the variance of the unbiased
estimator found in part (a) is n−1θ exp(−2θ). ⊲
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4. Let X1, . . . ,Xn ∼ Bin(1, θ), where 0 < θ < 1 and n ≥ 3. Suppose we wish to estimate the
quantity ξ = θ3. Note: It was okay to take X1, . . . ,Xn to be independent, since otherwise
you are not told enough to complete the problem.

(a) Find an unbiased estimator of ξ that is a function of X1, X2, and X3 only.

⊳ Solution: Take ξ̃ =X1X2X3. ⊲

(b) Find an unbiased estimator of ξ that is a function of the sufficient statistic ∑ni=1Xi

and has smaller mean squared error than the estimator in part (a).

⊳ Solution: We apply the Rao-Blackwell theorem. Let Y = ∑ni=1Xi. Then

P (ξ̃ = 1 ∣ Y = y) = P (X1 =X2 =X3 = 1 ∣ Y = y)

= Pθ(X1 =X2 =X3 = 1, Y = y)
Pθ(Y = y)

=
Pθ(

3

∑
i=1

Xi = 3) Pθ(
n

∑
i=4

Xi = y − 3)

Pθ(Y = y)

=
θ3

(n − 3)!
(y − 3)! (n − y)!θ

y−3(1 − θ)n−y

n!

y! (n − y)!θ
y(1 − θ)n−y

= (n − 3)! y!

n! (y − 3)! =
y(y − 1)(y − 2)
n(n − 1)(n − 2) .

Thus, ξ̃⋆ = Y (Y − 1)(Y − 2)/[n(n − 1)(n − 2)] is an unbiased estimator that is a
function of the sufficient statistic ∑ni=1Xi and has smaller mean squared error than
the estimator in part (a). Note: Technically we have not shown that the MSE of ξ̃⋆

is smaller than that of ξ̃, merely that the MSE of ξ̃⋆ is not larger than that of ξ̃.
Indeed, if n = 3, then the estimators coincide. However, it is true that ξ̃⋆ has strictly
smaller MSE than ξ̃ if n > 3. ⊲

5. DeGroot & Schervish 9.1.2.

⊳ Solution to (a): The power function of the test is

Power(θ) = Pθ(Yn ≤ 1.5) = Pθ(max
1≤i≤n

Xi ≤ 1.5) =
n

∏
i=1

Pθ(Xi ≤ 1.5) = [Pθ(X1 ≤ 1.5)]n = (1.5

θ
)
n

for θ ≥ 1.5, and Power(θ) = 1 for θ < 1.5. ⊲

⊳ Solution to (b): Power(θ) is a non-increasing function of θ, so

sup
θ≥2

Power(θ) = Power(2) = (1.5

2
)
n

= (3

4
)
n

.

Thus, the size of the test is (3/4)n. ⊲



Solutions to Homework 5 5

6. Let X be a single observation of an Exp(λ) random variable, which has pdf

fλ(x) =
⎧⎪⎪⎨⎪⎪⎩

λ exp(−λx) if x ≥ 0,

0 if x < 0.

Consider testing H0 ∶ λ ≥ λ0 versus H1 ∶ λ < λ0.

(a) Find the power function of the hypothesis test that rejects H0 if and only if X ≥ c.

⊳ Solution: Power(λ) = Pλ(X ≥ c) = ∫
∞

c fλ(x) dx = exp(−λc). ⊲

(b) Let 0 < α < 1. Find a value of c such that the test in part (a) has size α.

⊳ Solution: Power(λ) is a non-increasing function of λ, so

sup
λ≥λ0

Power(λ) = Power(λ0) = exp(−λ0c).

Thus, the size of the test is exp(−λ0c). Then the test has size α if and only if

exp(−λ0c) = α ⇐⇒ c = − logα

λ0

,

noting that logα is negative since 0 < α < 1. ⊲

(c) For what true values of λ is Pλ(type II error) ≥ 1/2 for the test in part (a) with
size α as in (b)?

⊳ Solution: Pλ(type II error) ≥ 1/2 if and only if both λ < λ0 and Power(λ) ≤ 1/2.
The test in part (a) with size α as in (b) has power function

Power(λ) = exp[−λ(− logα

λ0

)] = αλ/λ0 ,

and hence

Power(λ) ≤ 1/2 ⇐⇒ λ ≥ −λ0 log 2

logα
,

again noting that logα is negative. Thus, Pλ(type II error) ≥ 1/2 if and only if

−λ0 log 2

logα
≤ λ < λ0.

(Note that if α ≥ 1/2, then there are no such values of λ.) ⊲
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7. Let X1,X2 ∼ iid Bin(1, θ), and consider testing H0 ∶ θ = 1/3 versus H1 ∶ θ < 1/3.

(a) Find a test that has size 2/9 exactly. Note: It does not have to be a sensible test.

⊳ Solution: Note that there are only four possible values of (X1,X2), i.e., the
sample space consists of only four points. If θ = 1/3, then

(X1,X2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) with probability 4/9,
(0,1) with probability 2/9,
(1,0) with probability 2/9,
(1,1) with probability 1/9.

Thus, the only tests with size 2/9 exactly are the test that rejects H0 if and only if
(X1,X2) = (0,1) and the test that rejects H0 if and only if (X1,X2) = (1,0). ⊲

(b) Find the power function of the test from part (a), and use it to explain why this test
is not a good test of these hypotheses.

⊳ Solution: Power(θ) = θ(1 − θ) for both of the tests from part (a). Note that
Power(1/3) > Power(θ) for all θ < 1/3. Thus, these tests are more likely to reject H0

if it is true than if it is false, which is exactly the opposite of what a good hypothesis
test should do. ⊲
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